| Step | Hyp | Ref | Expression | 
						
							| 1 |  | xkoco1cn.t | ⊢ ( 𝜑  →  𝑇  ∈  Top ) | 
						
							| 2 |  | xkoco1cn.f | ⊢ ( 𝜑  →  𝐹  ∈  ( 𝑅  Cn  𝑆 ) ) | 
						
							| 3 |  | cnco | ⊢ ( ( 𝐹  ∈  ( 𝑅  Cn  𝑆 )  ∧  𝑔  ∈  ( 𝑆  Cn  𝑇 ) )  →  ( 𝑔  ∘  𝐹 )  ∈  ( 𝑅  Cn  𝑇 ) ) | 
						
							| 4 | 2 3 | sylan | ⊢ ( ( 𝜑  ∧  𝑔  ∈  ( 𝑆  Cn  𝑇 ) )  →  ( 𝑔  ∘  𝐹 )  ∈  ( 𝑅  Cn  𝑇 ) ) | 
						
							| 5 | 4 | fmpttd | ⊢ ( 𝜑  →  ( 𝑔  ∈  ( 𝑆  Cn  𝑇 )  ↦  ( 𝑔  ∘  𝐹 ) ) : ( 𝑆  Cn  𝑇 ) ⟶ ( 𝑅  Cn  𝑇 ) ) | 
						
							| 6 |  | eqid | ⊢ ∪  𝑅  =  ∪  𝑅 | 
						
							| 7 |  | eqid | ⊢ { 𝑦  ∈  𝒫  ∪  𝑅  ∣  ( 𝑅  ↾t  𝑦 )  ∈  Comp }  =  { 𝑦  ∈  𝒫  ∪  𝑅  ∣  ( 𝑅  ↾t  𝑦 )  ∈  Comp } | 
						
							| 8 |  | eqid | ⊢ ( 𝑘  ∈  { 𝑦  ∈  𝒫  ∪  𝑅  ∣  ( 𝑅  ↾t  𝑦 )  ∈  Comp } ,  𝑣  ∈  𝑇  ↦  { ℎ  ∈  ( 𝑅  Cn  𝑇 )  ∣  ( ℎ  “  𝑘 )  ⊆  𝑣 } )  =  ( 𝑘  ∈  { 𝑦  ∈  𝒫  ∪  𝑅  ∣  ( 𝑅  ↾t  𝑦 )  ∈  Comp } ,  𝑣  ∈  𝑇  ↦  { ℎ  ∈  ( 𝑅  Cn  𝑇 )  ∣  ( ℎ  “  𝑘 )  ⊆  𝑣 } ) | 
						
							| 9 | 6 7 8 | xkobval | ⊢ ran  ( 𝑘  ∈  { 𝑦  ∈  𝒫  ∪  𝑅  ∣  ( 𝑅  ↾t  𝑦 )  ∈  Comp } ,  𝑣  ∈  𝑇  ↦  { ℎ  ∈  ( 𝑅  Cn  𝑇 )  ∣  ( ℎ  “  𝑘 )  ⊆  𝑣 } )  =  { 𝑥  ∣  ∃ 𝑘  ∈  𝒫  ∪  𝑅 ∃ 𝑣  ∈  𝑇 ( ( 𝑅  ↾t  𝑘 )  ∈  Comp  ∧  𝑥  =  { ℎ  ∈  ( 𝑅  Cn  𝑇 )  ∣  ( ℎ  “  𝑘 )  ⊆  𝑣 } ) } | 
						
							| 10 | 9 | eqabri | ⊢ ( 𝑥  ∈  ran  ( 𝑘  ∈  { 𝑦  ∈  𝒫  ∪  𝑅  ∣  ( 𝑅  ↾t  𝑦 )  ∈  Comp } ,  𝑣  ∈  𝑇  ↦  { ℎ  ∈  ( 𝑅  Cn  𝑇 )  ∣  ( ℎ  “  𝑘 )  ⊆  𝑣 } )  ↔  ∃ 𝑘  ∈  𝒫  ∪  𝑅 ∃ 𝑣  ∈  𝑇 ( ( 𝑅  ↾t  𝑘 )  ∈  Comp  ∧  𝑥  =  { ℎ  ∈  ( 𝑅  Cn  𝑇 )  ∣  ( ℎ  “  𝑘 )  ⊆  𝑣 } ) ) | 
						
							| 11 | 2 | ad2antrr | ⊢ ( ( ( 𝜑  ∧  ( 𝑘  ∈  𝒫  ∪  𝑅  ∧  𝑣  ∈  𝑇 ) )  ∧  ( 𝑅  ↾t  𝑘 )  ∈  Comp )  →  𝐹  ∈  ( 𝑅  Cn  𝑆 ) ) | 
						
							| 12 | 11 3 | sylan | ⊢ ( ( ( ( 𝜑  ∧  ( 𝑘  ∈  𝒫  ∪  𝑅  ∧  𝑣  ∈  𝑇 ) )  ∧  ( 𝑅  ↾t  𝑘 )  ∈  Comp )  ∧  𝑔  ∈  ( 𝑆  Cn  𝑇 ) )  →  ( 𝑔  ∘  𝐹 )  ∈  ( 𝑅  Cn  𝑇 ) ) | 
						
							| 13 |  | imaeq1 | ⊢ ( ℎ  =  ( 𝑔  ∘  𝐹 )  →  ( ℎ  “  𝑘 )  =  ( ( 𝑔  ∘  𝐹 )  “  𝑘 ) ) | 
						
							| 14 |  | imaco | ⊢ ( ( 𝑔  ∘  𝐹 )  “  𝑘 )  =  ( 𝑔  “  ( 𝐹  “  𝑘 ) ) | 
						
							| 15 | 13 14 | eqtrdi | ⊢ ( ℎ  =  ( 𝑔  ∘  𝐹 )  →  ( ℎ  “  𝑘 )  =  ( 𝑔  “  ( 𝐹  “  𝑘 ) ) ) | 
						
							| 16 | 15 | sseq1d | ⊢ ( ℎ  =  ( 𝑔  ∘  𝐹 )  →  ( ( ℎ  “  𝑘 )  ⊆  𝑣  ↔  ( 𝑔  “  ( 𝐹  “  𝑘 ) )  ⊆  𝑣 ) ) | 
						
							| 17 | 16 | elrab3 | ⊢ ( ( 𝑔  ∘  𝐹 )  ∈  ( 𝑅  Cn  𝑇 )  →  ( ( 𝑔  ∘  𝐹 )  ∈  { ℎ  ∈  ( 𝑅  Cn  𝑇 )  ∣  ( ℎ  “  𝑘 )  ⊆  𝑣 }  ↔  ( 𝑔  “  ( 𝐹  “  𝑘 ) )  ⊆  𝑣 ) ) | 
						
							| 18 | 12 17 | syl | ⊢ ( ( ( ( 𝜑  ∧  ( 𝑘  ∈  𝒫  ∪  𝑅  ∧  𝑣  ∈  𝑇 ) )  ∧  ( 𝑅  ↾t  𝑘 )  ∈  Comp )  ∧  𝑔  ∈  ( 𝑆  Cn  𝑇 ) )  →  ( ( 𝑔  ∘  𝐹 )  ∈  { ℎ  ∈  ( 𝑅  Cn  𝑇 )  ∣  ( ℎ  “  𝑘 )  ⊆  𝑣 }  ↔  ( 𝑔  “  ( 𝐹  “  𝑘 ) )  ⊆  𝑣 ) ) | 
						
							| 19 | 18 | rabbidva | ⊢ ( ( ( 𝜑  ∧  ( 𝑘  ∈  𝒫  ∪  𝑅  ∧  𝑣  ∈  𝑇 ) )  ∧  ( 𝑅  ↾t  𝑘 )  ∈  Comp )  →  { 𝑔  ∈  ( 𝑆  Cn  𝑇 )  ∣  ( 𝑔  ∘  𝐹 )  ∈  { ℎ  ∈  ( 𝑅  Cn  𝑇 )  ∣  ( ℎ  “  𝑘 )  ⊆  𝑣 } }  =  { 𝑔  ∈  ( 𝑆  Cn  𝑇 )  ∣  ( 𝑔  “  ( 𝐹  “  𝑘 ) )  ⊆  𝑣 } ) | 
						
							| 20 |  | eqid | ⊢ ∪  𝑆  =  ∪  𝑆 | 
						
							| 21 |  | cntop2 | ⊢ ( 𝐹  ∈  ( 𝑅  Cn  𝑆 )  →  𝑆  ∈  Top ) | 
						
							| 22 | 2 21 | syl | ⊢ ( 𝜑  →  𝑆  ∈  Top ) | 
						
							| 23 | 22 | ad2antrr | ⊢ ( ( ( 𝜑  ∧  ( 𝑘  ∈  𝒫  ∪  𝑅  ∧  𝑣  ∈  𝑇 ) )  ∧  ( 𝑅  ↾t  𝑘 )  ∈  Comp )  →  𝑆  ∈  Top ) | 
						
							| 24 | 1 | ad2antrr | ⊢ ( ( ( 𝜑  ∧  ( 𝑘  ∈  𝒫  ∪  𝑅  ∧  𝑣  ∈  𝑇 ) )  ∧  ( 𝑅  ↾t  𝑘 )  ∈  Comp )  →  𝑇  ∈  Top ) | 
						
							| 25 |  | imassrn | ⊢ ( 𝐹  “  𝑘 )  ⊆  ran  𝐹 | 
						
							| 26 | 6 20 | cnf | ⊢ ( 𝐹  ∈  ( 𝑅  Cn  𝑆 )  →  𝐹 : ∪  𝑅 ⟶ ∪  𝑆 ) | 
						
							| 27 |  | frn | ⊢ ( 𝐹 : ∪  𝑅 ⟶ ∪  𝑆  →  ran  𝐹  ⊆  ∪  𝑆 ) | 
						
							| 28 | 11 26 27 | 3syl | ⊢ ( ( ( 𝜑  ∧  ( 𝑘  ∈  𝒫  ∪  𝑅  ∧  𝑣  ∈  𝑇 ) )  ∧  ( 𝑅  ↾t  𝑘 )  ∈  Comp )  →  ran  𝐹  ⊆  ∪  𝑆 ) | 
						
							| 29 | 25 28 | sstrid | ⊢ ( ( ( 𝜑  ∧  ( 𝑘  ∈  𝒫  ∪  𝑅  ∧  𝑣  ∈  𝑇 ) )  ∧  ( 𝑅  ↾t  𝑘 )  ∈  Comp )  →  ( 𝐹  “  𝑘 )  ⊆  ∪  𝑆 ) | 
						
							| 30 |  | imacmp | ⊢ ( ( 𝐹  ∈  ( 𝑅  Cn  𝑆 )  ∧  ( 𝑅  ↾t  𝑘 )  ∈  Comp )  →  ( 𝑆  ↾t  ( 𝐹  “  𝑘 ) )  ∈  Comp ) | 
						
							| 31 | 11 30 | sylancom | ⊢ ( ( ( 𝜑  ∧  ( 𝑘  ∈  𝒫  ∪  𝑅  ∧  𝑣  ∈  𝑇 ) )  ∧  ( 𝑅  ↾t  𝑘 )  ∈  Comp )  →  ( 𝑆  ↾t  ( 𝐹  “  𝑘 ) )  ∈  Comp ) | 
						
							| 32 |  | simplrr | ⊢ ( ( ( 𝜑  ∧  ( 𝑘  ∈  𝒫  ∪  𝑅  ∧  𝑣  ∈  𝑇 ) )  ∧  ( 𝑅  ↾t  𝑘 )  ∈  Comp )  →  𝑣  ∈  𝑇 ) | 
						
							| 33 | 20 23 24 29 31 32 | xkoopn | ⊢ ( ( ( 𝜑  ∧  ( 𝑘  ∈  𝒫  ∪  𝑅  ∧  𝑣  ∈  𝑇 ) )  ∧  ( 𝑅  ↾t  𝑘 )  ∈  Comp )  →  { 𝑔  ∈  ( 𝑆  Cn  𝑇 )  ∣  ( 𝑔  “  ( 𝐹  “  𝑘 ) )  ⊆  𝑣 }  ∈  ( 𝑇  ↑ko  𝑆 ) ) | 
						
							| 34 | 19 33 | eqeltrd | ⊢ ( ( ( 𝜑  ∧  ( 𝑘  ∈  𝒫  ∪  𝑅  ∧  𝑣  ∈  𝑇 ) )  ∧  ( 𝑅  ↾t  𝑘 )  ∈  Comp )  →  { 𝑔  ∈  ( 𝑆  Cn  𝑇 )  ∣  ( 𝑔  ∘  𝐹 )  ∈  { ℎ  ∈  ( 𝑅  Cn  𝑇 )  ∣  ( ℎ  “  𝑘 )  ⊆  𝑣 } }  ∈  ( 𝑇  ↑ko  𝑆 ) ) | 
						
							| 35 |  | imaeq2 | ⊢ ( 𝑥  =  { ℎ  ∈  ( 𝑅  Cn  𝑇 )  ∣  ( ℎ  “  𝑘 )  ⊆  𝑣 }  →  ( ◡ ( 𝑔  ∈  ( 𝑆  Cn  𝑇 )  ↦  ( 𝑔  ∘  𝐹 ) )  “  𝑥 )  =  ( ◡ ( 𝑔  ∈  ( 𝑆  Cn  𝑇 )  ↦  ( 𝑔  ∘  𝐹 ) )  “  { ℎ  ∈  ( 𝑅  Cn  𝑇 )  ∣  ( ℎ  “  𝑘 )  ⊆  𝑣 } ) ) | 
						
							| 36 |  | eqid | ⊢ ( 𝑔  ∈  ( 𝑆  Cn  𝑇 )  ↦  ( 𝑔  ∘  𝐹 ) )  =  ( 𝑔  ∈  ( 𝑆  Cn  𝑇 )  ↦  ( 𝑔  ∘  𝐹 ) ) | 
						
							| 37 | 36 | mptpreima | ⊢ ( ◡ ( 𝑔  ∈  ( 𝑆  Cn  𝑇 )  ↦  ( 𝑔  ∘  𝐹 ) )  “  { ℎ  ∈  ( 𝑅  Cn  𝑇 )  ∣  ( ℎ  “  𝑘 )  ⊆  𝑣 } )  =  { 𝑔  ∈  ( 𝑆  Cn  𝑇 )  ∣  ( 𝑔  ∘  𝐹 )  ∈  { ℎ  ∈  ( 𝑅  Cn  𝑇 )  ∣  ( ℎ  “  𝑘 )  ⊆  𝑣 } } | 
						
							| 38 | 35 37 | eqtrdi | ⊢ ( 𝑥  =  { ℎ  ∈  ( 𝑅  Cn  𝑇 )  ∣  ( ℎ  “  𝑘 )  ⊆  𝑣 }  →  ( ◡ ( 𝑔  ∈  ( 𝑆  Cn  𝑇 )  ↦  ( 𝑔  ∘  𝐹 ) )  “  𝑥 )  =  { 𝑔  ∈  ( 𝑆  Cn  𝑇 )  ∣  ( 𝑔  ∘  𝐹 )  ∈  { ℎ  ∈  ( 𝑅  Cn  𝑇 )  ∣  ( ℎ  “  𝑘 )  ⊆  𝑣 } } ) | 
						
							| 39 | 38 | eleq1d | ⊢ ( 𝑥  =  { ℎ  ∈  ( 𝑅  Cn  𝑇 )  ∣  ( ℎ  “  𝑘 )  ⊆  𝑣 }  →  ( ( ◡ ( 𝑔  ∈  ( 𝑆  Cn  𝑇 )  ↦  ( 𝑔  ∘  𝐹 ) )  “  𝑥 )  ∈  ( 𝑇  ↑ko  𝑆 )  ↔  { 𝑔  ∈  ( 𝑆  Cn  𝑇 )  ∣  ( 𝑔  ∘  𝐹 )  ∈  { ℎ  ∈  ( 𝑅  Cn  𝑇 )  ∣  ( ℎ  “  𝑘 )  ⊆  𝑣 } }  ∈  ( 𝑇  ↑ko  𝑆 ) ) ) | 
						
							| 40 | 34 39 | syl5ibrcom | ⊢ ( ( ( 𝜑  ∧  ( 𝑘  ∈  𝒫  ∪  𝑅  ∧  𝑣  ∈  𝑇 ) )  ∧  ( 𝑅  ↾t  𝑘 )  ∈  Comp )  →  ( 𝑥  =  { ℎ  ∈  ( 𝑅  Cn  𝑇 )  ∣  ( ℎ  “  𝑘 )  ⊆  𝑣 }  →  ( ◡ ( 𝑔  ∈  ( 𝑆  Cn  𝑇 )  ↦  ( 𝑔  ∘  𝐹 ) )  “  𝑥 )  ∈  ( 𝑇  ↑ko  𝑆 ) ) ) | 
						
							| 41 | 40 | expimpd | ⊢ ( ( 𝜑  ∧  ( 𝑘  ∈  𝒫  ∪  𝑅  ∧  𝑣  ∈  𝑇 ) )  →  ( ( ( 𝑅  ↾t  𝑘 )  ∈  Comp  ∧  𝑥  =  { ℎ  ∈  ( 𝑅  Cn  𝑇 )  ∣  ( ℎ  “  𝑘 )  ⊆  𝑣 } )  →  ( ◡ ( 𝑔  ∈  ( 𝑆  Cn  𝑇 )  ↦  ( 𝑔  ∘  𝐹 ) )  “  𝑥 )  ∈  ( 𝑇  ↑ko  𝑆 ) ) ) | 
						
							| 42 | 41 | rexlimdvva | ⊢ ( 𝜑  →  ( ∃ 𝑘  ∈  𝒫  ∪  𝑅 ∃ 𝑣  ∈  𝑇 ( ( 𝑅  ↾t  𝑘 )  ∈  Comp  ∧  𝑥  =  { ℎ  ∈  ( 𝑅  Cn  𝑇 )  ∣  ( ℎ  “  𝑘 )  ⊆  𝑣 } )  →  ( ◡ ( 𝑔  ∈  ( 𝑆  Cn  𝑇 )  ↦  ( 𝑔  ∘  𝐹 ) )  “  𝑥 )  ∈  ( 𝑇  ↑ko  𝑆 ) ) ) | 
						
							| 43 | 10 42 | biimtrid | ⊢ ( 𝜑  →  ( 𝑥  ∈  ran  ( 𝑘  ∈  { 𝑦  ∈  𝒫  ∪  𝑅  ∣  ( 𝑅  ↾t  𝑦 )  ∈  Comp } ,  𝑣  ∈  𝑇  ↦  { ℎ  ∈  ( 𝑅  Cn  𝑇 )  ∣  ( ℎ  “  𝑘 )  ⊆  𝑣 } )  →  ( ◡ ( 𝑔  ∈  ( 𝑆  Cn  𝑇 )  ↦  ( 𝑔  ∘  𝐹 ) )  “  𝑥 )  ∈  ( 𝑇  ↑ko  𝑆 ) ) ) | 
						
							| 44 | 43 | ralrimiv | ⊢ ( 𝜑  →  ∀ 𝑥  ∈  ran  ( 𝑘  ∈  { 𝑦  ∈  𝒫  ∪  𝑅  ∣  ( 𝑅  ↾t  𝑦 )  ∈  Comp } ,  𝑣  ∈  𝑇  ↦  { ℎ  ∈  ( 𝑅  Cn  𝑇 )  ∣  ( ℎ  “  𝑘 )  ⊆  𝑣 } ) ( ◡ ( 𝑔  ∈  ( 𝑆  Cn  𝑇 )  ↦  ( 𝑔  ∘  𝐹 ) )  “  𝑥 )  ∈  ( 𝑇  ↑ko  𝑆 ) ) | 
						
							| 45 |  | eqid | ⊢ ( 𝑇  ↑ko  𝑆 )  =  ( 𝑇  ↑ko  𝑆 ) | 
						
							| 46 | 45 | xkotopon | ⊢ ( ( 𝑆  ∈  Top  ∧  𝑇  ∈  Top )  →  ( 𝑇  ↑ko  𝑆 )  ∈  ( TopOn ‘ ( 𝑆  Cn  𝑇 ) ) ) | 
						
							| 47 | 22 1 46 | syl2anc | ⊢ ( 𝜑  →  ( 𝑇  ↑ko  𝑆 )  ∈  ( TopOn ‘ ( 𝑆  Cn  𝑇 ) ) ) | 
						
							| 48 |  | ovex | ⊢ ( 𝑅  Cn  𝑇 )  ∈  V | 
						
							| 49 | 48 | pwex | ⊢ 𝒫  ( 𝑅  Cn  𝑇 )  ∈  V | 
						
							| 50 | 6 7 8 | xkotf | ⊢ ( 𝑘  ∈  { 𝑦  ∈  𝒫  ∪  𝑅  ∣  ( 𝑅  ↾t  𝑦 )  ∈  Comp } ,  𝑣  ∈  𝑇  ↦  { ℎ  ∈  ( 𝑅  Cn  𝑇 )  ∣  ( ℎ  “  𝑘 )  ⊆  𝑣 } ) : ( { 𝑦  ∈  𝒫  ∪  𝑅  ∣  ( 𝑅  ↾t  𝑦 )  ∈  Comp }  ×  𝑇 ) ⟶ 𝒫  ( 𝑅  Cn  𝑇 ) | 
						
							| 51 |  | frn | ⊢ ( ( 𝑘  ∈  { 𝑦  ∈  𝒫  ∪  𝑅  ∣  ( 𝑅  ↾t  𝑦 )  ∈  Comp } ,  𝑣  ∈  𝑇  ↦  { ℎ  ∈  ( 𝑅  Cn  𝑇 )  ∣  ( ℎ  “  𝑘 )  ⊆  𝑣 } ) : ( { 𝑦  ∈  𝒫  ∪  𝑅  ∣  ( 𝑅  ↾t  𝑦 )  ∈  Comp }  ×  𝑇 ) ⟶ 𝒫  ( 𝑅  Cn  𝑇 )  →  ran  ( 𝑘  ∈  { 𝑦  ∈  𝒫  ∪  𝑅  ∣  ( 𝑅  ↾t  𝑦 )  ∈  Comp } ,  𝑣  ∈  𝑇  ↦  { ℎ  ∈  ( 𝑅  Cn  𝑇 )  ∣  ( ℎ  “  𝑘 )  ⊆  𝑣 } )  ⊆  𝒫  ( 𝑅  Cn  𝑇 ) ) | 
						
							| 52 | 50 51 | ax-mp | ⊢ ran  ( 𝑘  ∈  { 𝑦  ∈  𝒫  ∪  𝑅  ∣  ( 𝑅  ↾t  𝑦 )  ∈  Comp } ,  𝑣  ∈  𝑇  ↦  { ℎ  ∈  ( 𝑅  Cn  𝑇 )  ∣  ( ℎ  “  𝑘 )  ⊆  𝑣 } )  ⊆  𝒫  ( 𝑅  Cn  𝑇 ) | 
						
							| 53 | 49 52 | ssexi | ⊢ ran  ( 𝑘  ∈  { 𝑦  ∈  𝒫  ∪  𝑅  ∣  ( 𝑅  ↾t  𝑦 )  ∈  Comp } ,  𝑣  ∈  𝑇  ↦  { ℎ  ∈  ( 𝑅  Cn  𝑇 )  ∣  ( ℎ  “  𝑘 )  ⊆  𝑣 } )  ∈  V | 
						
							| 54 | 53 | a1i | ⊢ ( 𝜑  →  ran  ( 𝑘  ∈  { 𝑦  ∈  𝒫  ∪  𝑅  ∣  ( 𝑅  ↾t  𝑦 )  ∈  Comp } ,  𝑣  ∈  𝑇  ↦  { ℎ  ∈  ( 𝑅  Cn  𝑇 )  ∣  ( ℎ  “  𝑘 )  ⊆  𝑣 } )  ∈  V ) | 
						
							| 55 |  | cntop1 | ⊢ ( 𝐹  ∈  ( 𝑅  Cn  𝑆 )  →  𝑅  ∈  Top ) | 
						
							| 56 | 2 55 | syl | ⊢ ( 𝜑  →  𝑅  ∈  Top ) | 
						
							| 57 | 6 7 8 | xkoval | ⊢ ( ( 𝑅  ∈  Top  ∧  𝑇  ∈  Top )  →  ( 𝑇  ↑ko  𝑅 )  =  ( topGen ‘ ( fi ‘ ran  ( 𝑘  ∈  { 𝑦  ∈  𝒫  ∪  𝑅  ∣  ( 𝑅  ↾t  𝑦 )  ∈  Comp } ,  𝑣  ∈  𝑇  ↦  { ℎ  ∈  ( 𝑅  Cn  𝑇 )  ∣  ( ℎ  “  𝑘 )  ⊆  𝑣 } ) ) ) ) | 
						
							| 58 | 56 1 57 | syl2anc | ⊢ ( 𝜑  →  ( 𝑇  ↑ko  𝑅 )  =  ( topGen ‘ ( fi ‘ ran  ( 𝑘  ∈  { 𝑦  ∈  𝒫  ∪  𝑅  ∣  ( 𝑅  ↾t  𝑦 )  ∈  Comp } ,  𝑣  ∈  𝑇  ↦  { ℎ  ∈  ( 𝑅  Cn  𝑇 )  ∣  ( ℎ  “  𝑘 )  ⊆  𝑣 } ) ) ) ) | 
						
							| 59 |  | eqid | ⊢ ( 𝑇  ↑ko  𝑅 )  =  ( 𝑇  ↑ko  𝑅 ) | 
						
							| 60 | 59 | xkotopon | ⊢ ( ( 𝑅  ∈  Top  ∧  𝑇  ∈  Top )  →  ( 𝑇  ↑ko  𝑅 )  ∈  ( TopOn ‘ ( 𝑅  Cn  𝑇 ) ) ) | 
						
							| 61 | 56 1 60 | syl2anc | ⊢ ( 𝜑  →  ( 𝑇  ↑ko  𝑅 )  ∈  ( TopOn ‘ ( 𝑅  Cn  𝑇 ) ) ) | 
						
							| 62 | 47 54 58 61 | subbascn | ⊢ ( 𝜑  →  ( ( 𝑔  ∈  ( 𝑆  Cn  𝑇 )  ↦  ( 𝑔  ∘  𝐹 ) )  ∈  ( ( 𝑇  ↑ko  𝑆 )  Cn  ( 𝑇  ↑ko  𝑅 ) )  ↔  ( ( 𝑔  ∈  ( 𝑆  Cn  𝑇 )  ↦  ( 𝑔  ∘  𝐹 ) ) : ( 𝑆  Cn  𝑇 ) ⟶ ( 𝑅  Cn  𝑇 )  ∧  ∀ 𝑥  ∈  ran  ( 𝑘  ∈  { 𝑦  ∈  𝒫  ∪  𝑅  ∣  ( 𝑅  ↾t  𝑦 )  ∈  Comp } ,  𝑣  ∈  𝑇  ↦  { ℎ  ∈  ( 𝑅  Cn  𝑇 )  ∣  ( ℎ  “  𝑘 )  ⊆  𝑣 } ) ( ◡ ( 𝑔  ∈  ( 𝑆  Cn  𝑇 )  ↦  ( 𝑔  ∘  𝐹 ) )  “  𝑥 )  ∈  ( 𝑇  ↑ko  𝑆 ) ) ) ) | 
						
							| 63 | 5 44 62 | mpbir2and | ⊢ ( 𝜑  →  ( 𝑔  ∈  ( 𝑆  Cn  𝑇 )  ↦  ( 𝑔  ∘  𝐹 ) )  ∈  ( ( 𝑇  ↑ko  𝑆 )  Cn  ( 𝑇  ↑ko  𝑅 ) ) ) |