| Step | Hyp | Ref | Expression | 
						
							| 1 |  | xadd0ge.a | ⊢ ( 𝜑  →  𝐴  ∈  ℝ* ) | 
						
							| 2 |  | xadd0ge.b | ⊢ ( 𝜑  →  𝐵  ∈  ( 0 [,] +∞ ) ) | 
						
							| 3 |  | xaddrid | ⊢ ( 𝐴  ∈  ℝ*  →  ( 𝐴  +𝑒  0 )  =  𝐴 ) | 
						
							| 4 | 1 3 | syl | ⊢ ( 𝜑  →  ( 𝐴  +𝑒  0 )  =  𝐴 ) | 
						
							| 5 | 4 | eqcomd | ⊢ ( 𝜑  →  𝐴  =  ( 𝐴  +𝑒  0 ) ) | 
						
							| 6 |  | 0xr | ⊢ 0  ∈  ℝ* | 
						
							| 7 | 6 | a1i | ⊢ ( 𝜑  →  0  ∈  ℝ* ) | 
						
							| 8 | 1 7 | jca | ⊢ ( 𝜑  →  ( 𝐴  ∈  ℝ*  ∧  0  ∈  ℝ* ) ) | 
						
							| 9 |  | iccssxr | ⊢ ( 0 [,] +∞ )  ⊆  ℝ* | 
						
							| 10 | 9 2 | sselid | ⊢ ( 𝜑  →  𝐵  ∈  ℝ* ) | 
						
							| 11 | 1 10 | jca | ⊢ ( 𝜑  →  ( 𝐴  ∈  ℝ*  ∧  𝐵  ∈  ℝ* ) ) | 
						
							| 12 | 8 11 | jca | ⊢ ( 𝜑  →  ( ( 𝐴  ∈  ℝ*  ∧  0  ∈  ℝ* )  ∧  ( 𝐴  ∈  ℝ*  ∧  𝐵  ∈  ℝ* ) ) ) | 
						
							| 13 | 1 | xrleidd | ⊢ ( 𝜑  →  𝐴  ≤  𝐴 ) | 
						
							| 14 |  | pnfxr | ⊢ +∞  ∈  ℝ* | 
						
							| 15 | 14 | a1i | ⊢ ( 𝜑  →  +∞  ∈  ℝ* ) | 
						
							| 16 |  | iccgelb | ⊢ ( ( 0  ∈  ℝ*  ∧  +∞  ∈  ℝ*  ∧  𝐵  ∈  ( 0 [,] +∞ ) )  →  0  ≤  𝐵 ) | 
						
							| 17 | 7 15 2 16 | syl3anc | ⊢ ( 𝜑  →  0  ≤  𝐵 ) | 
						
							| 18 | 13 17 | jca | ⊢ ( 𝜑  →  ( 𝐴  ≤  𝐴  ∧  0  ≤  𝐵 ) ) | 
						
							| 19 |  | xle2add | ⊢ ( ( ( 𝐴  ∈  ℝ*  ∧  0  ∈  ℝ* )  ∧  ( 𝐴  ∈  ℝ*  ∧  𝐵  ∈  ℝ* ) )  →  ( ( 𝐴  ≤  𝐴  ∧  0  ≤  𝐵 )  →  ( 𝐴  +𝑒  0 )  ≤  ( 𝐴  +𝑒  𝐵 ) ) ) | 
						
							| 20 | 12 18 19 | sylc | ⊢ ( 𝜑  →  ( 𝐴  +𝑒  0 )  ≤  ( 𝐴  +𝑒  𝐵 ) ) | 
						
							| 21 | 5 20 | eqbrtrd | ⊢ ( 𝜑  →  𝐴  ≤  ( 𝐴  +𝑒  𝐵 ) ) |