Step |
Hyp |
Ref |
Expression |
1 |
|
pnfxr |
⊢ +∞ ∈ ℝ* |
2 |
|
xaddval |
⊢ ( ( 𝐴 ∈ ℝ* ∧ +∞ ∈ ℝ* ) → ( 𝐴 +𝑒 +∞ ) = if ( 𝐴 = +∞ , if ( +∞ = -∞ , 0 , +∞ ) , if ( 𝐴 = -∞ , if ( +∞ = +∞ , 0 , -∞ ) , if ( +∞ = +∞ , +∞ , if ( +∞ = -∞ , -∞ , ( 𝐴 + +∞ ) ) ) ) ) ) |
3 |
1 2
|
mpan2 |
⊢ ( 𝐴 ∈ ℝ* → ( 𝐴 +𝑒 +∞ ) = if ( 𝐴 = +∞ , if ( +∞ = -∞ , 0 , +∞ ) , if ( 𝐴 = -∞ , if ( +∞ = +∞ , 0 , -∞ ) , if ( +∞ = +∞ , +∞ , if ( +∞ = -∞ , -∞ , ( 𝐴 + +∞ ) ) ) ) ) ) |
4 |
|
pnfnemnf |
⊢ +∞ ≠ -∞ |
5 |
|
ifnefalse |
⊢ ( +∞ ≠ -∞ → if ( +∞ = -∞ , 0 , +∞ ) = +∞ ) |
6 |
4 5
|
mp1i |
⊢ ( 𝐴 ≠ -∞ → if ( +∞ = -∞ , 0 , +∞ ) = +∞ ) |
7 |
|
ifnefalse |
⊢ ( 𝐴 ≠ -∞ → if ( 𝐴 = -∞ , if ( +∞ = +∞ , 0 , -∞ ) , if ( +∞ = +∞ , +∞ , if ( +∞ = -∞ , -∞ , ( 𝐴 + +∞ ) ) ) ) = if ( +∞ = +∞ , +∞ , if ( +∞ = -∞ , -∞ , ( 𝐴 + +∞ ) ) ) ) |
8 |
|
eqid |
⊢ +∞ = +∞ |
9 |
8
|
iftruei |
⊢ if ( +∞ = +∞ , +∞ , if ( +∞ = -∞ , -∞ , ( 𝐴 + +∞ ) ) ) = +∞ |
10 |
7 9
|
eqtrdi |
⊢ ( 𝐴 ≠ -∞ → if ( 𝐴 = -∞ , if ( +∞ = +∞ , 0 , -∞ ) , if ( +∞ = +∞ , +∞ , if ( +∞ = -∞ , -∞ , ( 𝐴 + +∞ ) ) ) ) = +∞ ) |
11 |
6 10
|
ifeq12d |
⊢ ( 𝐴 ≠ -∞ → if ( 𝐴 = +∞ , if ( +∞ = -∞ , 0 , +∞ ) , if ( 𝐴 = -∞ , if ( +∞ = +∞ , 0 , -∞ ) , if ( +∞ = +∞ , +∞ , if ( +∞ = -∞ , -∞ , ( 𝐴 + +∞ ) ) ) ) ) = if ( 𝐴 = +∞ , +∞ , +∞ ) ) |
12 |
|
ifid |
⊢ if ( 𝐴 = +∞ , +∞ , +∞ ) = +∞ |
13 |
11 12
|
eqtrdi |
⊢ ( 𝐴 ≠ -∞ → if ( 𝐴 = +∞ , if ( +∞ = -∞ , 0 , +∞ ) , if ( 𝐴 = -∞ , if ( +∞ = +∞ , 0 , -∞ ) , if ( +∞ = +∞ , +∞ , if ( +∞ = -∞ , -∞ , ( 𝐴 + +∞ ) ) ) ) ) = +∞ ) |
14 |
3 13
|
sylan9eq |
⊢ ( ( 𝐴 ∈ ℝ* ∧ 𝐴 ≠ -∞ ) → ( 𝐴 +𝑒 +∞ ) = +∞ ) |