Metamath Proof Explorer


Theorem xkobval

Description: Alternative expression for the subbase of the compact-open topology. (Contributed by Mario Carneiro, 23-Mar-2015)

Ref Expression
Hypotheses xkoval.x 𝑋 = 𝑅
xkoval.k 𝐾 = { 𝑥 ∈ 𝒫 𝑋 ∣ ( 𝑅t 𝑥 ) ∈ Comp }
xkoval.t 𝑇 = ( 𝑘𝐾 , 𝑣𝑆 ↦ { 𝑓 ∈ ( 𝑅 Cn 𝑆 ) ∣ ( 𝑓𝑘 ) ⊆ 𝑣 } )
Assertion xkobval ran 𝑇 = { 𝑠 ∣ ∃ 𝑘 ∈ 𝒫 𝑋𝑣𝑆 ( ( 𝑅t 𝑘 ) ∈ Comp ∧ 𝑠 = { 𝑓 ∈ ( 𝑅 Cn 𝑆 ) ∣ ( 𝑓𝑘 ) ⊆ 𝑣 } ) }

Proof

Step Hyp Ref Expression
1 xkoval.x 𝑋 = 𝑅
2 xkoval.k 𝐾 = { 𝑥 ∈ 𝒫 𝑋 ∣ ( 𝑅t 𝑥 ) ∈ Comp }
3 xkoval.t 𝑇 = ( 𝑘𝐾 , 𝑣𝑆 ↦ { 𝑓 ∈ ( 𝑅 Cn 𝑆 ) ∣ ( 𝑓𝑘 ) ⊆ 𝑣 } )
4 3 rnmpo ran 𝑇 = { 𝑠 ∣ ∃ 𝑘𝐾𝑣𝑆 𝑠 = { 𝑓 ∈ ( 𝑅 Cn 𝑆 ) ∣ ( 𝑓𝑘 ) ⊆ 𝑣 } }
5 oveq2 ( 𝑥 = 𝑘 → ( 𝑅t 𝑥 ) = ( 𝑅t 𝑘 ) )
6 5 eleq1d ( 𝑥 = 𝑘 → ( ( 𝑅t 𝑥 ) ∈ Comp ↔ ( 𝑅t 𝑘 ) ∈ Comp ) )
7 6 rexrab ( ∃ 𝑘 ∈ { 𝑥 ∈ 𝒫 𝑋 ∣ ( 𝑅t 𝑥 ) ∈ Comp } ∃ 𝑣𝑆 𝑠 = { 𝑓 ∈ ( 𝑅 Cn 𝑆 ) ∣ ( 𝑓𝑘 ) ⊆ 𝑣 } ↔ ∃ 𝑘 ∈ 𝒫 𝑋 ( ( 𝑅t 𝑘 ) ∈ Comp ∧ ∃ 𝑣𝑆 𝑠 = { 𝑓 ∈ ( 𝑅 Cn 𝑆 ) ∣ ( 𝑓𝑘 ) ⊆ 𝑣 } ) )
8 2 rexeqi ( ∃ 𝑘𝐾𝑣𝑆 𝑠 = { 𝑓 ∈ ( 𝑅 Cn 𝑆 ) ∣ ( 𝑓𝑘 ) ⊆ 𝑣 } ↔ ∃ 𝑘 ∈ { 𝑥 ∈ 𝒫 𝑋 ∣ ( 𝑅t 𝑥 ) ∈ Comp } ∃ 𝑣𝑆 𝑠 = { 𝑓 ∈ ( 𝑅 Cn 𝑆 ) ∣ ( 𝑓𝑘 ) ⊆ 𝑣 } )
9 r19.42v ( ∃ 𝑣𝑆 ( ( 𝑅t 𝑘 ) ∈ Comp ∧ 𝑠 = { 𝑓 ∈ ( 𝑅 Cn 𝑆 ) ∣ ( 𝑓𝑘 ) ⊆ 𝑣 } ) ↔ ( ( 𝑅t 𝑘 ) ∈ Comp ∧ ∃ 𝑣𝑆 𝑠 = { 𝑓 ∈ ( 𝑅 Cn 𝑆 ) ∣ ( 𝑓𝑘 ) ⊆ 𝑣 } ) )
10 9 rexbii ( ∃ 𝑘 ∈ 𝒫 𝑋𝑣𝑆 ( ( 𝑅t 𝑘 ) ∈ Comp ∧ 𝑠 = { 𝑓 ∈ ( 𝑅 Cn 𝑆 ) ∣ ( 𝑓𝑘 ) ⊆ 𝑣 } ) ↔ ∃ 𝑘 ∈ 𝒫 𝑋 ( ( 𝑅t 𝑘 ) ∈ Comp ∧ ∃ 𝑣𝑆 𝑠 = { 𝑓 ∈ ( 𝑅 Cn 𝑆 ) ∣ ( 𝑓𝑘 ) ⊆ 𝑣 } ) )
11 7 8 10 3bitr4i ( ∃ 𝑘𝐾𝑣𝑆 𝑠 = { 𝑓 ∈ ( 𝑅 Cn 𝑆 ) ∣ ( 𝑓𝑘 ) ⊆ 𝑣 } ↔ ∃ 𝑘 ∈ 𝒫 𝑋𝑣𝑆 ( ( 𝑅t 𝑘 ) ∈ Comp ∧ 𝑠 = { 𝑓 ∈ ( 𝑅 Cn 𝑆 ) ∣ ( 𝑓𝑘 ) ⊆ 𝑣 } ) )
12 11 abbii { 𝑠 ∣ ∃ 𝑘𝐾𝑣𝑆 𝑠 = { 𝑓 ∈ ( 𝑅 Cn 𝑆 ) ∣ ( 𝑓𝑘 ) ⊆ 𝑣 } } = { 𝑠 ∣ ∃ 𝑘 ∈ 𝒫 𝑋𝑣𝑆 ( ( 𝑅t 𝑘 ) ∈ Comp ∧ 𝑠 = { 𝑓 ∈ ( 𝑅 Cn 𝑆 ) ∣ ( 𝑓𝑘 ) ⊆ 𝑣 } ) }
13 4 12 eqtri ran 𝑇 = { 𝑠 ∣ ∃ 𝑘 ∈ 𝒫 𝑋𝑣𝑆 ( ( 𝑅t 𝑘 ) ∈ Comp ∧ 𝑠 = { 𝑓 ∈ ( 𝑅 Cn 𝑆 ) ∣ ( 𝑓𝑘 ) ⊆ 𝑣 } ) }