Metamath Proof Explorer


Theorem xchnxbir

Description: Replacement of a subexpression by an equivalent one. (Contributed by Wolf Lammen, 27-Sep-2014)

Ref Expression
Hypotheses xchnxbir.1 ( ¬ 𝜑𝜓 )
xchnxbir.2 ( 𝜒𝜑 )
Assertion xchnxbir ( ¬ 𝜒𝜓 )

Proof

Step Hyp Ref Expression
1 xchnxbir.1 ( ¬ 𝜑𝜓 )
2 xchnxbir.2 ( 𝜒𝜑 )
3 2 bicomi ( 𝜑𝜒 )
4 1 3 xchnxbi ( ¬ 𝜒𝜓 )