| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							xdivval | 
							⊢ ( ( 𝐴  ∈  ℝ*  ∧  𝐶  ∈  ℝ  ∧  𝐶  ≠  0 )  →  ( 𝐴  /𝑒  𝐶 )  =  ( ℩ 𝑥  ∈  ℝ* ( 𝐶  ·e  𝑥 )  =  𝐴 ) )  | 
						
						
							| 2 | 
							
								1
							 | 
							3expb | 
							⊢ ( ( 𝐴  ∈  ℝ*  ∧  ( 𝐶  ∈  ℝ  ∧  𝐶  ≠  0 ) )  →  ( 𝐴  /𝑒  𝐶 )  =  ( ℩ 𝑥  ∈  ℝ* ( 𝐶  ·e  𝑥 )  =  𝐴 ) )  | 
						
						
							| 3 | 
							
								2
							 | 
							3adant2 | 
							⊢ ( ( 𝐴  ∈  ℝ*  ∧  𝐵  ∈  ℝ*  ∧  ( 𝐶  ∈  ℝ  ∧  𝐶  ≠  0 ) )  →  ( 𝐴  /𝑒  𝐶 )  =  ( ℩ 𝑥  ∈  ℝ* ( 𝐶  ·e  𝑥 )  =  𝐴 ) )  | 
						
						
							| 4 | 
							
								3
							 | 
							eqeq1d | 
							⊢ ( ( 𝐴  ∈  ℝ*  ∧  𝐵  ∈  ℝ*  ∧  ( 𝐶  ∈  ℝ  ∧  𝐶  ≠  0 ) )  →  ( ( 𝐴  /𝑒  𝐶 )  =  𝐵  ↔  ( ℩ 𝑥  ∈  ℝ* ( 𝐶  ·e  𝑥 )  =  𝐴 )  =  𝐵 ) )  | 
						
						
							| 5 | 
							
								
							 | 
							simp2 | 
							⊢ ( ( 𝐴  ∈  ℝ*  ∧  𝐵  ∈  ℝ*  ∧  ( 𝐶  ∈  ℝ  ∧  𝐶  ≠  0 ) )  →  𝐵  ∈  ℝ* )  | 
						
						
							| 6 | 
							
								
							 | 
							xreceu | 
							⊢ ( ( 𝐴  ∈  ℝ*  ∧  𝐶  ∈  ℝ  ∧  𝐶  ≠  0 )  →  ∃! 𝑥  ∈  ℝ* ( 𝐶  ·e  𝑥 )  =  𝐴 )  | 
						
						
							| 7 | 
							
								6
							 | 
							3expb | 
							⊢ ( ( 𝐴  ∈  ℝ*  ∧  ( 𝐶  ∈  ℝ  ∧  𝐶  ≠  0 ) )  →  ∃! 𝑥  ∈  ℝ* ( 𝐶  ·e  𝑥 )  =  𝐴 )  | 
						
						
							| 8 | 
							
								7
							 | 
							3adant2 | 
							⊢ ( ( 𝐴  ∈  ℝ*  ∧  𝐵  ∈  ℝ*  ∧  ( 𝐶  ∈  ℝ  ∧  𝐶  ≠  0 ) )  →  ∃! 𝑥  ∈  ℝ* ( 𝐶  ·e  𝑥 )  =  𝐴 )  | 
						
						
							| 9 | 
							
								
							 | 
							oveq2 | 
							⊢ ( 𝑥  =  𝐵  →  ( 𝐶  ·e  𝑥 )  =  ( 𝐶  ·e  𝐵 ) )  | 
						
						
							| 10 | 
							
								9
							 | 
							eqeq1d | 
							⊢ ( 𝑥  =  𝐵  →  ( ( 𝐶  ·e  𝑥 )  =  𝐴  ↔  ( 𝐶  ·e  𝐵 )  =  𝐴 ) )  | 
						
						
							| 11 | 
							
								10
							 | 
							riota2 | 
							⊢ ( ( 𝐵  ∈  ℝ*  ∧  ∃! 𝑥  ∈  ℝ* ( 𝐶  ·e  𝑥 )  =  𝐴 )  →  ( ( 𝐶  ·e  𝐵 )  =  𝐴  ↔  ( ℩ 𝑥  ∈  ℝ* ( 𝐶  ·e  𝑥 )  =  𝐴 )  =  𝐵 ) )  | 
						
						
							| 12 | 
							
								5 8 11
							 | 
							syl2anc | 
							⊢ ( ( 𝐴  ∈  ℝ*  ∧  𝐵  ∈  ℝ*  ∧  ( 𝐶  ∈  ℝ  ∧  𝐶  ≠  0 ) )  →  ( ( 𝐶  ·e  𝐵 )  =  𝐴  ↔  ( ℩ 𝑥  ∈  ℝ* ( 𝐶  ·e  𝑥 )  =  𝐴 )  =  𝐵 ) )  | 
						
						
							| 13 | 
							
								4 12
							 | 
							bitr4d | 
							⊢ ( ( 𝐴  ∈  ℝ*  ∧  𝐵  ∈  ℝ*  ∧  ( 𝐶  ∈  ℝ  ∧  𝐶  ≠  0 ) )  →  ( ( 𝐴  /𝑒  𝐶 )  =  𝐵  ↔  ( 𝐶  ·e  𝐵 )  =  𝐴 ) )  |