Description: A number is less than or equal to itself plus a nonnegative extended real. (Contributed by Glauco Siliprandi, 17-Aug-2020)
Ref | Expression | ||
---|---|---|---|
Hypotheses | xadd0ge2.a | ⊢ ( 𝜑 → 𝐴 ∈ ℝ* ) | |
xadd0ge2.b | ⊢ ( 𝜑 → 𝐵 ∈ ( 0 [,] +∞ ) ) | ||
Assertion | xadd0ge2 | ⊢ ( 𝜑 → 𝐴 ≤ ( 𝐵 +𝑒 𝐴 ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | xadd0ge2.a | ⊢ ( 𝜑 → 𝐴 ∈ ℝ* ) | |
2 | xadd0ge2.b | ⊢ ( 𝜑 → 𝐵 ∈ ( 0 [,] +∞ ) ) | |
3 | 1 2 | xadd0ge | ⊢ ( 𝜑 → 𝐴 ≤ ( 𝐴 +𝑒 𝐵 ) ) |
4 | iccssxr | ⊢ ( 0 [,] +∞ ) ⊆ ℝ* | |
5 | 4 2 | sselid | ⊢ ( 𝜑 → 𝐵 ∈ ℝ* ) |
6 | 1 5 | xaddcomd | ⊢ ( 𝜑 → ( 𝐴 +𝑒 𝐵 ) = ( 𝐵 +𝑒 𝐴 ) ) |
7 | 3 6 | breqtrd | ⊢ ( 𝜑 → 𝐴 ≤ ( 𝐵 +𝑒 𝐴 ) ) |