Metamath Proof Explorer
		
		
		
		Description:  The extended real addition operation is closed in extended reals.
       (Contributed by Mario Carneiro, 28-May-2016)
		
			
				
					|  |  | Ref | Expression | 
					
						|  | Hypotheses | xnegcld.1 | ⊢ ( 𝜑  →  𝐴  ∈  ℝ* ) | 
					
						|  |  | xaddcld.2 | ⊢ ( 𝜑  →  𝐵  ∈  ℝ* ) | 
				
					|  | Assertion | xaddcld | ⊢  ( 𝜑  →  ( 𝐴  +𝑒  𝐵 )  ∈  ℝ* ) | 
			
		
		
			
				Proof
				
					
						| Step | Hyp | Ref | Expression | 
						
							| 1 |  | xnegcld.1 | ⊢ ( 𝜑  →  𝐴  ∈  ℝ* ) | 
						
							| 2 |  | xaddcld.2 | ⊢ ( 𝜑  →  𝐵  ∈  ℝ* ) | 
						
							| 3 |  | xaddcl | ⊢ ( ( 𝐴  ∈  ℝ*  ∧  𝐵  ∈  ℝ* )  →  ( 𝐴  +𝑒  𝐵 )  ∈  ℝ* ) | 
						
							| 4 | 1 2 3 | syl2anc | ⊢ ( 𝜑  →  ( 𝐴  +𝑒  𝐵 )  ∈  ℝ* ) |