Step |
Hyp |
Ref |
Expression |
1 |
|
df-2 |
⊢ 2 = ( 1 + 1 ) |
2 |
|
1re |
⊢ 1 ∈ ℝ |
3 |
|
rexadd |
⊢ ( ( 1 ∈ ℝ ∧ 1 ∈ ℝ ) → ( 1 +𝑒 1 ) = ( 1 + 1 ) ) |
4 |
2 2 3
|
mp2an |
⊢ ( 1 +𝑒 1 ) = ( 1 + 1 ) |
5 |
1 4
|
eqtr4i |
⊢ 2 = ( 1 +𝑒 1 ) |
6 |
5
|
oveq1i |
⊢ ( 2 ·e 𝐴 ) = ( ( 1 +𝑒 1 ) ·e 𝐴 ) |
7 |
|
1xr |
⊢ 1 ∈ ℝ* |
8 |
|
0le1 |
⊢ 0 ≤ 1 |
9 |
7 8
|
pm3.2i |
⊢ ( 1 ∈ ℝ* ∧ 0 ≤ 1 ) |
10 |
|
xadddi2r |
⊢ ( ( ( 1 ∈ ℝ* ∧ 0 ≤ 1 ) ∧ ( 1 ∈ ℝ* ∧ 0 ≤ 1 ) ∧ 𝐴 ∈ ℝ* ) → ( ( 1 +𝑒 1 ) ·e 𝐴 ) = ( ( 1 ·e 𝐴 ) +𝑒 ( 1 ·e 𝐴 ) ) ) |
11 |
9 9 10
|
mp3an12 |
⊢ ( 𝐴 ∈ ℝ* → ( ( 1 +𝑒 1 ) ·e 𝐴 ) = ( ( 1 ·e 𝐴 ) +𝑒 ( 1 ·e 𝐴 ) ) ) |
12 |
|
xmulid2 |
⊢ ( 𝐴 ∈ ℝ* → ( 1 ·e 𝐴 ) = 𝐴 ) |
13 |
12 12
|
oveq12d |
⊢ ( 𝐴 ∈ ℝ* → ( ( 1 ·e 𝐴 ) +𝑒 ( 1 ·e 𝐴 ) ) = ( 𝐴 +𝑒 𝐴 ) ) |
14 |
11 13
|
eqtrd |
⊢ ( 𝐴 ∈ ℝ* → ( ( 1 +𝑒 1 ) ·e 𝐴 ) = ( 𝐴 +𝑒 𝐴 ) ) |
15 |
6 14
|
eqtrid |
⊢ ( 𝐴 ∈ ℝ* → ( 2 ·e 𝐴 ) = ( 𝐴 +𝑒 𝐴 ) ) |