Metamath Proof Explorer


Theorem xadd0ge2

Description: A number is less than or equal to itself plus a nonnegative extended real. (Contributed by Glauco Siliprandi, 17-Aug-2020)

Ref Expression
Hypotheses xadd0ge2.a ( 𝜑𝐴 ∈ ℝ* )
xadd0ge2.b ( 𝜑𝐵 ∈ ( 0 [,] +∞ ) )
Assertion xadd0ge2 ( 𝜑𝐴 ≤ ( 𝐵 +𝑒 𝐴 ) )

Proof

Step Hyp Ref Expression
1 xadd0ge2.a ( 𝜑𝐴 ∈ ℝ* )
2 xadd0ge2.b ( 𝜑𝐵 ∈ ( 0 [,] +∞ ) )
3 1 2 xadd0ge ( 𝜑𝐴 ≤ ( 𝐴 +𝑒 𝐵 ) )
4 iccssxr ( 0 [,] +∞ ) ⊆ ℝ*
5 4 2 sselid ( 𝜑𝐵 ∈ ℝ* )
6 1 5 xaddcomd ( 𝜑 → ( 𝐴 +𝑒 𝐵 ) = ( 𝐵 +𝑒 𝐴 ) )
7 3 6 breqtrd ( 𝜑𝐴 ≤ ( 𝐵 +𝑒 𝐴 ) )