| Step |
Hyp |
Ref |
Expression |
| 1 |
|
0xr |
⊢ 0 ∈ ℝ* |
| 2 |
|
pnfxr |
⊢ +∞ ∈ ℝ* |
| 3 |
1 2
|
ifcli |
⊢ if ( 𝑦 = -∞ , 0 , +∞ ) ∈ ℝ* |
| 4 |
3
|
a1i |
⊢ ( ( ( 𝑥 ∈ ℝ* ∧ 𝑦 ∈ ℝ* ) ∧ 𝑥 = +∞ ) → if ( 𝑦 = -∞ , 0 , +∞ ) ∈ ℝ* ) |
| 5 |
|
mnfxr |
⊢ -∞ ∈ ℝ* |
| 6 |
1 5
|
ifcli |
⊢ if ( 𝑦 = +∞ , 0 , -∞ ) ∈ ℝ* |
| 7 |
6
|
a1i |
⊢ ( ( ( ( 𝑥 ∈ ℝ* ∧ 𝑦 ∈ ℝ* ) ∧ ¬ 𝑥 = +∞ ) ∧ 𝑥 = -∞ ) → if ( 𝑦 = +∞ , 0 , -∞ ) ∈ ℝ* ) |
| 8 |
2
|
a1i |
⊢ ( ( ( ( 𝑥 ∈ ℝ* ∧ ( ¬ 𝑥 = +∞ ∧ ¬ 𝑥 = -∞ ) ) ∧ 𝑦 ∈ ℝ* ) ∧ 𝑦 = +∞ ) → +∞ ∈ ℝ* ) |
| 9 |
5
|
a1i |
⊢ ( ( ( ( ( 𝑥 ∈ ℝ* ∧ ( ¬ 𝑥 = +∞ ∧ ¬ 𝑥 = -∞ ) ) ∧ 𝑦 ∈ ℝ* ) ∧ ¬ 𝑦 = +∞ ) ∧ 𝑦 = -∞ ) → -∞ ∈ ℝ* ) |
| 10 |
|
ioran |
⊢ ( ¬ ( 𝑥 = +∞ ∨ 𝑥 = -∞ ) ↔ ( ¬ 𝑥 = +∞ ∧ ¬ 𝑥 = -∞ ) ) |
| 11 |
|
elxr |
⊢ ( 𝑥 ∈ ℝ* ↔ ( 𝑥 ∈ ℝ ∨ 𝑥 = +∞ ∨ 𝑥 = -∞ ) ) |
| 12 |
|
3orass |
⊢ ( ( 𝑥 ∈ ℝ ∨ 𝑥 = +∞ ∨ 𝑥 = -∞ ) ↔ ( 𝑥 ∈ ℝ ∨ ( 𝑥 = +∞ ∨ 𝑥 = -∞ ) ) ) |
| 13 |
11 12
|
sylbb |
⊢ ( 𝑥 ∈ ℝ* → ( 𝑥 ∈ ℝ ∨ ( 𝑥 = +∞ ∨ 𝑥 = -∞ ) ) ) |
| 14 |
13
|
ord |
⊢ ( 𝑥 ∈ ℝ* → ( ¬ 𝑥 ∈ ℝ → ( 𝑥 = +∞ ∨ 𝑥 = -∞ ) ) ) |
| 15 |
14
|
con1d |
⊢ ( 𝑥 ∈ ℝ* → ( ¬ ( 𝑥 = +∞ ∨ 𝑥 = -∞ ) → 𝑥 ∈ ℝ ) ) |
| 16 |
15
|
imp |
⊢ ( ( 𝑥 ∈ ℝ* ∧ ¬ ( 𝑥 = +∞ ∨ 𝑥 = -∞ ) ) → 𝑥 ∈ ℝ ) |
| 17 |
10 16
|
sylan2br |
⊢ ( ( 𝑥 ∈ ℝ* ∧ ( ¬ 𝑥 = +∞ ∧ ¬ 𝑥 = -∞ ) ) → 𝑥 ∈ ℝ ) |
| 18 |
|
ioran |
⊢ ( ¬ ( 𝑦 = +∞ ∨ 𝑦 = -∞ ) ↔ ( ¬ 𝑦 = +∞ ∧ ¬ 𝑦 = -∞ ) ) |
| 19 |
|
elxr |
⊢ ( 𝑦 ∈ ℝ* ↔ ( 𝑦 ∈ ℝ ∨ 𝑦 = +∞ ∨ 𝑦 = -∞ ) ) |
| 20 |
|
3orass |
⊢ ( ( 𝑦 ∈ ℝ ∨ 𝑦 = +∞ ∨ 𝑦 = -∞ ) ↔ ( 𝑦 ∈ ℝ ∨ ( 𝑦 = +∞ ∨ 𝑦 = -∞ ) ) ) |
| 21 |
19 20
|
sylbb |
⊢ ( 𝑦 ∈ ℝ* → ( 𝑦 ∈ ℝ ∨ ( 𝑦 = +∞ ∨ 𝑦 = -∞ ) ) ) |
| 22 |
21
|
ord |
⊢ ( 𝑦 ∈ ℝ* → ( ¬ 𝑦 ∈ ℝ → ( 𝑦 = +∞ ∨ 𝑦 = -∞ ) ) ) |
| 23 |
22
|
con1d |
⊢ ( 𝑦 ∈ ℝ* → ( ¬ ( 𝑦 = +∞ ∨ 𝑦 = -∞ ) → 𝑦 ∈ ℝ ) ) |
| 24 |
23
|
imp |
⊢ ( ( 𝑦 ∈ ℝ* ∧ ¬ ( 𝑦 = +∞ ∨ 𝑦 = -∞ ) ) → 𝑦 ∈ ℝ ) |
| 25 |
18 24
|
sylan2br |
⊢ ( ( 𝑦 ∈ ℝ* ∧ ( ¬ 𝑦 = +∞ ∧ ¬ 𝑦 = -∞ ) ) → 𝑦 ∈ ℝ ) |
| 26 |
|
readdcl |
⊢ ( ( 𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ ) → ( 𝑥 + 𝑦 ) ∈ ℝ ) |
| 27 |
17 25 26
|
syl2an |
⊢ ( ( ( 𝑥 ∈ ℝ* ∧ ( ¬ 𝑥 = +∞ ∧ ¬ 𝑥 = -∞ ) ) ∧ ( 𝑦 ∈ ℝ* ∧ ( ¬ 𝑦 = +∞ ∧ ¬ 𝑦 = -∞ ) ) ) → ( 𝑥 + 𝑦 ) ∈ ℝ ) |
| 28 |
27
|
rexrd |
⊢ ( ( ( 𝑥 ∈ ℝ* ∧ ( ¬ 𝑥 = +∞ ∧ ¬ 𝑥 = -∞ ) ) ∧ ( 𝑦 ∈ ℝ* ∧ ( ¬ 𝑦 = +∞ ∧ ¬ 𝑦 = -∞ ) ) ) → ( 𝑥 + 𝑦 ) ∈ ℝ* ) |
| 29 |
28
|
anassrs |
⊢ ( ( ( ( 𝑥 ∈ ℝ* ∧ ( ¬ 𝑥 = +∞ ∧ ¬ 𝑥 = -∞ ) ) ∧ 𝑦 ∈ ℝ* ) ∧ ( ¬ 𝑦 = +∞ ∧ ¬ 𝑦 = -∞ ) ) → ( 𝑥 + 𝑦 ) ∈ ℝ* ) |
| 30 |
29
|
anassrs |
⊢ ( ( ( ( ( 𝑥 ∈ ℝ* ∧ ( ¬ 𝑥 = +∞ ∧ ¬ 𝑥 = -∞ ) ) ∧ 𝑦 ∈ ℝ* ) ∧ ¬ 𝑦 = +∞ ) ∧ ¬ 𝑦 = -∞ ) → ( 𝑥 + 𝑦 ) ∈ ℝ* ) |
| 31 |
9 30
|
ifclda |
⊢ ( ( ( ( 𝑥 ∈ ℝ* ∧ ( ¬ 𝑥 = +∞ ∧ ¬ 𝑥 = -∞ ) ) ∧ 𝑦 ∈ ℝ* ) ∧ ¬ 𝑦 = +∞ ) → if ( 𝑦 = -∞ , -∞ , ( 𝑥 + 𝑦 ) ) ∈ ℝ* ) |
| 32 |
8 31
|
ifclda |
⊢ ( ( ( 𝑥 ∈ ℝ* ∧ ( ¬ 𝑥 = +∞ ∧ ¬ 𝑥 = -∞ ) ) ∧ 𝑦 ∈ ℝ* ) → if ( 𝑦 = +∞ , +∞ , if ( 𝑦 = -∞ , -∞ , ( 𝑥 + 𝑦 ) ) ) ∈ ℝ* ) |
| 33 |
32
|
an32s |
⊢ ( ( ( 𝑥 ∈ ℝ* ∧ 𝑦 ∈ ℝ* ) ∧ ( ¬ 𝑥 = +∞ ∧ ¬ 𝑥 = -∞ ) ) → if ( 𝑦 = +∞ , +∞ , if ( 𝑦 = -∞ , -∞ , ( 𝑥 + 𝑦 ) ) ) ∈ ℝ* ) |
| 34 |
33
|
anassrs |
⊢ ( ( ( ( 𝑥 ∈ ℝ* ∧ 𝑦 ∈ ℝ* ) ∧ ¬ 𝑥 = +∞ ) ∧ ¬ 𝑥 = -∞ ) → if ( 𝑦 = +∞ , +∞ , if ( 𝑦 = -∞ , -∞ , ( 𝑥 + 𝑦 ) ) ) ∈ ℝ* ) |
| 35 |
7 34
|
ifclda |
⊢ ( ( ( 𝑥 ∈ ℝ* ∧ 𝑦 ∈ ℝ* ) ∧ ¬ 𝑥 = +∞ ) → if ( 𝑥 = -∞ , if ( 𝑦 = +∞ , 0 , -∞ ) , if ( 𝑦 = +∞ , +∞ , if ( 𝑦 = -∞ , -∞ , ( 𝑥 + 𝑦 ) ) ) ) ∈ ℝ* ) |
| 36 |
4 35
|
ifclda |
⊢ ( ( 𝑥 ∈ ℝ* ∧ 𝑦 ∈ ℝ* ) → if ( 𝑥 = +∞ , if ( 𝑦 = -∞ , 0 , +∞ ) , if ( 𝑥 = -∞ , if ( 𝑦 = +∞ , 0 , -∞ ) , if ( 𝑦 = +∞ , +∞ , if ( 𝑦 = -∞ , -∞ , ( 𝑥 + 𝑦 ) ) ) ) ) ∈ ℝ* ) |
| 37 |
36
|
rgen2 |
⊢ ∀ 𝑥 ∈ ℝ* ∀ 𝑦 ∈ ℝ* if ( 𝑥 = +∞ , if ( 𝑦 = -∞ , 0 , +∞ ) , if ( 𝑥 = -∞ , if ( 𝑦 = +∞ , 0 , -∞ ) , if ( 𝑦 = +∞ , +∞ , if ( 𝑦 = -∞ , -∞ , ( 𝑥 + 𝑦 ) ) ) ) ) ∈ ℝ* |
| 38 |
|
df-xadd |
⊢ +𝑒 = ( 𝑥 ∈ ℝ* , 𝑦 ∈ ℝ* ↦ if ( 𝑥 = +∞ , if ( 𝑦 = -∞ , 0 , +∞ ) , if ( 𝑥 = -∞ , if ( 𝑦 = +∞ , 0 , -∞ ) , if ( 𝑦 = +∞ , +∞ , if ( 𝑦 = -∞ , -∞ , ( 𝑥 + 𝑦 ) ) ) ) ) ) |
| 39 |
38
|
fmpo |
⊢ ( ∀ 𝑥 ∈ ℝ* ∀ 𝑦 ∈ ℝ* if ( 𝑥 = +∞ , if ( 𝑦 = -∞ , 0 , +∞ ) , if ( 𝑥 = -∞ , if ( 𝑦 = +∞ , 0 , -∞ ) , if ( 𝑦 = +∞ , +∞ , if ( 𝑦 = -∞ , -∞ , ( 𝑥 + 𝑦 ) ) ) ) ) ∈ ℝ* ↔ +𝑒 : ( ℝ* × ℝ* ) ⟶ ℝ* ) |
| 40 |
37 39
|
mpbi |
⊢ +𝑒 : ( ℝ* × ℝ* ) ⟶ ℝ* |