Metamath Proof Explorer
		
		
		
		Description:  0 is a left identity for extended real addition.  (Contributed by Glauco Siliprandi, 17-Aug-2020)
		
			
				
					|  |  | Ref | Expression | 
					
						|  | Hypothesis | xaddlidd.1 | ⊢ ( 𝜑  →  𝐴  ∈  ℝ* ) | 
				
					|  | Assertion | xaddlidd | ⊢  ( 𝜑  →  ( 0  +𝑒  𝐴 )  =  𝐴 ) | 
			
		
		
			
				Proof
				
					
						| Step | Hyp | Ref | Expression | 
						
							| 1 |  | xaddlidd.1 | ⊢ ( 𝜑  →  𝐴  ∈  ℝ* ) | 
						
							| 2 |  | xaddlid | ⊢ ( 𝐴  ∈  ℝ*  →  ( 0  +𝑒  𝐴 )  =  𝐴 ) | 
						
							| 3 | 1 2 | syl | ⊢ ( 𝜑  →  ( 0  +𝑒  𝐴 )  =  𝐴 ) |