| Step |
Hyp |
Ref |
Expression |
| 1 |
|
xkoco1cn.t |
⊢ ( 𝜑 → 𝑇 ∈ Top ) |
| 2 |
|
xkoco1cn.f |
⊢ ( 𝜑 → 𝐹 ∈ ( 𝑅 Cn 𝑆 ) ) |
| 3 |
|
cnco |
⊢ ( ( 𝐹 ∈ ( 𝑅 Cn 𝑆 ) ∧ 𝑔 ∈ ( 𝑆 Cn 𝑇 ) ) → ( 𝑔 ∘ 𝐹 ) ∈ ( 𝑅 Cn 𝑇 ) ) |
| 4 |
2 3
|
sylan |
⊢ ( ( 𝜑 ∧ 𝑔 ∈ ( 𝑆 Cn 𝑇 ) ) → ( 𝑔 ∘ 𝐹 ) ∈ ( 𝑅 Cn 𝑇 ) ) |
| 5 |
4
|
fmpttd |
⊢ ( 𝜑 → ( 𝑔 ∈ ( 𝑆 Cn 𝑇 ) ↦ ( 𝑔 ∘ 𝐹 ) ) : ( 𝑆 Cn 𝑇 ) ⟶ ( 𝑅 Cn 𝑇 ) ) |
| 6 |
|
eqid |
⊢ ∪ 𝑅 = ∪ 𝑅 |
| 7 |
|
eqid |
⊢ { 𝑦 ∈ 𝒫 ∪ 𝑅 ∣ ( 𝑅 ↾t 𝑦 ) ∈ Comp } = { 𝑦 ∈ 𝒫 ∪ 𝑅 ∣ ( 𝑅 ↾t 𝑦 ) ∈ Comp } |
| 8 |
|
eqid |
⊢ ( 𝑘 ∈ { 𝑦 ∈ 𝒫 ∪ 𝑅 ∣ ( 𝑅 ↾t 𝑦 ) ∈ Comp } , 𝑣 ∈ 𝑇 ↦ { ℎ ∈ ( 𝑅 Cn 𝑇 ) ∣ ( ℎ “ 𝑘 ) ⊆ 𝑣 } ) = ( 𝑘 ∈ { 𝑦 ∈ 𝒫 ∪ 𝑅 ∣ ( 𝑅 ↾t 𝑦 ) ∈ Comp } , 𝑣 ∈ 𝑇 ↦ { ℎ ∈ ( 𝑅 Cn 𝑇 ) ∣ ( ℎ “ 𝑘 ) ⊆ 𝑣 } ) |
| 9 |
6 7 8
|
xkobval |
⊢ ran ( 𝑘 ∈ { 𝑦 ∈ 𝒫 ∪ 𝑅 ∣ ( 𝑅 ↾t 𝑦 ) ∈ Comp } , 𝑣 ∈ 𝑇 ↦ { ℎ ∈ ( 𝑅 Cn 𝑇 ) ∣ ( ℎ “ 𝑘 ) ⊆ 𝑣 } ) = { 𝑥 ∣ ∃ 𝑘 ∈ 𝒫 ∪ 𝑅 ∃ 𝑣 ∈ 𝑇 ( ( 𝑅 ↾t 𝑘 ) ∈ Comp ∧ 𝑥 = { ℎ ∈ ( 𝑅 Cn 𝑇 ) ∣ ( ℎ “ 𝑘 ) ⊆ 𝑣 } ) } |
| 10 |
9
|
eqabri |
⊢ ( 𝑥 ∈ ran ( 𝑘 ∈ { 𝑦 ∈ 𝒫 ∪ 𝑅 ∣ ( 𝑅 ↾t 𝑦 ) ∈ Comp } , 𝑣 ∈ 𝑇 ↦ { ℎ ∈ ( 𝑅 Cn 𝑇 ) ∣ ( ℎ “ 𝑘 ) ⊆ 𝑣 } ) ↔ ∃ 𝑘 ∈ 𝒫 ∪ 𝑅 ∃ 𝑣 ∈ 𝑇 ( ( 𝑅 ↾t 𝑘 ) ∈ Comp ∧ 𝑥 = { ℎ ∈ ( 𝑅 Cn 𝑇 ) ∣ ( ℎ “ 𝑘 ) ⊆ 𝑣 } ) ) |
| 11 |
2
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ ( 𝑘 ∈ 𝒫 ∪ 𝑅 ∧ 𝑣 ∈ 𝑇 ) ) ∧ ( 𝑅 ↾t 𝑘 ) ∈ Comp ) → 𝐹 ∈ ( 𝑅 Cn 𝑆 ) ) |
| 12 |
11 3
|
sylan |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑘 ∈ 𝒫 ∪ 𝑅 ∧ 𝑣 ∈ 𝑇 ) ) ∧ ( 𝑅 ↾t 𝑘 ) ∈ Comp ) ∧ 𝑔 ∈ ( 𝑆 Cn 𝑇 ) ) → ( 𝑔 ∘ 𝐹 ) ∈ ( 𝑅 Cn 𝑇 ) ) |
| 13 |
|
imaeq1 |
⊢ ( ℎ = ( 𝑔 ∘ 𝐹 ) → ( ℎ “ 𝑘 ) = ( ( 𝑔 ∘ 𝐹 ) “ 𝑘 ) ) |
| 14 |
|
imaco |
⊢ ( ( 𝑔 ∘ 𝐹 ) “ 𝑘 ) = ( 𝑔 “ ( 𝐹 “ 𝑘 ) ) |
| 15 |
13 14
|
eqtrdi |
⊢ ( ℎ = ( 𝑔 ∘ 𝐹 ) → ( ℎ “ 𝑘 ) = ( 𝑔 “ ( 𝐹 “ 𝑘 ) ) ) |
| 16 |
15
|
sseq1d |
⊢ ( ℎ = ( 𝑔 ∘ 𝐹 ) → ( ( ℎ “ 𝑘 ) ⊆ 𝑣 ↔ ( 𝑔 “ ( 𝐹 “ 𝑘 ) ) ⊆ 𝑣 ) ) |
| 17 |
16
|
elrab3 |
⊢ ( ( 𝑔 ∘ 𝐹 ) ∈ ( 𝑅 Cn 𝑇 ) → ( ( 𝑔 ∘ 𝐹 ) ∈ { ℎ ∈ ( 𝑅 Cn 𝑇 ) ∣ ( ℎ “ 𝑘 ) ⊆ 𝑣 } ↔ ( 𝑔 “ ( 𝐹 “ 𝑘 ) ) ⊆ 𝑣 ) ) |
| 18 |
12 17
|
syl |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑘 ∈ 𝒫 ∪ 𝑅 ∧ 𝑣 ∈ 𝑇 ) ) ∧ ( 𝑅 ↾t 𝑘 ) ∈ Comp ) ∧ 𝑔 ∈ ( 𝑆 Cn 𝑇 ) ) → ( ( 𝑔 ∘ 𝐹 ) ∈ { ℎ ∈ ( 𝑅 Cn 𝑇 ) ∣ ( ℎ “ 𝑘 ) ⊆ 𝑣 } ↔ ( 𝑔 “ ( 𝐹 “ 𝑘 ) ) ⊆ 𝑣 ) ) |
| 19 |
18
|
rabbidva |
⊢ ( ( ( 𝜑 ∧ ( 𝑘 ∈ 𝒫 ∪ 𝑅 ∧ 𝑣 ∈ 𝑇 ) ) ∧ ( 𝑅 ↾t 𝑘 ) ∈ Comp ) → { 𝑔 ∈ ( 𝑆 Cn 𝑇 ) ∣ ( 𝑔 ∘ 𝐹 ) ∈ { ℎ ∈ ( 𝑅 Cn 𝑇 ) ∣ ( ℎ “ 𝑘 ) ⊆ 𝑣 } } = { 𝑔 ∈ ( 𝑆 Cn 𝑇 ) ∣ ( 𝑔 “ ( 𝐹 “ 𝑘 ) ) ⊆ 𝑣 } ) |
| 20 |
|
eqid |
⊢ ∪ 𝑆 = ∪ 𝑆 |
| 21 |
|
cntop2 |
⊢ ( 𝐹 ∈ ( 𝑅 Cn 𝑆 ) → 𝑆 ∈ Top ) |
| 22 |
2 21
|
syl |
⊢ ( 𝜑 → 𝑆 ∈ Top ) |
| 23 |
22
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ ( 𝑘 ∈ 𝒫 ∪ 𝑅 ∧ 𝑣 ∈ 𝑇 ) ) ∧ ( 𝑅 ↾t 𝑘 ) ∈ Comp ) → 𝑆 ∈ Top ) |
| 24 |
1
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ ( 𝑘 ∈ 𝒫 ∪ 𝑅 ∧ 𝑣 ∈ 𝑇 ) ) ∧ ( 𝑅 ↾t 𝑘 ) ∈ Comp ) → 𝑇 ∈ Top ) |
| 25 |
|
imassrn |
⊢ ( 𝐹 “ 𝑘 ) ⊆ ran 𝐹 |
| 26 |
6 20
|
cnf |
⊢ ( 𝐹 ∈ ( 𝑅 Cn 𝑆 ) → 𝐹 : ∪ 𝑅 ⟶ ∪ 𝑆 ) |
| 27 |
|
frn |
⊢ ( 𝐹 : ∪ 𝑅 ⟶ ∪ 𝑆 → ran 𝐹 ⊆ ∪ 𝑆 ) |
| 28 |
11 26 27
|
3syl |
⊢ ( ( ( 𝜑 ∧ ( 𝑘 ∈ 𝒫 ∪ 𝑅 ∧ 𝑣 ∈ 𝑇 ) ) ∧ ( 𝑅 ↾t 𝑘 ) ∈ Comp ) → ran 𝐹 ⊆ ∪ 𝑆 ) |
| 29 |
25 28
|
sstrid |
⊢ ( ( ( 𝜑 ∧ ( 𝑘 ∈ 𝒫 ∪ 𝑅 ∧ 𝑣 ∈ 𝑇 ) ) ∧ ( 𝑅 ↾t 𝑘 ) ∈ Comp ) → ( 𝐹 “ 𝑘 ) ⊆ ∪ 𝑆 ) |
| 30 |
|
imacmp |
⊢ ( ( 𝐹 ∈ ( 𝑅 Cn 𝑆 ) ∧ ( 𝑅 ↾t 𝑘 ) ∈ Comp ) → ( 𝑆 ↾t ( 𝐹 “ 𝑘 ) ) ∈ Comp ) |
| 31 |
11 30
|
sylancom |
⊢ ( ( ( 𝜑 ∧ ( 𝑘 ∈ 𝒫 ∪ 𝑅 ∧ 𝑣 ∈ 𝑇 ) ) ∧ ( 𝑅 ↾t 𝑘 ) ∈ Comp ) → ( 𝑆 ↾t ( 𝐹 “ 𝑘 ) ) ∈ Comp ) |
| 32 |
|
simplrr |
⊢ ( ( ( 𝜑 ∧ ( 𝑘 ∈ 𝒫 ∪ 𝑅 ∧ 𝑣 ∈ 𝑇 ) ) ∧ ( 𝑅 ↾t 𝑘 ) ∈ Comp ) → 𝑣 ∈ 𝑇 ) |
| 33 |
20 23 24 29 31 32
|
xkoopn |
⊢ ( ( ( 𝜑 ∧ ( 𝑘 ∈ 𝒫 ∪ 𝑅 ∧ 𝑣 ∈ 𝑇 ) ) ∧ ( 𝑅 ↾t 𝑘 ) ∈ Comp ) → { 𝑔 ∈ ( 𝑆 Cn 𝑇 ) ∣ ( 𝑔 “ ( 𝐹 “ 𝑘 ) ) ⊆ 𝑣 } ∈ ( 𝑇 ↑ko 𝑆 ) ) |
| 34 |
19 33
|
eqeltrd |
⊢ ( ( ( 𝜑 ∧ ( 𝑘 ∈ 𝒫 ∪ 𝑅 ∧ 𝑣 ∈ 𝑇 ) ) ∧ ( 𝑅 ↾t 𝑘 ) ∈ Comp ) → { 𝑔 ∈ ( 𝑆 Cn 𝑇 ) ∣ ( 𝑔 ∘ 𝐹 ) ∈ { ℎ ∈ ( 𝑅 Cn 𝑇 ) ∣ ( ℎ “ 𝑘 ) ⊆ 𝑣 } } ∈ ( 𝑇 ↑ko 𝑆 ) ) |
| 35 |
|
imaeq2 |
⊢ ( 𝑥 = { ℎ ∈ ( 𝑅 Cn 𝑇 ) ∣ ( ℎ “ 𝑘 ) ⊆ 𝑣 } → ( ◡ ( 𝑔 ∈ ( 𝑆 Cn 𝑇 ) ↦ ( 𝑔 ∘ 𝐹 ) ) “ 𝑥 ) = ( ◡ ( 𝑔 ∈ ( 𝑆 Cn 𝑇 ) ↦ ( 𝑔 ∘ 𝐹 ) ) “ { ℎ ∈ ( 𝑅 Cn 𝑇 ) ∣ ( ℎ “ 𝑘 ) ⊆ 𝑣 } ) ) |
| 36 |
|
eqid |
⊢ ( 𝑔 ∈ ( 𝑆 Cn 𝑇 ) ↦ ( 𝑔 ∘ 𝐹 ) ) = ( 𝑔 ∈ ( 𝑆 Cn 𝑇 ) ↦ ( 𝑔 ∘ 𝐹 ) ) |
| 37 |
36
|
mptpreima |
⊢ ( ◡ ( 𝑔 ∈ ( 𝑆 Cn 𝑇 ) ↦ ( 𝑔 ∘ 𝐹 ) ) “ { ℎ ∈ ( 𝑅 Cn 𝑇 ) ∣ ( ℎ “ 𝑘 ) ⊆ 𝑣 } ) = { 𝑔 ∈ ( 𝑆 Cn 𝑇 ) ∣ ( 𝑔 ∘ 𝐹 ) ∈ { ℎ ∈ ( 𝑅 Cn 𝑇 ) ∣ ( ℎ “ 𝑘 ) ⊆ 𝑣 } } |
| 38 |
35 37
|
eqtrdi |
⊢ ( 𝑥 = { ℎ ∈ ( 𝑅 Cn 𝑇 ) ∣ ( ℎ “ 𝑘 ) ⊆ 𝑣 } → ( ◡ ( 𝑔 ∈ ( 𝑆 Cn 𝑇 ) ↦ ( 𝑔 ∘ 𝐹 ) ) “ 𝑥 ) = { 𝑔 ∈ ( 𝑆 Cn 𝑇 ) ∣ ( 𝑔 ∘ 𝐹 ) ∈ { ℎ ∈ ( 𝑅 Cn 𝑇 ) ∣ ( ℎ “ 𝑘 ) ⊆ 𝑣 } } ) |
| 39 |
38
|
eleq1d |
⊢ ( 𝑥 = { ℎ ∈ ( 𝑅 Cn 𝑇 ) ∣ ( ℎ “ 𝑘 ) ⊆ 𝑣 } → ( ( ◡ ( 𝑔 ∈ ( 𝑆 Cn 𝑇 ) ↦ ( 𝑔 ∘ 𝐹 ) ) “ 𝑥 ) ∈ ( 𝑇 ↑ko 𝑆 ) ↔ { 𝑔 ∈ ( 𝑆 Cn 𝑇 ) ∣ ( 𝑔 ∘ 𝐹 ) ∈ { ℎ ∈ ( 𝑅 Cn 𝑇 ) ∣ ( ℎ “ 𝑘 ) ⊆ 𝑣 } } ∈ ( 𝑇 ↑ko 𝑆 ) ) ) |
| 40 |
34 39
|
syl5ibrcom |
⊢ ( ( ( 𝜑 ∧ ( 𝑘 ∈ 𝒫 ∪ 𝑅 ∧ 𝑣 ∈ 𝑇 ) ) ∧ ( 𝑅 ↾t 𝑘 ) ∈ Comp ) → ( 𝑥 = { ℎ ∈ ( 𝑅 Cn 𝑇 ) ∣ ( ℎ “ 𝑘 ) ⊆ 𝑣 } → ( ◡ ( 𝑔 ∈ ( 𝑆 Cn 𝑇 ) ↦ ( 𝑔 ∘ 𝐹 ) ) “ 𝑥 ) ∈ ( 𝑇 ↑ko 𝑆 ) ) ) |
| 41 |
40
|
expimpd |
⊢ ( ( 𝜑 ∧ ( 𝑘 ∈ 𝒫 ∪ 𝑅 ∧ 𝑣 ∈ 𝑇 ) ) → ( ( ( 𝑅 ↾t 𝑘 ) ∈ Comp ∧ 𝑥 = { ℎ ∈ ( 𝑅 Cn 𝑇 ) ∣ ( ℎ “ 𝑘 ) ⊆ 𝑣 } ) → ( ◡ ( 𝑔 ∈ ( 𝑆 Cn 𝑇 ) ↦ ( 𝑔 ∘ 𝐹 ) ) “ 𝑥 ) ∈ ( 𝑇 ↑ko 𝑆 ) ) ) |
| 42 |
41
|
rexlimdvva |
⊢ ( 𝜑 → ( ∃ 𝑘 ∈ 𝒫 ∪ 𝑅 ∃ 𝑣 ∈ 𝑇 ( ( 𝑅 ↾t 𝑘 ) ∈ Comp ∧ 𝑥 = { ℎ ∈ ( 𝑅 Cn 𝑇 ) ∣ ( ℎ “ 𝑘 ) ⊆ 𝑣 } ) → ( ◡ ( 𝑔 ∈ ( 𝑆 Cn 𝑇 ) ↦ ( 𝑔 ∘ 𝐹 ) ) “ 𝑥 ) ∈ ( 𝑇 ↑ko 𝑆 ) ) ) |
| 43 |
10 42
|
biimtrid |
⊢ ( 𝜑 → ( 𝑥 ∈ ran ( 𝑘 ∈ { 𝑦 ∈ 𝒫 ∪ 𝑅 ∣ ( 𝑅 ↾t 𝑦 ) ∈ Comp } , 𝑣 ∈ 𝑇 ↦ { ℎ ∈ ( 𝑅 Cn 𝑇 ) ∣ ( ℎ “ 𝑘 ) ⊆ 𝑣 } ) → ( ◡ ( 𝑔 ∈ ( 𝑆 Cn 𝑇 ) ↦ ( 𝑔 ∘ 𝐹 ) ) “ 𝑥 ) ∈ ( 𝑇 ↑ko 𝑆 ) ) ) |
| 44 |
43
|
ralrimiv |
⊢ ( 𝜑 → ∀ 𝑥 ∈ ran ( 𝑘 ∈ { 𝑦 ∈ 𝒫 ∪ 𝑅 ∣ ( 𝑅 ↾t 𝑦 ) ∈ Comp } , 𝑣 ∈ 𝑇 ↦ { ℎ ∈ ( 𝑅 Cn 𝑇 ) ∣ ( ℎ “ 𝑘 ) ⊆ 𝑣 } ) ( ◡ ( 𝑔 ∈ ( 𝑆 Cn 𝑇 ) ↦ ( 𝑔 ∘ 𝐹 ) ) “ 𝑥 ) ∈ ( 𝑇 ↑ko 𝑆 ) ) |
| 45 |
|
eqid |
⊢ ( 𝑇 ↑ko 𝑆 ) = ( 𝑇 ↑ko 𝑆 ) |
| 46 |
45
|
xkotopon |
⊢ ( ( 𝑆 ∈ Top ∧ 𝑇 ∈ Top ) → ( 𝑇 ↑ko 𝑆 ) ∈ ( TopOn ‘ ( 𝑆 Cn 𝑇 ) ) ) |
| 47 |
22 1 46
|
syl2anc |
⊢ ( 𝜑 → ( 𝑇 ↑ko 𝑆 ) ∈ ( TopOn ‘ ( 𝑆 Cn 𝑇 ) ) ) |
| 48 |
|
ovex |
⊢ ( 𝑅 Cn 𝑇 ) ∈ V |
| 49 |
48
|
pwex |
⊢ 𝒫 ( 𝑅 Cn 𝑇 ) ∈ V |
| 50 |
6 7 8
|
xkotf |
⊢ ( 𝑘 ∈ { 𝑦 ∈ 𝒫 ∪ 𝑅 ∣ ( 𝑅 ↾t 𝑦 ) ∈ Comp } , 𝑣 ∈ 𝑇 ↦ { ℎ ∈ ( 𝑅 Cn 𝑇 ) ∣ ( ℎ “ 𝑘 ) ⊆ 𝑣 } ) : ( { 𝑦 ∈ 𝒫 ∪ 𝑅 ∣ ( 𝑅 ↾t 𝑦 ) ∈ Comp } × 𝑇 ) ⟶ 𝒫 ( 𝑅 Cn 𝑇 ) |
| 51 |
|
frn |
⊢ ( ( 𝑘 ∈ { 𝑦 ∈ 𝒫 ∪ 𝑅 ∣ ( 𝑅 ↾t 𝑦 ) ∈ Comp } , 𝑣 ∈ 𝑇 ↦ { ℎ ∈ ( 𝑅 Cn 𝑇 ) ∣ ( ℎ “ 𝑘 ) ⊆ 𝑣 } ) : ( { 𝑦 ∈ 𝒫 ∪ 𝑅 ∣ ( 𝑅 ↾t 𝑦 ) ∈ Comp } × 𝑇 ) ⟶ 𝒫 ( 𝑅 Cn 𝑇 ) → ran ( 𝑘 ∈ { 𝑦 ∈ 𝒫 ∪ 𝑅 ∣ ( 𝑅 ↾t 𝑦 ) ∈ Comp } , 𝑣 ∈ 𝑇 ↦ { ℎ ∈ ( 𝑅 Cn 𝑇 ) ∣ ( ℎ “ 𝑘 ) ⊆ 𝑣 } ) ⊆ 𝒫 ( 𝑅 Cn 𝑇 ) ) |
| 52 |
50 51
|
ax-mp |
⊢ ran ( 𝑘 ∈ { 𝑦 ∈ 𝒫 ∪ 𝑅 ∣ ( 𝑅 ↾t 𝑦 ) ∈ Comp } , 𝑣 ∈ 𝑇 ↦ { ℎ ∈ ( 𝑅 Cn 𝑇 ) ∣ ( ℎ “ 𝑘 ) ⊆ 𝑣 } ) ⊆ 𝒫 ( 𝑅 Cn 𝑇 ) |
| 53 |
49 52
|
ssexi |
⊢ ran ( 𝑘 ∈ { 𝑦 ∈ 𝒫 ∪ 𝑅 ∣ ( 𝑅 ↾t 𝑦 ) ∈ Comp } , 𝑣 ∈ 𝑇 ↦ { ℎ ∈ ( 𝑅 Cn 𝑇 ) ∣ ( ℎ “ 𝑘 ) ⊆ 𝑣 } ) ∈ V |
| 54 |
53
|
a1i |
⊢ ( 𝜑 → ran ( 𝑘 ∈ { 𝑦 ∈ 𝒫 ∪ 𝑅 ∣ ( 𝑅 ↾t 𝑦 ) ∈ Comp } , 𝑣 ∈ 𝑇 ↦ { ℎ ∈ ( 𝑅 Cn 𝑇 ) ∣ ( ℎ “ 𝑘 ) ⊆ 𝑣 } ) ∈ V ) |
| 55 |
|
cntop1 |
⊢ ( 𝐹 ∈ ( 𝑅 Cn 𝑆 ) → 𝑅 ∈ Top ) |
| 56 |
2 55
|
syl |
⊢ ( 𝜑 → 𝑅 ∈ Top ) |
| 57 |
6 7 8
|
xkoval |
⊢ ( ( 𝑅 ∈ Top ∧ 𝑇 ∈ Top ) → ( 𝑇 ↑ko 𝑅 ) = ( topGen ‘ ( fi ‘ ran ( 𝑘 ∈ { 𝑦 ∈ 𝒫 ∪ 𝑅 ∣ ( 𝑅 ↾t 𝑦 ) ∈ Comp } , 𝑣 ∈ 𝑇 ↦ { ℎ ∈ ( 𝑅 Cn 𝑇 ) ∣ ( ℎ “ 𝑘 ) ⊆ 𝑣 } ) ) ) ) |
| 58 |
56 1 57
|
syl2anc |
⊢ ( 𝜑 → ( 𝑇 ↑ko 𝑅 ) = ( topGen ‘ ( fi ‘ ran ( 𝑘 ∈ { 𝑦 ∈ 𝒫 ∪ 𝑅 ∣ ( 𝑅 ↾t 𝑦 ) ∈ Comp } , 𝑣 ∈ 𝑇 ↦ { ℎ ∈ ( 𝑅 Cn 𝑇 ) ∣ ( ℎ “ 𝑘 ) ⊆ 𝑣 } ) ) ) ) |
| 59 |
|
eqid |
⊢ ( 𝑇 ↑ko 𝑅 ) = ( 𝑇 ↑ko 𝑅 ) |
| 60 |
59
|
xkotopon |
⊢ ( ( 𝑅 ∈ Top ∧ 𝑇 ∈ Top ) → ( 𝑇 ↑ko 𝑅 ) ∈ ( TopOn ‘ ( 𝑅 Cn 𝑇 ) ) ) |
| 61 |
56 1 60
|
syl2anc |
⊢ ( 𝜑 → ( 𝑇 ↑ko 𝑅 ) ∈ ( TopOn ‘ ( 𝑅 Cn 𝑇 ) ) ) |
| 62 |
47 54 58 61
|
subbascn |
⊢ ( 𝜑 → ( ( 𝑔 ∈ ( 𝑆 Cn 𝑇 ) ↦ ( 𝑔 ∘ 𝐹 ) ) ∈ ( ( 𝑇 ↑ko 𝑆 ) Cn ( 𝑇 ↑ko 𝑅 ) ) ↔ ( ( 𝑔 ∈ ( 𝑆 Cn 𝑇 ) ↦ ( 𝑔 ∘ 𝐹 ) ) : ( 𝑆 Cn 𝑇 ) ⟶ ( 𝑅 Cn 𝑇 ) ∧ ∀ 𝑥 ∈ ran ( 𝑘 ∈ { 𝑦 ∈ 𝒫 ∪ 𝑅 ∣ ( 𝑅 ↾t 𝑦 ) ∈ Comp } , 𝑣 ∈ 𝑇 ↦ { ℎ ∈ ( 𝑅 Cn 𝑇 ) ∣ ( ℎ “ 𝑘 ) ⊆ 𝑣 } ) ( ◡ ( 𝑔 ∈ ( 𝑆 Cn 𝑇 ) ↦ ( 𝑔 ∘ 𝐹 ) ) “ 𝑥 ) ∈ ( 𝑇 ↑ko 𝑆 ) ) ) ) |
| 63 |
5 44 62
|
mpbir2and |
⊢ ( 𝜑 → ( 𝑔 ∈ ( 𝑆 Cn 𝑇 ) ↦ ( 𝑔 ∘ 𝐹 ) ) ∈ ( ( 𝑇 ↑ko 𝑆 ) Cn ( 𝑇 ↑ko 𝑅 ) ) ) |