| Step |
Hyp |
Ref |
Expression |
| 1 |
|
xkoval.x |
⊢ 𝑋 = ∪ 𝑅 |
| 2 |
|
xkoval.k |
⊢ 𝐾 = { 𝑥 ∈ 𝒫 𝑋 ∣ ( 𝑅 ↾t 𝑥 ) ∈ Comp } |
| 3 |
|
xkoval.t |
⊢ 𝑇 = ( 𝑘 ∈ 𝐾 , 𝑣 ∈ 𝑆 ↦ { 𝑓 ∈ ( 𝑅 Cn 𝑆 ) ∣ ( 𝑓 “ 𝑘 ) ⊆ 𝑣 } ) |
| 4 |
3
|
rnmpo |
⊢ ran 𝑇 = { 𝑠 ∣ ∃ 𝑘 ∈ 𝐾 ∃ 𝑣 ∈ 𝑆 𝑠 = { 𝑓 ∈ ( 𝑅 Cn 𝑆 ) ∣ ( 𝑓 “ 𝑘 ) ⊆ 𝑣 } } |
| 5 |
|
oveq2 |
⊢ ( 𝑥 = 𝑘 → ( 𝑅 ↾t 𝑥 ) = ( 𝑅 ↾t 𝑘 ) ) |
| 6 |
5
|
eleq1d |
⊢ ( 𝑥 = 𝑘 → ( ( 𝑅 ↾t 𝑥 ) ∈ Comp ↔ ( 𝑅 ↾t 𝑘 ) ∈ Comp ) ) |
| 7 |
6
|
rexrab |
⊢ ( ∃ 𝑘 ∈ { 𝑥 ∈ 𝒫 𝑋 ∣ ( 𝑅 ↾t 𝑥 ) ∈ Comp } ∃ 𝑣 ∈ 𝑆 𝑠 = { 𝑓 ∈ ( 𝑅 Cn 𝑆 ) ∣ ( 𝑓 “ 𝑘 ) ⊆ 𝑣 } ↔ ∃ 𝑘 ∈ 𝒫 𝑋 ( ( 𝑅 ↾t 𝑘 ) ∈ Comp ∧ ∃ 𝑣 ∈ 𝑆 𝑠 = { 𝑓 ∈ ( 𝑅 Cn 𝑆 ) ∣ ( 𝑓 “ 𝑘 ) ⊆ 𝑣 } ) ) |
| 8 |
2
|
rexeqi |
⊢ ( ∃ 𝑘 ∈ 𝐾 ∃ 𝑣 ∈ 𝑆 𝑠 = { 𝑓 ∈ ( 𝑅 Cn 𝑆 ) ∣ ( 𝑓 “ 𝑘 ) ⊆ 𝑣 } ↔ ∃ 𝑘 ∈ { 𝑥 ∈ 𝒫 𝑋 ∣ ( 𝑅 ↾t 𝑥 ) ∈ Comp } ∃ 𝑣 ∈ 𝑆 𝑠 = { 𝑓 ∈ ( 𝑅 Cn 𝑆 ) ∣ ( 𝑓 “ 𝑘 ) ⊆ 𝑣 } ) |
| 9 |
|
r19.42v |
⊢ ( ∃ 𝑣 ∈ 𝑆 ( ( 𝑅 ↾t 𝑘 ) ∈ Comp ∧ 𝑠 = { 𝑓 ∈ ( 𝑅 Cn 𝑆 ) ∣ ( 𝑓 “ 𝑘 ) ⊆ 𝑣 } ) ↔ ( ( 𝑅 ↾t 𝑘 ) ∈ Comp ∧ ∃ 𝑣 ∈ 𝑆 𝑠 = { 𝑓 ∈ ( 𝑅 Cn 𝑆 ) ∣ ( 𝑓 “ 𝑘 ) ⊆ 𝑣 } ) ) |
| 10 |
9
|
rexbii |
⊢ ( ∃ 𝑘 ∈ 𝒫 𝑋 ∃ 𝑣 ∈ 𝑆 ( ( 𝑅 ↾t 𝑘 ) ∈ Comp ∧ 𝑠 = { 𝑓 ∈ ( 𝑅 Cn 𝑆 ) ∣ ( 𝑓 “ 𝑘 ) ⊆ 𝑣 } ) ↔ ∃ 𝑘 ∈ 𝒫 𝑋 ( ( 𝑅 ↾t 𝑘 ) ∈ Comp ∧ ∃ 𝑣 ∈ 𝑆 𝑠 = { 𝑓 ∈ ( 𝑅 Cn 𝑆 ) ∣ ( 𝑓 “ 𝑘 ) ⊆ 𝑣 } ) ) |
| 11 |
7 8 10
|
3bitr4i |
⊢ ( ∃ 𝑘 ∈ 𝐾 ∃ 𝑣 ∈ 𝑆 𝑠 = { 𝑓 ∈ ( 𝑅 Cn 𝑆 ) ∣ ( 𝑓 “ 𝑘 ) ⊆ 𝑣 } ↔ ∃ 𝑘 ∈ 𝒫 𝑋 ∃ 𝑣 ∈ 𝑆 ( ( 𝑅 ↾t 𝑘 ) ∈ Comp ∧ 𝑠 = { 𝑓 ∈ ( 𝑅 Cn 𝑆 ) ∣ ( 𝑓 “ 𝑘 ) ⊆ 𝑣 } ) ) |
| 12 |
11
|
abbii |
⊢ { 𝑠 ∣ ∃ 𝑘 ∈ 𝐾 ∃ 𝑣 ∈ 𝑆 𝑠 = { 𝑓 ∈ ( 𝑅 Cn 𝑆 ) ∣ ( 𝑓 “ 𝑘 ) ⊆ 𝑣 } } = { 𝑠 ∣ ∃ 𝑘 ∈ 𝒫 𝑋 ∃ 𝑣 ∈ 𝑆 ( ( 𝑅 ↾t 𝑘 ) ∈ Comp ∧ 𝑠 = { 𝑓 ∈ ( 𝑅 Cn 𝑆 ) ∣ ( 𝑓 “ 𝑘 ) ⊆ 𝑣 } ) } |
| 13 |
4 12
|
eqtri |
⊢ ran 𝑇 = { 𝑠 ∣ ∃ 𝑘 ∈ 𝒫 𝑋 ∃ 𝑣 ∈ 𝑆 ( ( 𝑅 ↾t 𝑘 ) ∈ Comp ∧ 𝑠 = { 𝑓 ∈ ( 𝑅 Cn 𝑆 ) ∣ ( 𝑓 “ 𝑘 ) ⊆ 𝑣 } ) } |