Step |
Hyp |
Ref |
Expression |
1 |
|
elxr |
⊢ ( 𝐴 ∈ ℝ* ↔ ( 𝐴 ∈ ℝ ∨ 𝐴 = +∞ ∨ 𝐴 = -∞ ) ) |
2 |
|
0re |
⊢ 0 ∈ ℝ |
3 |
|
rexadd |
⊢ ( ( 𝐴 ∈ ℝ ∧ 0 ∈ ℝ ) → ( 𝐴 +𝑒 0 ) = ( 𝐴 + 0 ) ) |
4 |
2 3
|
mpan2 |
⊢ ( 𝐴 ∈ ℝ → ( 𝐴 +𝑒 0 ) = ( 𝐴 + 0 ) ) |
5 |
|
recn |
⊢ ( 𝐴 ∈ ℝ → 𝐴 ∈ ℂ ) |
6 |
5
|
addid1d |
⊢ ( 𝐴 ∈ ℝ → ( 𝐴 + 0 ) = 𝐴 ) |
7 |
4 6
|
eqtrd |
⊢ ( 𝐴 ∈ ℝ → ( 𝐴 +𝑒 0 ) = 𝐴 ) |
8 |
|
0xr |
⊢ 0 ∈ ℝ* |
9 |
|
renemnf |
⊢ ( 0 ∈ ℝ → 0 ≠ -∞ ) |
10 |
2 9
|
ax-mp |
⊢ 0 ≠ -∞ |
11 |
|
xaddpnf2 |
⊢ ( ( 0 ∈ ℝ* ∧ 0 ≠ -∞ ) → ( +∞ +𝑒 0 ) = +∞ ) |
12 |
8 10 11
|
mp2an |
⊢ ( +∞ +𝑒 0 ) = +∞ |
13 |
|
oveq1 |
⊢ ( 𝐴 = +∞ → ( 𝐴 +𝑒 0 ) = ( +∞ +𝑒 0 ) ) |
14 |
|
id |
⊢ ( 𝐴 = +∞ → 𝐴 = +∞ ) |
15 |
12 13 14
|
3eqtr4a |
⊢ ( 𝐴 = +∞ → ( 𝐴 +𝑒 0 ) = 𝐴 ) |
16 |
|
renepnf |
⊢ ( 0 ∈ ℝ → 0 ≠ +∞ ) |
17 |
2 16
|
ax-mp |
⊢ 0 ≠ +∞ |
18 |
|
xaddmnf2 |
⊢ ( ( 0 ∈ ℝ* ∧ 0 ≠ +∞ ) → ( -∞ +𝑒 0 ) = -∞ ) |
19 |
8 17 18
|
mp2an |
⊢ ( -∞ +𝑒 0 ) = -∞ |
20 |
|
oveq1 |
⊢ ( 𝐴 = -∞ → ( 𝐴 +𝑒 0 ) = ( -∞ +𝑒 0 ) ) |
21 |
|
id |
⊢ ( 𝐴 = -∞ → 𝐴 = -∞ ) |
22 |
19 20 21
|
3eqtr4a |
⊢ ( 𝐴 = -∞ → ( 𝐴 +𝑒 0 ) = 𝐴 ) |
23 |
7 15 22
|
3jaoi |
⊢ ( ( 𝐴 ∈ ℝ ∨ 𝐴 = +∞ ∨ 𝐴 = -∞ ) → ( 𝐴 +𝑒 0 ) = 𝐴 ) |
24 |
1 23
|
sylbi |
⊢ ( 𝐴 ∈ ℝ* → ( 𝐴 +𝑒 0 ) = 𝐴 ) |