Metamath Proof Explorer


Theorem wwlktovf1o

Description: Lemma 4 for wrd2f1tovbij . (Contributed by Alexander van der Vekens, 28-Jul-2018)

Ref Expression
Hypotheses wwlktovf1o.d 𝐷 = { 𝑤 ∈ Word 𝑉 ∣ ( ( ♯ ‘ 𝑤 ) = 2 ∧ ( 𝑤 ‘ 0 ) = 𝑃 ∧ { ( 𝑤 ‘ 0 ) , ( 𝑤 ‘ 1 ) } ∈ 𝑋 ) }
wwlktovf1o.r 𝑅 = { 𝑛𝑉 ∣ { 𝑃 , 𝑛 } ∈ 𝑋 }
wwlktovf1o.f 𝐹 = ( 𝑡𝐷 ↦ ( 𝑡 ‘ 1 ) )
Assertion wwlktovf1o ( 𝑃𝑉𝐹 : 𝐷1-1-onto𝑅 )

Proof

Step Hyp Ref Expression
1 wwlktovf1o.d 𝐷 = { 𝑤 ∈ Word 𝑉 ∣ ( ( ♯ ‘ 𝑤 ) = 2 ∧ ( 𝑤 ‘ 0 ) = 𝑃 ∧ { ( 𝑤 ‘ 0 ) , ( 𝑤 ‘ 1 ) } ∈ 𝑋 ) }
2 wwlktovf1o.r 𝑅 = { 𝑛𝑉 ∣ { 𝑃 , 𝑛 } ∈ 𝑋 }
3 wwlktovf1o.f 𝐹 = ( 𝑡𝐷 ↦ ( 𝑡 ‘ 1 ) )
4 1 2 3 wwlktovf1 𝐹 : 𝐷1-1𝑅
5 4 a1i ( 𝑃𝑉𝐹 : 𝐷1-1𝑅 )
6 1 2 3 wwlktovfo ( 𝑃𝑉𝐹 : 𝐷onto𝑅 )
7 df-f1o ( 𝐹 : 𝐷1-1-onto𝑅 ↔ ( 𝐹 : 𝐷1-1𝑅𝐹 : 𝐷onto𝑅 ) )
8 5 6 7 sylanbrc ( 𝑃𝑉𝐹 : 𝐷1-1-onto𝑅 )