| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							eldifsn | 
							⊢ ( 𝐵  ∈  ( ℝ  ∖  { 0 } )  ↔  ( 𝐵  ∈  ℝ  ∧  𝐵  ≠  0 ) )  | 
						
						
							| 2 | 
							
								
							 | 
							simpl | 
							⊢ ( ( 𝑦  =  𝐴  ∧  𝑥  ∈  ℝ* )  →  𝑦  =  𝐴 )  | 
						
						
							| 3 | 
							
								2
							 | 
							eqeq2d | 
							⊢ ( ( 𝑦  =  𝐴  ∧  𝑥  ∈  ℝ* )  →  ( ( 𝑧  ·e  𝑥 )  =  𝑦  ↔  ( 𝑧  ·e  𝑥 )  =  𝐴 ) )  | 
						
						
							| 4 | 
							
								3
							 | 
							riotabidva | 
							⊢ ( 𝑦  =  𝐴  →  ( ℩ 𝑥  ∈  ℝ* ( 𝑧  ·e  𝑥 )  =  𝑦 )  =  ( ℩ 𝑥  ∈  ℝ* ( 𝑧  ·e  𝑥 )  =  𝐴 ) )  | 
						
						
							| 5 | 
							
								
							 | 
							simpl | 
							⊢ ( ( 𝑧  =  𝐵  ∧  𝑥  ∈  ℝ* )  →  𝑧  =  𝐵 )  | 
						
						
							| 6 | 
							
								5
							 | 
							oveq1d | 
							⊢ ( ( 𝑧  =  𝐵  ∧  𝑥  ∈  ℝ* )  →  ( 𝑧  ·e  𝑥 )  =  ( 𝐵  ·e  𝑥 ) )  | 
						
						
							| 7 | 
							
								6
							 | 
							eqeq1d | 
							⊢ ( ( 𝑧  =  𝐵  ∧  𝑥  ∈  ℝ* )  →  ( ( 𝑧  ·e  𝑥 )  =  𝐴  ↔  ( 𝐵  ·e  𝑥 )  =  𝐴 ) )  | 
						
						
							| 8 | 
							
								7
							 | 
							riotabidva | 
							⊢ ( 𝑧  =  𝐵  →  ( ℩ 𝑥  ∈  ℝ* ( 𝑧  ·e  𝑥 )  =  𝐴 )  =  ( ℩ 𝑥  ∈  ℝ* ( 𝐵  ·e  𝑥 )  =  𝐴 ) )  | 
						
						
							| 9 | 
							
								
							 | 
							df-xdiv | 
							⊢  /𝑒   =  ( 𝑦  ∈  ℝ* ,  𝑧  ∈  ( ℝ  ∖  { 0 } )  ↦  ( ℩ 𝑥  ∈  ℝ* ( 𝑧  ·e  𝑥 )  =  𝑦 ) )  | 
						
						
							| 10 | 
							
								
							 | 
							riotaex | 
							⊢ ( ℩ 𝑥  ∈  ℝ* ( 𝐵  ·e  𝑥 )  =  𝐴 )  ∈  V  | 
						
						
							| 11 | 
							
								4 8 9 10
							 | 
							ovmpo | 
							⊢ ( ( 𝐴  ∈  ℝ*  ∧  𝐵  ∈  ( ℝ  ∖  { 0 } ) )  →  ( 𝐴  /𝑒  𝐵 )  =  ( ℩ 𝑥  ∈  ℝ* ( 𝐵  ·e  𝑥 )  =  𝐴 ) )  | 
						
						
							| 12 | 
							
								1 11
							 | 
							sylan2br | 
							⊢ ( ( 𝐴  ∈  ℝ*  ∧  ( 𝐵  ∈  ℝ  ∧  𝐵  ≠  0 ) )  →  ( 𝐴  /𝑒  𝐵 )  =  ( ℩ 𝑥  ∈  ℝ* ( 𝐵  ·e  𝑥 )  =  𝐴 ) )  | 
						
						
							| 13 | 
							
								12
							 | 
							3impb | 
							⊢ ( ( 𝐴  ∈  ℝ*  ∧  𝐵  ∈  ℝ  ∧  𝐵  ≠  0 )  →  ( 𝐴  /𝑒  𝐵 )  =  ( ℩ 𝑥  ∈  ℝ* ( 𝐵  ·e  𝑥 )  =  𝐴 ) )  |