Step |
Hyp |
Ref |
Expression |
1 |
|
simpl |
⊢ ( ( 𝑥 = 𝐴 ∧ 𝑦 = 𝐵 ) → 𝑥 = 𝐴 ) |
2 |
1
|
eqeq1d |
⊢ ( ( 𝑥 = 𝐴 ∧ 𝑦 = 𝐵 ) → ( 𝑥 = +∞ ↔ 𝐴 = +∞ ) ) |
3 |
|
simpr |
⊢ ( ( 𝑥 = 𝐴 ∧ 𝑦 = 𝐵 ) → 𝑦 = 𝐵 ) |
4 |
3
|
eqeq1d |
⊢ ( ( 𝑥 = 𝐴 ∧ 𝑦 = 𝐵 ) → ( 𝑦 = -∞ ↔ 𝐵 = -∞ ) ) |
5 |
4
|
ifbid |
⊢ ( ( 𝑥 = 𝐴 ∧ 𝑦 = 𝐵 ) → if ( 𝑦 = -∞ , 0 , +∞ ) = if ( 𝐵 = -∞ , 0 , +∞ ) ) |
6 |
1
|
eqeq1d |
⊢ ( ( 𝑥 = 𝐴 ∧ 𝑦 = 𝐵 ) → ( 𝑥 = -∞ ↔ 𝐴 = -∞ ) ) |
7 |
3
|
eqeq1d |
⊢ ( ( 𝑥 = 𝐴 ∧ 𝑦 = 𝐵 ) → ( 𝑦 = +∞ ↔ 𝐵 = +∞ ) ) |
8 |
7
|
ifbid |
⊢ ( ( 𝑥 = 𝐴 ∧ 𝑦 = 𝐵 ) → if ( 𝑦 = +∞ , 0 , -∞ ) = if ( 𝐵 = +∞ , 0 , -∞ ) ) |
9 |
|
oveq12 |
⊢ ( ( 𝑥 = 𝐴 ∧ 𝑦 = 𝐵 ) → ( 𝑥 + 𝑦 ) = ( 𝐴 + 𝐵 ) ) |
10 |
4 9
|
ifbieq2d |
⊢ ( ( 𝑥 = 𝐴 ∧ 𝑦 = 𝐵 ) → if ( 𝑦 = -∞ , -∞ , ( 𝑥 + 𝑦 ) ) = if ( 𝐵 = -∞ , -∞ , ( 𝐴 + 𝐵 ) ) ) |
11 |
7 10
|
ifbieq2d |
⊢ ( ( 𝑥 = 𝐴 ∧ 𝑦 = 𝐵 ) → if ( 𝑦 = +∞ , +∞ , if ( 𝑦 = -∞ , -∞ , ( 𝑥 + 𝑦 ) ) ) = if ( 𝐵 = +∞ , +∞ , if ( 𝐵 = -∞ , -∞ , ( 𝐴 + 𝐵 ) ) ) ) |
12 |
6 8 11
|
ifbieq12d |
⊢ ( ( 𝑥 = 𝐴 ∧ 𝑦 = 𝐵 ) → if ( 𝑥 = -∞ , if ( 𝑦 = +∞ , 0 , -∞ ) , if ( 𝑦 = +∞ , +∞ , if ( 𝑦 = -∞ , -∞ , ( 𝑥 + 𝑦 ) ) ) ) = if ( 𝐴 = -∞ , if ( 𝐵 = +∞ , 0 , -∞ ) , if ( 𝐵 = +∞ , +∞ , if ( 𝐵 = -∞ , -∞ , ( 𝐴 + 𝐵 ) ) ) ) ) |
13 |
2 5 12
|
ifbieq12d |
⊢ ( ( 𝑥 = 𝐴 ∧ 𝑦 = 𝐵 ) → if ( 𝑥 = +∞ , if ( 𝑦 = -∞ , 0 , +∞ ) , if ( 𝑥 = -∞ , if ( 𝑦 = +∞ , 0 , -∞ ) , if ( 𝑦 = +∞ , +∞ , if ( 𝑦 = -∞ , -∞ , ( 𝑥 + 𝑦 ) ) ) ) ) = if ( 𝐴 = +∞ , if ( 𝐵 = -∞ , 0 , +∞ ) , if ( 𝐴 = -∞ , if ( 𝐵 = +∞ , 0 , -∞ ) , if ( 𝐵 = +∞ , +∞ , if ( 𝐵 = -∞ , -∞ , ( 𝐴 + 𝐵 ) ) ) ) ) ) |
14 |
|
df-xadd |
⊢ +𝑒 = ( 𝑥 ∈ ℝ* , 𝑦 ∈ ℝ* ↦ if ( 𝑥 = +∞ , if ( 𝑦 = -∞ , 0 , +∞ ) , if ( 𝑥 = -∞ , if ( 𝑦 = +∞ , 0 , -∞ ) , if ( 𝑦 = +∞ , +∞ , if ( 𝑦 = -∞ , -∞ , ( 𝑥 + 𝑦 ) ) ) ) ) ) |
15 |
|
c0ex |
⊢ 0 ∈ V |
16 |
|
pnfex |
⊢ +∞ ∈ V |
17 |
15 16
|
ifex |
⊢ if ( 𝐵 = -∞ , 0 , +∞ ) ∈ V |
18 |
|
mnfxr |
⊢ -∞ ∈ ℝ* |
19 |
18
|
elexi |
⊢ -∞ ∈ V |
20 |
15 19
|
ifex |
⊢ if ( 𝐵 = +∞ , 0 , -∞ ) ∈ V |
21 |
|
ovex |
⊢ ( 𝐴 + 𝐵 ) ∈ V |
22 |
19 21
|
ifex |
⊢ if ( 𝐵 = -∞ , -∞ , ( 𝐴 + 𝐵 ) ) ∈ V |
23 |
16 22
|
ifex |
⊢ if ( 𝐵 = +∞ , +∞ , if ( 𝐵 = -∞ , -∞ , ( 𝐴 + 𝐵 ) ) ) ∈ V |
24 |
20 23
|
ifex |
⊢ if ( 𝐴 = -∞ , if ( 𝐵 = +∞ , 0 , -∞ ) , if ( 𝐵 = +∞ , +∞ , if ( 𝐵 = -∞ , -∞ , ( 𝐴 + 𝐵 ) ) ) ) ∈ V |
25 |
17 24
|
ifex |
⊢ if ( 𝐴 = +∞ , if ( 𝐵 = -∞ , 0 , +∞ ) , if ( 𝐴 = -∞ , if ( 𝐵 = +∞ , 0 , -∞ ) , if ( 𝐵 = +∞ , +∞ , if ( 𝐵 = -∞ , -∞ , ( 𝐴 + 𝐵 ) ) ) ) ) ∈ V |
26 |
13 14 25
|
ovmpoa |
⊢ ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ) → ( 𝐴 +𝑒 𝐵 ) = if ( 𝐴 = +∞ , if ( 𝐵 = -∞ , 0 , +∞ ) , if ( 𝐴 = -∞ , if ( 𝐵 = +∞ , 0 , -∞ ) , if ( 𝐵 = +∞ , +∞ , if ( 𝐵 = -∞ , -∞ , ( 𝐴 + 𝐵 ) ) ) ) ) ) |