Metamath Proof Explorer


Theorem xaddcomd

Description: The extended real addition operation is commutative. (Contributed by Glauco Siliprandi, 17-Aug-2020)

Ref Expression
Hypotheses xaddcomd.1 ( 𝜑𝐴 ∈ ℝ* )
xaddcomd.2 ( 𝜑𝐵 ∈ ℝ* )
Assertion xaddcomd ( 𝜑 → ( 𝐴 +𝑒 𝐵 ) = ( 𝐵 +𝑒 𝐴 ) )

Proof

Step Hyp Ref Expression
1 xaddcomd.1 ( 𝜑𝐴 ∈ ℝ* )
2 xaddcomd.2 ( 𝜑𝐵 ∈ ℝ* )
3 xaddcom ( ( 𝐴 ∈ ℝ*𝐵 ∈ ℝ* ) → ( 𝐴 +𝑒 𝐵 ) = ( 𝐵 +𝑒 𝐴 ) )
4 1 2 3 syl2anc ( 𝜑 → ( 𝐴 +𝑒 𝐵 ) = ( 𝐵 +𝑒 𝐴 ) )