Step |
Hyp |
Ref |
Expression |
1 |
|
0xr |
⊢ 0 ∈ ℝ* |
2 |
|
pnfxr |
⊢ +∞ ∈ ℝ* |
3 |
1 2
|
ifcli |
⊢ if ( 𝑦 = -∞ , 0 , +∞ ) ∈ ℝ* |
4 |
3
|
a1i |
⊢ ( ( ( 𝑥 ∈ ℝ* ∧ 𝑦 ∈ ℝ* ) ∧ 𝑥 = +∞ ) → if ( 𝑦 = -∞ , 0 , +∞ ) ∈ ℝ* ) |
5 |
|
mnfxr |
⊢ -∞ ∈ ℝ* |
6 |
1 5
|
ifcli |
⊢ if ( 𝑦 = +∞ , 0 , -∞ ) ∈ ℝ* |
7 |
6
|
a1i |
⊢ ( ( ( ( 𝑥 ∈ ℝ* ∧ 𝑦 ∈ ℝ* ) ∧ ¬ 𝑥 = +∞ ) ∧ 𝑥 = -∞ ) → if ( 𝑦 = +∞ , 0 , -∞ ) ∈ ℝ* ) |
8 |
2
|
a1i |
⊢ ( ( ( ( 𝑥 ∈ ℝ* ∧ ( ¬ 𝑥 = +∞ ∧ ¬ 𝑥 = -∞ ) ) ∧ 𝑦 ∈ ℝ* ) ∧ 𝑦 = +∞ ) → +∞ ∈ ℝ* ) |
9 |
5
|
a1i |
⊢ ( ( ( ( ( 𝑥 ∈ ℝ* ∧ ( ¬ 𝑥 = +∞ ∧ ¬ 𝑥 = -∞ ) ) ∧ 𝑦 ∈ ℝ* ) ∧ ¬ 𝑦 = +∞ ) ∧ 𝑦 = -∞ ) → -∞ ∈ ℝ* ) |
10 |
|
ioran |
⊢ ( ¬ ( 𝑥 = +∞ ∨ 𝑥 = -∞ ) ↔ ( ¬ 𝑥 = +∞ ∧ ¬ 𝑥 = -∞ ) ) |
11 |
|
elxr |
⊢ ( 𝑥 ∈ ℝ* ↔ ( 𝑥 ∈ ℝ ∨ 𝑥 = +∞ ∨ 𝑥 = -∞ ) ) |
12 |
|
3orass |
⊢ ( ( 𝑥 ∈ ℝ ∨ 𝑥 = +∞ ∨ 𝑥 = -∞ ) ↔ ( 𝑥 ∈ ℝ ∨ ( 𝑥 = +∞ ∨ 𝑥 = -∞ ) ) ) |
13 |
11 12
|
sylbb |
⊢ ( 𝑥 ∈ ℝ* → ( 𝑥 ∈ ℝ ∨ ( 𝑥 = +∞ ∨ 𝑥 = -∞ ) ) ) |
14 |
13
|
ord |
⊢ ( 𝑥 ∈ ℝ* → ( ¬ 𝑥 ∈ ℝ → ( 𝑥 = +∞ ∨ 𝑥 = -∞ ) ) ) |
15 |
14
|
con1d |
⊢ ( 𝑥 ∈ ℝ* → ( ¬ ( 𝑥 = +∞ ∨ 𝑥 = -∞ ) → 𝑥 ∈ ℝ ) ) |
16 |
15
|
imp |
⊢ ( ( 𝑥 ∈ ℝ* ∧ ¬ ( 𝑥 = +∞ ∨ 𝑥 = -∞ ) ) → 𝑥 ∈ ℝ ) |
17 |
10 16
|
sylan2br |
⊢ ( ( 𝑥 ∈ ℝ* ∧ ( ¬ 𝑥 = +∞ ∧ ¬ 𝑥 = -∞ ) ) → 𝑥 ∈ ℝ ) |
18 |
|
ioran |
⊢ ( ¬ ( 𝑦 = +∞ ∨ 𝑦 = -∞ ) ↔ ( ¬ 𝑦 = +∞ ∧ ¬ 𝑦 = -∞ ) ) |
19 |
|
elxr |
⊢ ( 𝑦 ∈ ℝ* ↔ ( 𝑦 ∈ ℝ ∨ 𝑦 = +∞ ∨ 𝑦 = -∞ ) ) |
20 |
|
3orass |
⊢ ( ( 𝑦 ∈ ℝ ∨ 𝑦 = +∞ ∨ 𝑦 = -∞ ) ↔ ( 𝑦 ∈ ℝ ∨ ( 𝑦 = +∞ ∨ 𝑦 = -∞ ) ) ) |
21 |
19 20
|
sylbb |
⊢ ( 𝑦 ∈ ℝ* → ( 𝑦 ∈ ℝ ∨ ( 𝑦 = +∞ ∨ 𝑦 = -∞ ) ) ) |
22 |
21
|
ord |
⊢ ( 𝑦 ∈ ℝ* → ( ¬ 𝑦 ∈ ℝ → ( 𝑦 = +∞ ∨ 𝑦 = -∞ ) ) ) |
23 |
22
|
con1d |
⊢ ( 𝑦 ∈ ℝ* → ( ¬ ( 𝑦 = +∞ ∨ 𝑦 = -∞ ) → 𝑦 ∈ ℝ ) ) |
24 |
23
|
imp |
⊢ ( ( 𝑦 ∈ ℝ* ∧ ¬ ( 𝑦 = +∞ ∨ 𝑦 = -∞ ) ) → 𝑦 ∈ ℝ ) |
25 |
18 24
|
sylan2br |
⊢ ( ( 𝑦 ∈ ℝ* ∧ ( ¬ 𝑦 = +∞ ∧ ¬ 𝑦 = -∞ ) ) → 𝑦 ∈ ℝ ) |
26 |
|
readdcl |
⊢ ( ( 𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ ) → ( 𝑥 + 𝑦 ) ∈ ℝ ) |
27 |
17 25 26
|
syl2an |
⊢ ( ( ( 𝑥 ∈ ℝ* ∧ ( ¬ 𝑥 = +∞ ∧ ¬ 𝑥 = -∞ ) ) ∧ ( 𝑦 ∈ ℝ* ∧ ( ¬ 𝑦 = +∞ ∧ ¬ 𝑦 = -∞ ) ) ) → ( 𝑥 + 𝑦 ) ∈ ℝ ) |
28 |
27
|
rexrd |
⊢ ( ( ( 𝑥 ∈ ℝ* ∧ ( ¬ 𝑥 = +∞ ∧ ¬ 𝑥 = -∞ ) ) ∧ ( 𝑦 ∈ ℝ* ∧ ( ¬ 𝑦 = +∞ ∧ ¬ 𝑦 = -∞ ) ) ) → ( 𝑥 + 𝑦 ) ∈ ℝ* ) |
29 |
28
|
anassrs |
⊢ ( ( ( ( 𝑥 ∈ ℝ* ∧ ( ¬ 𝑥 = +∞ ∧ ¬ 𝑥 = -∞ ) ) ∧ 𝑦 ∈ ℝ* ) ∧ ( ¬ 𝑦 = +∞ ∧ ¬ 𝑦 = -∞ ) ) → ( 𝑥 + 𝑦 ) ∈ ℝ* ) |
30 |
29
|
anassrs |
⊢ ( ( ( ( ( 𝑥 ∈ ℝ* ∧ ( ¬ 𝑥 = +∞ ∧ ¬ 𝑥 = -∞ ) ) ∧ 𝑦 ∈ ℝ* ) ∧ ¬ 𝑦 = +∞ ) ∧ ¬ 𝑦 = -∞ ) → ( 𝑥 + 𝑦 ) ∈ ℝ* ) |
31 |
9 30
|
ifclda |
⊢ ( ( ( ( 𝑥 ∈ ℝ* ∧ ( ¬ 𝑥 = +∞ ∧ ¬ 𝑥 = -∞ ) ) ∧ 𝑦 ∈ ℝ* ) ∧ ¬ 𝑦 = +∞ ) → if ( 𝑦 = -∞ , -∞ , ( 𝑥 + 𝑦 ) ) ∈ ℝ* ) |
32 |
8 31
|
ifclda |
⊢ ( ( ( 𝑥 ∈ ℝ* ∧ ( ¬ 𝑥 = +∞ ∧ ¬ 𝑥 = -∞ ) ) ∧ 𝑦 ∈ ℝ* ) → if ( 𝑦 = +∞ , +∞ , if ( 𝑦 = -∞ , -∞ , ( 𝑥 + 𝑦 ) ) ) ∈ ℝ* ) |
33 |
32
|
an32s |
⊢ ( ( ( 𝑥 ∈ ℝ* ∧ 𝑦 ∈ ℝ* ) ∧ ( ¬ 𝑥 = +∞ ∧ ¬ 𝑥 = -∞ ) ) → if ( 𝑦 = +∞ , +∞ , if ( 𝑦 = -∞ , -∞ , ( 𝑥 + 𝑦 ) ) ) ∈ ℝ* ) |
34 |
33
|
anassrs |
⊢ ( ( ( ( 𝑥 ∈ ℝ* ∧ 𝑦 ∈ ℝ* ) ∧ ¬ 𝑥 = +∞ ) ∧ ¬ 𝑥 = -∞ ) → if ( 𝑦 = +∞ , +∞ , if ( 𝑦 = -∞ , -∞ , ( 𝑥 + 𝑦 ) ) ) ∈ ℝ* ) |
35 |
7 34
|
ifclda |
⊢ ( ( ( 𝑥 ∈ ℝ* ∧ 𝑦 ∈ ℝ* ) ∧ ¬ 𝑥 = +∞ ) → if ( 𝑥 = -∞ , if ( 𝑦 = +∞ , 0 , -∞ ) , if ( 𝑦 = +∞ , +∞ , if ( 𝑦 = -∞ , -∞ , ( 𝑥 + 𝑦 ) ) ) ) ∈ ℝ* ) |
36 |
4 35
|
ifclda |
⊢ ( ( 𝑥 ∈ ℝ* ∧ 𝑦 ∈ ℝ* ) → if ( 𝑥 = +∞ , if ( 𝑦 = -∞ , 0 , +∞ ) , if ( 𝑥 = -∞ , if ( 𝑦 = +∞ , 0 , -∞ ) , if ( 𝑦 = +∞ , +∞ , if ( 𝑦 = -∞ , -∞ , ( 𝑥 + 𝑦 ) ) ) ) ) ∈ ℝ* ) |
37 |
36
|
rgen2 |
⊢ ∀ 𝑥 ∈ ℝ* ∀ 𝑦 ∈ ℝ* if ( 𝑥 = +∞ , if ( 𝑦 = -∞ , 0 , +∞ ) , if ( 𝑥 = -∞ , if ( 𝑦 = +∞ , 0 , -∞ ) , if ( 𝑦 = +∞ , +∞ , if ( 𝑦 = -∞ , -∞ , ( 𝑥 + 𝑦 ) ) ) ) ) ∈ ℝ* |
38 |
|
df-xadd |
⊢ +𝑒 = ( 𝑥 ∈ ℝ* , 𝑦 ∈ ℝ* ↦ if ( 𝑥 = +∞ , if ( 𝑦 = -∞ , 0 , +∞ ) , if ( 𝑥 = -∞ , if ( 𝑦 = +∞ , 0 , -∞ ) , if ( 𝑦 = +∞ , +∞ , if ( 𝑦 = -∞ , -∞ , ( 𝑥 + 𝑦 ) ) ) ) ) ) |
39 |
38
|
fmpo |
⊢ ( ∀ 𝑥 ∈ ℝ* ∀ 𝑦 ∈ ℝ* if ( 𝑥 = +∞ , if ( 𝑦 = -∞ , 0 , +∞ ) , if ( 𝑥 = -∞ , if ( 𝑦 = +∞ , 0 , -∞ ) , if ( 𝑦 = +∞ , +∞ , if ( 𝑦 = -∞ , -∞ , ( 𝑥 + 𝑦 ) ) ) ) ) ∈ ℝ* ↔ +𝑒 : ( ℝ* × ℝ* ) ⟶ ℝ* ) |
40 |
37 39
|
mpbi |
⊢ +𝑒 : ( ℝ* × ℝ* ) ⟶ ℝ* |