| Step |
Hyp |
Ref |
Expression |
| 1 |
|
simpl |
⊢ ( ( 𝑥 = 𝐴 ∧ 𝑦 = 𝐵 ) → 𝑥 = 𝐴 ) |
| 2 |
1
|
eqeq1d |
⊢ ( ( 𝑥 = 𝐴 ∧ 𝑦 = 𝐵 ) → ( 𝑥 = +∞ ↔ 𝐴 = +∞ ) ) |
| 3 |
|
simpr |
⊢ ( ( 𝑥 = 𝐴 ∧ 𝑦 = 𝐵 ) → 𝑦 = 𝐵 ) |
| 4 |
3
|
eqeq1d |
⊢ ( ( 𝑥 = 𝐴 ∧ 𝑦 = 𝐵 ) → ( 𝑦 = -∞ ↔ 𝐵 = -∞ ) ) |
| 5 |
4
|
ifbid |
⊢ ( ( 𝑥 = 𝐴 ∧ 𝑦 = 𝐵 ) → if ( 𝑦 = -∞ , 0 , +∞ ) = if ( 𝐵 = -∞ , 0 , +∞ ) ) |
| 6 |
1
|
eqeq1d |
⊢ ( ( 𝑥 = 𝐴 ∧ 𝑦 = 𝐵 ) → ( 𝑥 = -∞ ↔ 𝐴 = -∞ ) ) |
| 7 |
3
|
eqeq1d |
⊢ ( ( 𝑥 = 𝐴 ∧ 𝑦 = 𝐵 ) → ( 𝑦 = +∞ ↔ 𝐵 = +∞ ) ) |
| 8 |
7
|
ifbid |
⊢ ( ( 𝑥 = 𝐴 ∧ 𝑦 = 𝐵 ) → if ( 𝑦 = +∞ , 0 , -∞ ) = if ( 𝐵 = +∞ , 0 , -∞ ) ) |
| 9 |
|
oveq12 |
⊢ ( ( 𝑥 = 𝐴 ∧ 𝑦 = 𝐵 ) → ( 𝑥 + 𝑦 ) = ( 𝐴 + 𝐵 ) ) |
| 10 |
4 9
|
ifbieq2d |
⊢ ( ( 𝑥 = 𝐴 ∧ 𝑦 = 𝐵 ) → if ( 𝑦 = -∞ , -∞ , ( 𝑥 + 𝑦 ) ) = if ( 𝐵 = -∞ , -∞ , ( 𝐴 + 𝐵 ) ) ) |
| 11 |
7 10
|
ifbieq2d |
⊢ ( ( 𝑥 = 𝐴 ∧ 𝑦 = 𝐵 ) → if ( 𝑦 = +∞ , +∞ , if ( 𝑦 = -∞ , -∞ , ( 𝑥 + 𝑦 ) ) ) = if ( 𝐵 = +∞ , +∞ , if ( 𝐵 = -∞ , -∞ , ( 𝐴 + 𝐵 ) ) ) ) |
| 12 |
6 8 11
|
ifbieq12d |
⊢ ( ( 𝑥 = 𝐴 ∧ 𝑦 = 𝐵 ) → if ( 𝑥 = -∞ , if ( 𝑦 = +∞ , 0 , -∞ ) , if ( 𝑦 = +∞ , +∞ , if ( 𝑦 = -∞ , -∞ , ( 𝑥 + 𝑦 ) ) ) ) = if ( 𝐴 = -∞ , if ( 𝐵 = +∞ , 0 , -∞ ) , if ( 𝐵 = +∞ , +∞ , if ( 𝐵 = -∞ , -∞ , ( 𝐴 + 𝐵 ) ) ) ) ) |
| 13 |
2 5 12
|
ifbieq12d |
⊢ ( ( 𝑥 = 𝐴 ∧ 𝑦 = 𝐵 ) → if ( 𝑥 = +∞ , if ( 𝑦 = -∞ , 0 , +∞ ) , if ( 𝑥 = -∞ , if ( 𝑦 = +∞ , 0 , -∞ ) , if ( 𝑦 = +∞ , +∞ , if ( 𝑦 = -∞ , -∞ , ( 𝑥 + 𝑦 ) ) ) ) ) = if ( 𝐴 = +∞ , if ( 𝐵 = -∞ , 0 , +∞ ) , if ( 𝐴 = -∞ , if ( 𝐵 = +∞ , 0 , -∞ ) , if ( 𝐵 = +∞ , +∞ , if ( 𝐵 = -∞ , -∞ , ( 𝐴 + 𝐵 ) ) ) ) ) ) |
| 14 |
|
df-xadd |
⊢ +𝑒 = ( 𝑥 ∈ ℝ* , 𝑦 ∈ ℝ* ↦ if ( 𝑥 = +∞ , if ( 𝑦 = -∞ , 0 , +∞ ) , if ( 𝑥 = -∞ , if ( 𝑦 = +∞ , 0 , -∞ ) , if ( 𝑦 = +∞ , +∞ , if ( 𝑦 = -∞ , -∞ , ( 𝑥 + 𝑦 ) ) ) ) ) ) |
| 15 |
|
c0ex |
⊢ 0 ∈ V |
| 16 |
|
pnfex |
⊢ +∞ ∈ V |
| 17 |
15 16
|
ifex |
⊢ if ( 𝐵 = -∞ , 0 , +∞ ) ∈ V |
| 18 |
|
mnfxr |
⊢ -∞ ∈ ℝ* |
| 19 |
18
|
elexi |
⊢ -∞ ∈ V |
| 20 |
15 19
|
ifex |
⊢ if ( 𝐵 = +∞ , 0 , -∞ ) ∈ V |
| 21 |
|
ovex |
⊢ ( 𝐴 + 𝐵 ) ∈ V |
| 22 |
19 21
|
ifex |
⊢ if ( 𝐵 = -∞ , -∞ , ( 𝐴 + 𝐵 ) ) ∈ V |
| 23 |
16 22
|
ifex |
⊢ if ( 𝐵 = +∞ , +∞ , if ( 𝐵 = -∞ , -∞ , ( 𝐴 + 𝐵 ) ) ) ∈ V |
| 24 |
20 23
|
ifex |
⊢ if ( 𝐴 = -∞ , if ( 𝐵 = +∞ , 0 , -∞ ) , if ( 𝐵 = +∞ , +∞ , if ( 𝐵 = -∞ , -∞ , ( 𝐴 + 𝐵 ) ) ) ) ∈ V |
| 25 |
17 24
|
ifex |
⊢ if ( 𝐴 = +∞ , if ( 𝐵 = -∞ , 0 , +∞ ) , if ( 𝐴 = -∞ , if ( 𝐵 = +∞ , 0 , -∞ ) , if ( 𝐵 = +∞ , +∞ , if ( 𝐵 = -∞ , -∞ , ( 𝐴 + 𝐵 ) ) ) ) ) ∈ V |
| 26 |
13 14 25
|
ovmpoa |
⊢ ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ) → ( 𝐴 +𝑒 𝐵 ) = if ( 𝐴 = +∞ , if ( 𝐵 = -∞ , 0 , +∞ ) , if ( 𝐴 = -∞ , if ( 𝐵 = +∞ , 0 , -∞ ) , if ( 𝐵 = +∞ , +∞ , if ( 𝐵 = -∞ , -∞ , ( 𝐴 + 𝐵 ) ) ) ) ) ) |