Metamath Proof Explorer
Description: The extended real addition operation is commutative. (Contributed by Glauco Siliprandi, 17-Aug-2020)
|
|
Ref |
Expression |
|
Hypotheses |
xaddcomd.1 |
⊢ ( 𝜑 → 𝐴 ∈ ℝ* ) |
|
|
xaddcomd.2 |
⊢ ( 𝜑 → 𝐵 ∈ ℝ* ) |
|
Assertion |
xaddcomd |
⊢ ( 𝜑 → ( 𝐴 +𝑒 𝐵 ) = ( 𝐵 +𝑒 𝐴 ) ) |
Proof
Step |
Hyp |
Ref |
Expression |
1 |
|
xaddcomd.1 |
⊢ ( 𝜑 → 𝐴 ∈ ℝ* ) |
2 |
|
xaddcomd.2 |
⊢ ( 𝜑 → 𝐵 ∈ ℝ* ) |
3 |
|
xaddcom |
⊢ ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ) → ( 𝐴 +𝑒 𝐵 ) = ( 𝐵 +𝑒 𝐴 ) ) |
4 |
1 2 3
|
syl2anc |
⊢ ( 𝜑 → ( 𝐴 +𝑒 𝐵 ) = ( 𝐵 +𝑒 𝐴 ) ) |