Step |
Hyp |
Ref |
Expression |
1 |
|
pnfxr |
⊢ +∞ ∈ ℝ* |
2 |
|
xaddval |
⊢ ( ( +∞ ∈ ℝ* ∧ 𝐴 ∈ ℝ* ) → ( +∞ +𝑒 𝐴 ) = if ( +∞ = +∞ , if ( 𝐴 = -∞ , 0 , +∞ ) , if ( +∞ = -∞ , if ( 𝐴 = +∞ , 0 , -∞ ) , if ( 𝐴 = +∞ , +∞ , if ( 𝐴 = -∞ , -∞ , ( +∞ + 𝐴 ) ) ) ) ) ) |
3 |
1 2
|
mpan |
⊢ ( 𝐴 ∈ ℝ* → ( +∞ +𝑒 𝐴 ) = if ( +∞ = +∞ , if ( 𝐴 = -∞ , 0 , +∞ ) , if ( +∞ = -∞ , if ( 𝐴 = +∞ , 0 , -∞ ) , if ( 𝐴 = +∞ , +∞ , if ( 𝐴 = -∞ , -∞ , ( +∞ + 𝐴 ) ) ) ) ) ) |
4 |
|
eqid |
⊢ +∞ = +∞ |
5 |
4
|
iftruei |
⊢ if ( +∞ = +∞ , if ( 𝐴 = -∞ , 0 , +∞ ) , if ( +∞ = -∞ , if ( 𝐴 = +∞ , 0 , -∞ ) , if ( 𝐴 = +∞ , +∞ , if ( 𝐴 = -∞ , -∞ , ( +∞ + 𝐴 ) ) ) ) ) = if ( 𝐴 = -∞ , 0 , +∞ ) |
6 |
|
ifnefalse |
⊢ ( 𝐴 ≠ -∞ → if ( 𝐴 = -∞ , 0 , +∞ ) = +∞ ) |
7 |
5 6
|
eqtrid |
⊢ ( 𝐴 ≠ -∞ → if ( +∞ = +∞ , if ( 𝐴 = -∞ , 0 , +∞ ) , if ( +∞ = -∞ , if ( 𝐴 = +∞ , 0 , -∞ ) , if ( 𝐴 = +∞ , +∞ , if ( 𝐴 = -∞ , -∞ , ( +∞ + 𝐴 ) ) ) ) ) = +∞ ) |
8 |
3 7
|
sylan9eq |
⊢ ( ( 𝐴 ∈ ℝ* ∧ 𝐴 ≠ -∞ ) → ( +∞ +𝑒 𝐴 ) = +∞ ) |