| Step | Hyp | Ref | Expression | 
						
							| 1 |  | xkoco2cn.r | ⊢ ( 𝜑  →  𝑅  ∈  Top ) | 
						
							| 2 |  | xkoco2cn.f | ⊢ ( 𝜑  →  𝐹  ∈  ( 𝑆  Cn  𝑇 ) ) | 
						
							| 3 |  | simpr | ⊢ ( ( 𝜑  ∧  𝑔  ∈  ( 𝑅  Cn  𝑆 ) )  →  𝑔  ∈  ( 𝑅  Cn  𝑆 ) ) | 
						
							| 4 | 2 | adantr | ⊢ ( ( 𝜑  ∧  𝑔  ∈  ( 𝑅  Cn  𝑆 ) )  →  𝐹  ∈  ( 𝑆  Cn  𝑇 ) ) | 
						
							| 5 |  | cnco | ⊢ ( ( 𝑔  ∈  ( 𝑅  Cn  𝑆 )  ∧  𝐹  ∈  ( 𝑆  Cn  𝑇 ) )  →  ( 𝐹  ∘  𝑔 )  ∈  ( 𝑅  Cn  𝑇 ) ) | 
						
							| 6 | 3 4 5 | syl2anc | ⊢ ( ( 𝜑  ∧  𝑔  ∈  ( 𝑅  Cn  𝑆 ) )  →  ( 𝐹  ∘  𝑔 )  ∈  ( 𝑅  Cn  𝑇 ) ) | 
						
							| 7 | 6 | fmpttd | ⊢ ( 𝜑  →  ( 𝑔  ∈  ( 𝑅  Cn  𝑆 )  ↦  ( 𝐹  ∘  𝑔 ) ) : ( 𝑅  Cn  𝑆 ) ⟶ ( 𝑅  Cn  𝑇 ) ) | 
						
							| 8 |  | eqid | ⊢ ∪  𝑅  =  ∪  𝑅 | 
						
							| 9 |  | eqid | ⊢ { 𝑦  ∈  𝒫  ∪  𝑅  ∣  ( 𝑅  ↾t  𝑦 )  ∈  Comp }  =  { 𝑦  ∈  𝒫  ∪  𝑅  ∣  ( 𝑅  ↾t  𝑦 )  ∈  Comp } | 
						
							| 10 |  | eqid | ⊢ ( 𝑘  ∈  { 𝑦  ∈  𝒫  ∪  𝑅  ∣  ( 𝑅  ↾t  𝑦 )  ∈  Comp } ,  𝑣  ∈  𝑇  ↦  { ℎ  ∈  ( 𝑅  Cn  𝑇 )  ∣  ( ℎ  “  𝑘 )  ⊆  𝑣 } )  =  ( 𝑘  ∈  { 𝑦  ∈  𝒫  ∪  𝑅  ∣  ( 𝑅  ↾t  𝑦 )  ∈  Comp } ,  𝑣  ∈  𝑇  ↦  { ℎ  ∈  ( 𝑅  Cn  𝑇 )  ∣  ( ℎ  “  𝑘 )  ⊆  𝑣 } ) | 
						
							| 11 | 8 9 10 | xkobval | ⊢ ran  ( 𝑘  ∈  { 𝑦  ∈  𝒫  ∪  𝑅  ∣  ( 𝑅  ↾t  𝑦 )  ∈  Comp } ,  𝑣  ∈  𝑇  ↦  { ℎ  ∈  ( 𝑅  Cn  𝑇 )  ∣  ( ℎ  “  𝑘 )  ⊆  𝑣 } )  =  { 𝑥  ∣  ∃ 𝑘  ∈  𝒫  ∪  𝑅 ∃ 𝑣  ∈  𝑇 ( ( 𝑅  ↾t  𝑘 )  ∈  Comp  ∧  𝑥  =  { ℎ  ∈  ( 𝑅  Cn  𝑇 )  ∣  ( ℎ  “  𝑘 )  ⊆  𝑣 } ) } | 
						
							| 12 | 11 | eqabri | ⊢ ( 𝑥  ∈  ran  ( 𝑘  ∈  { 𝑦  ∈  𝒫  ∪  𝑅  ∣  ( 𝑅  ↾t  𝑦 )  ∈  Comp } ,  𝑣  ∈  𝑇  ↦  { ℎ  ∈  ( 𝑅  Cn  𝑇 )  ∣  ( ℎ  “  𝑘 )  ⊆  𝑣 } )  ↔  ∃ 𝑘  ∈  𝒫  ∪  𝑅 ∃ 𝑣  ∈  𝑇 ( ( 𝑅  ↾t  𝑘 )  ∈  Comp  ∧  𝑥  =  { ℎ  ∈  ( 𝑅  Cn  𝑇 )  ∣  ( ℎ  “  𝑘 )  ⊆  𝑣 } ) ) | 
						
							| 13 |  | simpr | ⊢ ( ( ( ( 𝜑  ∧  ( 𝑘  ∈  𝒫  ∪  𝑅  ∧  𝑣  ∈  𝑇 ) )  ∧  ( 𝑅  ↾t  𝑘 )  ∈  Comp )  ∧  𝑔  ∈  ( 𝑅  Cn  𝑆 ) )  →  𝑔  ∈  ( 𝑅  Cn  𝑆 ) ) | 
						
							| 14 | 2 | ad3antrrr | ⊢ ( ( ( ( 𝜑  ∧  ( 𝑘  ∈  𝒫  ∪  𝑅  ∧  𝑣  ∈  𝑇 ) )  ∧  ( 𝑅  ↾t  𝑘 )  ∈  Comp )  ∧  𝑔  ∈  ( 𝑅  Cn  𝑆 ) )  →  𝐹  ∈  ( 𝑆  Cn  𝑇 ) ) | 
						
							| 15 | 13 14 5 | syl2anc | ⊢ ( ( ( ( 𝜑  ∧  ( 𝑘  ∈  𝒫  ∪  𝑅  ∧  𝑣  ∈  𝑇 ) )  ∧  ( 𝑅  ↾t  𝑘 )  ∈  Comp )  ∧  𝑔  ∈  ( 𝑅  Cn  𝑆 ) )  →  ( 𝐹  ∘  𝑔 )  ∈  ( 𝑅  Cn  𝑇 ) ) | 
						
							| 16 |  | imaeq1 | ⊢ ( ℎ  =  ( 𝐹  ∘  𝑔 )  →  ( ℎ  “  𝑘 )  =  ( ( 𝐹  ∘  𝑔 )  “  𝑘 ) ) | 
						
							| 17 |  | imaco | ⊢ ( ( 𝐹  ∘  𝑔 )  “  𝑘 )  =  ( 𝐹  “  ( 𝑔  “  𝑘 ) ) | 
						
							| 18 | 16 17 | eqtrdi | ⊢ ( ℎ  =  ( 𝐹  ∘  𝑔 )  →  ( ℎ  “  𝑘 )  =  ( 𝐹  “  ( 𝑔  “  𝑘 ) ) ) | 
						
							| 19 | 18 | sseq1d | ⊢ ( ℎ  =  ( 𝐹  ∘  𝑔 )  →  ( ( ℎ  “  𝑘 )  ⊆  𝑣  ↔  ( 𝐹  “  ( 𝑔  “  𝑘 ) )  ⊆  𝑣 ) ) | 
						
							| 20 | 19 | elrab3 | ⊢ ( ( 𝐹  ∘  𝑔 )  ∈  ( 𝑅  Cn  𝑇 )  →  ( ( 𝐹  ∘  𝑔 )  ∈  { ℎ  ∈  ( 𝑅  Cn  𝑇 )  ∣  ( ℎ  “  𝑘 )  ⊆  𝑣 }  ↔  ( 𝐹  “  ( 𝑔  “  𝑘 ) )  ⊆  𝑣 ) ) | 
						
							| 21 | 15 20 | syl | ⊢ ( ( ( ( 𝜑  ∧  ( 𝑘  ∈  𝒫  ∪  𝑅  ∧  𝑣  ∈  𝑇 ) )  ∧  ( 𝑅  ↾t  𝑘 )  ∈  Comp )  ∧  𝑔  ∈  ( 𝑅  Cn  𝑆 ) )  →  ( ( 𝐹  ∘  𝑔 )  ∈  { ℎ  ∈  ( 𝑅  Cn  𝑇 )  ∣  ( ℎ  “  𝑘 )  ⊆  𝑣 }  ↔  ( 𝐹  “  ( 𝑔  “  𝑘 ) )  ⊆  𝑣 ) ) | 
						
							| 22 |  | eqid | ⊢ ∪  𝑆  =  ∪  𝑆 | 
						
							| 23 |  | eqid | ⊢ ∪  𝑇  =  ∪  𝑇 | 
						
							| 24 | 22 23 | cnf | ⊢ ( 𝐹  ∈  ( 𝑆  Cn  𝑇 )  →  𝐹 : ∪  𝑆 ⟶ ∪  𝑇 ) | 
						
							| 25 | 2 24 | syl | ⊢ ( 𝜑  →  𝐹 : ∪  𝑆 ⟶ ∪  𝑇 ) | 
						
							| 26 | 25 | ad3antrrr | ⊢ ( ( ( ( 𝜑  ∧  ( 𝑘  ∈  𝒫  ∪  𝑅  ∧  𝑣  ∈  𝑇 ) )  ∧  ( 𝑅  ↾t  𝑘 )  ∈  Comp )  ∧  𝑔  ∈  ( 𝑅  Cn  𝑆 ) )  →  𝐹 : ∪  𝑆 ⟶ ∪  𝑇 ) | 
						
							| 27 | 26 | ffund | ⊢ ( ( ( ( 𝜑  ∧  ( 𝑘  ∈  𝒫  ∪  𝑅  ∧  𝑣  ∈  𝑇 ) )  ∧  ( 𝑅  ↾t  𝑘 )  ∈  Comp )  ∧  𝑔  ∈  ( 𝑅  Cn  𝑆 ) )  →  Fun  𝐹 ) | 
						
							| 28 |  | imassrn | ⊢ ( 𝑔  “  𝑘 )  ⊆  ran  𝑔 | 
						
							| 29 | 8 22 | cnf | ⊢ ( 𝑔  ∈  ( 𝑅  Cn  𝑆 )  →  𝑔 : ∪  𝑅 ⟶ ∪  𝑆 ) | 
						
							| 30 | 13 29 | syl | ⊢ ( ( ( ( 𝜑  ∧  ( 𝑘  ∈  𝒫  ∪  𝑅  ∧  𝑣  ∈  𝑇 ) )  ∧  ( 𝑅  ↾t  𝑘 )  ∈  Comp )  ∧  𝑔  ∈  ( 𝑅  Cn  𝑆 ) )  →  𝑔 : ∪  𝑅 ⟶ ∪  𝑆 ) | 
						
							| 31 | 30 | frnd | ⊢ ( ( ( ( 𝜑  ∧  ( 𝑘  ∈  𝒫  ∪  𝑅  ∧  𝑣  ∈  𝑇 ) )  ∧  ( 𝑅  ↾t  𝑘 )  ∈  Comp )  ∧  𝑔  ∈  ( 𝑅  Cn  𝑆 ) )  →  ran  𝑔  ⊆  ∪  𝑆 ) | 
						
							| 32 | 28 31 | sstrid | ⊢ ( ( ( ( 𝜑  ∧  ( 𝑘  ∈  𝒫  ∪  𝑅  ∧  𝑣  ∈  𝑇 ) )  ∧  ( 𝑅  ↾t  𝑘 )  ∈  Comp )  ∧  𝑔  ∈  ( 𝑅  Cn  𝑆 ) )  →  ( 𝑔  “  𝑘 )  ⊆  ∪  𝑆 ) | 
						
							| 33 | 26 | fdmd | ⊢ ( ( ( ( 𝜑  ∧  ( 𝑘  ∈  𝒫  ∪  𝑅  ∧  𝑣  ∈  𝑇 ) )  ∧  ( 𝑅  ↾t  𝑘 )  ∈  Comp )  ∧  𝑔  ∈  ( 𝑅  Cn  𝑆 ) )  →  dom  𝐹  =  ∪  𝑆 ) | 
						
							| 34 | 32 33 | sseqtrrd | ⊢ ( ( ( ( 𝜑  ∧  ( 𝑘  ∈  𝒫  ∪  𝑅  ∧  𝑣  ∈  𝑇 ) )  ∧  ( 𝑅  ↾t  𝑘 )  ∈  Comp )  ∧  𝑔  ∈  ( 𝑅  Cn  𝑆 ) )  →  ( 𝑔  “  𝑘 )  ⊆  dom  𝐹 ) | 
						
							| 35 |  | funimass3 | ⊢ ( ( Fun  𝐹  ∧  ( 𝑔  “  𝑘 )  ⊆  dom  𝐹 )  →  ( ( 𝐹  “  ( 𝑔  “  𝑘 ) )  ⊆  𝑣  ↔  ( 𝑔  “  𝑘 )  ⊆  ( ◡ 𝐹  “  𝑣 ) ) ) | 
						
							| 36 | 27 34 35 | syl2anc | ⊢ ( ( ( ( 𝜑  ∧  ( 𝑘  ∈  𝒫  ∪  𝑅  ∧  𝑣  ∈  𝑇 ) )  ∧  ( 𝑅  ↾t  𝑘 )  ∈  Comp )  ∧  𝑔  ∈  ( 𝑅  Cn  𝑆 ) )  →  ( ( 𝐹  “  ( 𝑔  “  𝑘 ) )  ⊆  𝑣  ↔  ( 𝑔  “  𝑘 )  ⊆  ( ◡ 𝐹  “  𝑣 ) ) ) | 
						
							| 37 | 21 36 | bitrd | ⊢ ( ( ( ( 𝜑  ∧  ( 𝑘  ∈  𝒫  ∪  𝑅  ∧  𝑣  ∈  𝑇 ) )  ∧  ( 𝑅  ↾t  𝑘 )  ∈  Comp )  ∧  𝑔  ∈  ( 𝑅  Cn  𝑆 ) )  →  ( ( 𝐹  ∘  𝑔 )  ∈  { ℎ  ∈  ( 𝑅  Cn  𝑇 )  ∣  ( ℎ  “  𝑘 )  ⊆  𝑣 }  ↔  ( 𝑔  “  𝑘 )  ⊆  ( ◡ 𝐹  “  𝑣 ) ) ) | 
						
							| 38 | 37 | rabbidva | ⊢ ( ( ( 𝜑  ∧  ( 𝑘  ∈  𝒫  ∪  𝑅  ∧  𝑣  ∈  𝑇 ) )  ∧  ( 𝑅  ↾t  𝑘 )  ∈  Comp )  →  { 𝑔  ∈  ( 𝑅  Cn  𝑆 )  ∣  ( 𝐹  ∘  𝑔 )  ∈  { ℎ  ∈  ( 𝑅  Cn  𝑇 )  ∣  ( ℎ  “  𝑘 )  ⊆  𝑣 } }  =  { 𝑔  ∈  ( 𝑅  Cn  𝑆 )  ∣  ( 𝑔  “  𝑘 )  ⊆  ( ◡ 𝐹  “  𝑣 ) } ) | 
						
							| 39 | 1 | ad2antrr | ⊢ ( ( ( 𝜑  ∧  ( 𝑘  ∈  𝒫  ∪  𝑅  ∧  𝑣  ∈  𝑇 ) )  ∧  ( 𝑅  ↾t  𝑘 )  ∈  Comp )  →  𝑅  ∈  Top ) | 
						
							| 40 |  | cntop1 | ⊢ ( 𝐹  ∈  ( 𝑆  Cn  𝑇 )  →  𝑆  ∈  Top ) | 
						
							| 41 | 2 40 | syl | ⊢ ( 𝜑  →  𝑆  ∈  Top ) | 
						
							| 42 | 41 | ad2antrr | ⊢ ( ( ( 𝜑  ∧  ( 𝑘  ∈  𝒫  ∪  𝑅  ∧  𝑣  ∈  𝑇 ) )  ∧  ( 𝑅  ↾t  𝑘 )  ∈  Comp )  →  𝑆  ∈  Top ) | 
						
							| 43 |  | simplrl | ⊢ ( ( ( 𝜑  ∧  ( 𝑘  ∈  𝒫  ∪  𝑅  ∧  𝑣  ∈  𝑇 ) )  ∧  ( 𝑅  ↾t  𝑘 )  ∈  Comp )  →  𝑘  ∈  𝒫  ∪  𝑅 ) | 
						
							| 44 | 43 | elpwid | ⊢ ( ( ( 𝜑  ∧  ( 𝑘  ∈  𝒫  ∪  𝑅  ∧  𝑣  ∈  𝑇 ) )  ∧  ( 𝑅  ↾t  𝑘 )  ∈  Comp )  →  𝑘  ⊆  ∪  𝑅 ) | 
						
							| 45 |  | simpr | ⊢ ( ( ( 𝜑  ∧  ( 𝑘  ∈  𝒫  ∪  𝑅  ∧  𝑣  ∈  𝑇 ) )  ∧  ( 𝑅  ↾t  𝑘 )  ∈  Comp )  →  ( 𝑅  ↾t  𝑘 )  ∈  Comp ) | 
						
							| 46 | 2 | ad2antrr | ⊢ ( ( ( 𝜑  ∧  ( 𝑘  ∈  𝒫  ∪  𝑅  ∧  𝑣  ∈  𝑇 ) )  ∧  ( 𝑅  ↾t  𝑘 )  ∈  Comp )  →  𝐹  ∈  ( 𝑆  Cn  𝑇 ) ) | 
						
							| 47 |  | simplrr | ⊢ ( ( ( 𝜑  ∧  ( 𝑘  ∈  𝒫  ∪  𝑅  ∧  𝑣  ∈  𝑇 ) )  ∧  ( 𝑅  ↾t  𝑘 )  ∈  Comp )  →  𝑣  ∈  𝑇 ) | 
						
							| 48 |  | cnima | ⊢ ( ( 𝐹  ∈  ( 𝑆  Cn  𝑇 )  ∧  𝑣  ∈  𝑇 )  →  ( ◡ 𝐹  “  𝑣 )  ∈  𝑆 ) | 
						
							| 49 | 46 47 48 | syl2anc | ⊢ ( ( ( 𝜑  ∧  ( 𝑘  ∈  𝒫  ∪  𝑅  ∧  𝑣  ∈  𝑇 ) )  ∧  ( 𝑅  ↾t  𝑘 )  ∈  Comp )  →  ( ◡ 𝐹  “  𝑣 )  ∈  𝑆 ) | 
						
							| 50 | 8 39 42 44 45 49 | xkoopn | ⊢ ( ( ( 𝜑  ∧  ( 𝑘  ∈  𝒫  ∪  𝑅  ∧  𝑣  ∈  𝑇 ) )  ∧  ( 𝑅  ↾t  𝑘 )  ∈  Comp )  →  { 𝑔  ∈  ( 𝑅  Cn  𝑆 )  ∣  ( 𝑔  “  𝑘 )  ⊆  ( ◡ 𝐹  “  𝑣 ) }  ∈  ( 𝑆  ↑ko  𝑅 ) ) | 
						
							| 51 | 38 50 | eqeltrd | ⊢ ( ( ( 𝜑  ∧  ( 𝑘  ∈  𝒫  ∪  𝑅  ∧  𝑣  ∈  𝑇 ) )  ∧  ( 𝑅  ↾t  𝑘 )  ∈  Comp )  →  { 𝑔  ∈  ( 𝑅  Cn  𝑆 )  ∣  ( 𝐹  ∘  𝑔 )  ∈  { ℎ  ∈  ( 𝑅  Cn  𝑇 )  ∣  ( ℎ  “  𝑘 )  ⊆  𝑣 } }  ∈  ( 𝑆  ↑ko  𝑅 ) ) | 
						
							| 52 |  | imaeq2 | ⊢ ( 𝑥  =  { ℎ  ∈  ( 𝑅  Cn  𝑇 )  ∣  ( ℎ  “  𝑘 )  ⊆  𝑣 }  →  ( ◡ ( 𝑔  ∈  ( 𝑅  Cn  𝑆 )  ↦  ( 𝐹  ∘  𝑔 ) )  “  𝑥 )  =  ( ◡ ( 𝑔  ∈  ( 𝑅  Cn  𝑆 )  ↦  ( 𝐹  ∘  𝑔 ) )  “  { ℎ  ∈  ( 𝑅  Cn  𝑇 )  ∣  ( ℎ  “  𝑘 )  ⊆  𝑣 } ) ) | 
						
							| 53 |  | eqid | ⊢ ( 𝑔  ∈  ( 𝑅  Cn  𝑆 )  ↦  ( 𝐹  ∘  𝑔 ) )  =  ( 𝑔  ∈  ( 𝑅  Cn  𝑆 )  ↦  ( 𝐹  ∘  𝑔 ) ) | 
						
							| 54 | 53 | mptpreima | ⊢ ( ◡ ( 𝑔  ∈  ( 𝑅  Cn  𝑆 )  ↦  ( 𝐹  ∘  𝑔 ) )  “  { ℎ  ∈  ( 𝑅  Cn  𝑇 )  ∣  ( ℎ  “  𝑘 )  ⊆  𝑣 } )  =  { 𝑔  ∈  ( 𝑅  Cn  𝑆 )  ∣  ( 𝐹  ∘  𝑔 )  ∈  { ℎ  ∈  ( 𝑅  Cn  𝑇 )  ∣  ( ℎ  “  𝑘 )  ⊆  𝑣 } } | 
						
							| 55 | 52 54 | eqtrdi | ⊢ ( 𝑥  =  { ℎ  ∈  ( 𝑅  Cn  𝑇 )  ∣  ( ℎ  “  𝑘 )  ⊆  𝑣 }  →  ( ◡ ( 𝑔  ∈  ( 𝑅  Cn  𝑆 )  ↦  ( 𝐹  ∘  𝑔 ) )  “  𝑥 )  =  { 𝑔  ∈  ( 𝑅  Cn  𝑆 )  ∣  ( 𝐹  ∘  𝑔 )  ∈  { ℎ  ∈  ( 𝑅  Cn  𝑇 )  ∣  ( ℎ  “  𝑘 )  ⊆  𝑣 } } ) | 
						
							| 56 | 55 | eleq1d | ⊢ ( 𝑥  =  { ℎ  ∈  ( 𝑅  Cn  𝑇 )  ∣  ( ℎ  “  𝑘 )  ⊆  𝑣 }  →  ( ( ◡ ( 𝑔  ∈  ( 𝑅  Cn  𝑆 )  ↦  ( 𝐹  ∘  𝑔 ) )  “  𝑥 )  ∈  ( 𝑆  ↑ko  𝑅 )  ↔  { 𝑔  ∈  ( 𝑅  Cn  𝑆 )  ∣  ( 𝐹  ∘  𝑔 )  ∈  { ℎ  ∈  ( 𝑅  Cn  𝑇 )  ∣  ( ℎ  “  𝑘 )  ⊆  𝑣 } }  ∈  ( 𝑆  ↑ko  𝑅 ) ) ) | 
						
							| 57 | 51 56 | syl5ibrcom | ⊢ ( ( ( 𝜑  ∧  ( 𝑘  ∈  𝒫  ∪  𝑅  ∧  𝑣  ∈  𝑇 ) )  ∧  ( 𝑅  ↾t  𝑘 )  ∈  Comp )  →  ( 𝑥  =  { ℎ  ∈  ( 𝑅  Cn  𝑇 )  ∣  ( ℎ  “  𝑘 )  ⊆  𝑣 }  →  ( ◡ ( 𝑔  ∈  ( 𝑅  Cn  𝑆 )  ↦  ( 𝐹  ∘  𝑔 ) )  “  𝑥 )  ∈  ( 𝑆  ↑ko  𝑅 ) ) ) | 
						
							| 58 | 57 | expimpd | ⊢ ( ( 𝜑  ∧  ( 𝑘  ∈  𝒫  ∪  𝑅  ∧  𝑣  ∈  𝑇 ) )  →  ( ( ( 𝑅  ↾t  𝑘 )  ∈  Comp  ∧  𝑥  =  { ℎ  ∈  ( 𝑅  Cn  𝑇 )  ∣  ( ℎ  “  𝑘 )  ⊆  𝑣 } )  →  ( ◡ ( 𝑔  ∈  ( 𝑅  Cn  𝑆 )  ↦  ( 𝐹  ∘  𝑔 ) )  “  𝑥 )  ∈  ( 𝑆  ↑ko  𝑅 ) ) ) | 
						
							| 59 | 58 | rexlimdvva | ⊢ ( 𝜑  →  ( ∃ 𝑘  ∈  𝒫  ∪  𝑅 ∃ 𝑣  ∈  𝑇 ( ( 𝑅  ↾t  𝑘 )  ∈  Comp  ∧  𝑥  =  { ℎ  ∈  ( 𝑅  Cn  𝑇 )  ∣  ( ℎ  “  𝑘 )  ⊆  𝑣 } )  →  ( ◡ ( 𝑔  ∈  ( 𝑅  Cn  𝑆 )  ↦  ( 𝐹  ∘  𝑔 ) )  “  𝑥 )  ∈  ( 𝑆  ↑ko  𝑅 ) ) ) | 
						
							| 60 | 12 59 | biimtrid | ⊢ ( 𝜑  →  ( 𝑥  ∈  ran  ( 𝑘  ∈  { 𝑦  ∈  𝒫  ∪  𝑅  ∣  ( 𝑅  ↾t  𝑦 )  ∈  Comp } ,  𝑣  ∈  𝑇  ↦  { ℎ  ∈  ( 𝑅  Cn  𝑇 )  ∣  ( ℎ  “  𝑘 )  ⊆  𝑣 } )  →  ( ◡ ( 𝑔  ∈  ( 𝑅  Cn  𝑆 )  ↦  ( 𝐹  ∘  𝑔 ) )  “  𝑥 )  ∈  ( 𝑆  ↑ko  𝑅 ) ) ) | 
						
							| 61 | 60 | ralrimiv | ⊢ ( 𝜑  →  ∀ 𝑥  ∈  ran  ( 𝑘  ∈  { 𝑦  ∈  𝒫  ∪  𝑅  ∣  ( 𝑅  ↾t  𝑦 )  ∈  Comp } ,  𝑣  ∈  𝑇  ↦  { ℎ  ∈  ( 𝑅  Cn  𝑇 )  ∣  ( ℎ  “  𝑘 )  ⊆  𝑣 } ) ( ◡ ( 𝑔  ∈  ( 𝑅  Cn  𝑆 )  ↦  ( 𝐹  ∘  𝑔 ) )  “  𝑥 )  ∈  ( 𝑆  ↑ko  𝑅 ) ) | 
						
							| 62 |  | eqid | ⊢ ( 𝑆  ↑ko  𝑅 )  =  ( 𝑆  ↑ko  𝑅 ) | 
						
							| 63 | 62 | xkotopon | ⊢ ( ( 𝑅  ∈  Top  ∧  𝑆  ∈  Top )  →  ( 𝑆  ↑ko  𝑅 )  ∈  ( TopOn ‘ ( 𝑅  Cn  𝑆 ) ) ) | 
						
							| 64 | 1 41 63 | syl2anc | ⊢ ( 𝜑  →  ( 𝑆  ↑ko  𝑅 )  ∈  ( TopOn ‘ ( 𝑅  Cn  𝑆 ) ) ) | 
						
							| 65 |  | ovex | ⊢ ( 𝑅  Cn  𝑇 )  ∈  V | 
						
							| 66 | 65 | pwex | ⊢ 𝒫  ( 𝑅  Cn  𝑇 )  ∈  V | 
						
							| 67 | 8 9 10 | xkotf | ⊢ ( 𝑘  ∈  { 𝑦  ∈  𝒫  ∪  𝑅  ∣  ( 𝑅  ↾t  𝑦 )  ∈  Comp } ,  𝑣  ∈  𝑇  ↦  { ℎ  ∈  ( 𝑅  Cn  𝑇 )  ∣  ( ℎ  “  𝑘 )  ⊆  𝑣 } ) : ( { 𝑦  ∈  𝒫  ∪  𝑅  ∣  ( 𝑅  ↾t  𝑦 )  ∈  Comp }  ×  𝑇 ) ⟶ 𝒫  ( 𝑅  Cn  𝑇 ) | 
						
							| 68 |  | frn | ⊢ ( ( 𝑘  ∈  { 𝑦  ∈  𝒫  ∪  𝑅  ∣  ( 𝑅  ↾t  𝑦 )  ∈  Comp } ,  𝑣  ∈  𝑇  ↦  { ℎ  ∈  ( 𝑅  Cn  𝑇 )  ∣  ( ℎ  “  𝑘 )  ⊆  𝑣 } ) : ( { 𝑦  ∈  𝒫  ∪  𝑅  ∣  ( 𝑅  ↾t  𝑦 )  ∈  Comp }  ×  𝑇 ) ⟶ 𝒫  ( 𝑅  Cn  𝑇 )  →  ran  ( 𝑘  ∈  { 𝑦  ∈  𝒫  ∪  𝑅  ∣  ( 𝑅  ↾t  𝑦 )  ∈  Comp } ,  𝑣  ∈  𝑇  ↦  { ℎ  ∈  ( 𝑅  Cn  𝑇 )  ∣  ( ℎ  “  𝑘 )  ⊆  𝑣 } )  ⊆  𝒫  ( 𝑅  Cn  𝑇 ) ) | 
						
							| 69 | 67 68 | ax-mp | ⊢ ran  ( 𝑘  ∈  { 𝑦  ∈  𝒫  ∪  𝑅  ∣  ( 𝑅  ↾t  𝑦 )  ∈  Comp } ,  𝑣  ∈  𝑇  ↦  { ℎ  ∈  ( 𝑅  Cn  𝑇 )  ∣  ( ℎ  “  𝑘 )  ⊆  𝑣 } )  ⊆  𝒫  ( 𝑅  Cn  𝑇 ) | 
						
							| 70 | 66 69 | ssexi | ⊢ ran  ( 𝑘  ∈  { 𝑦  ∈  𝒫  ∪  𝑅  ∣  ( 𝑅  ↾t  𝑦 )  ∈  Comp } ,  𝑣  ∈  𝑇  ↦  { ℎ  ∈  ( 𝑅  Cn  𝑇 )  ∣  ( ℎ  “  𝑘 )  ⊆  𝑣 } )  ∈  V | 
						
							| 71 | 70 | a1i | ⊢ ( 𝜑  →  ran  ( 𝑘  ∈  { 𝑦  ∈  𝒫  ∪  𝑅  ∣  ( 𝑅  ↾t  𝑦 )  ∈  Comp } ,  𝑣  ∈  𝑇  ↦  { ℎ  ∈  ( 𝑅  Cn  𝑇 )  ∣  ( ℎ  “  𝑘 )  ⊆  𝑣 } )  ∈  V ) | 
						
							| 72 |  | cntop2 | ⊢ ( 𝐹  ∈  ( 𝑆  Cn  𝑇 )  →  𝑇  ∈  Top ) | 
						
							| 73 | 2 72 | syl | ⊢ ( 𝜑  →  𝑇  ∈  Top ) | 
						
							| 74 | 8 9 10 | xkoval | ⊢ ( ( 𝑅  ∈  Top  ∧  𝑇  ∈  Top )  →  ( 𝑇  ↑ko  𝑅 )  =  ( topGen ‘ ( fi ‘ ran  ( 𝑘  ∈  { 𝑦  ∈  𝒫  ∪  𝑅  ∣  ( 𝑅  ↾t  𝑦 )  ∈  Comp } ,  𝑣  ∈  𝑇  ↦  { ℎ  ∈  ( 𝑅  Cn  𝑇 )  ∣  ( ℎ  “  𝑘 )  ⊆  𝑣 } ) ) ) ) | 
						
							| 75 | 1 73 74 | syl2anc | ⊢ ( 𝜑  →  ( 𝑇  ↑ko  𝑅 )  =  ( topGen ‘ ( fi ‘ ran  ( 𝑘  ∈  { 𝑦  ∈  𝒫  ∪  𝑅  ∣  ( 𝑅  ↾t  𝑦 )  ∈  Comp } ,  𝑣  ∈  𝑇  ↦  { ℎ  ∈  ( 𝑅  Cn  𝑇 )  ∣  ( ℎ  “  𝑘 )  ⊆  𝑣 } ) ) ) ) | 
						
							| 76 |  | eqid | ⊢ ( 𝑇  ↑ko  𝑅 )  =  ( 𝑇  ↑ko  𝑅 ) | 
						
							| 77 | 76 | xkotopon | ⊢ ( ( 𝑅  ∈  Top  ∧  𝑇  ∈  Top )  →  ( 𝑇  ↑ko  𝑅 )  ∈  ( TopOn ‘ ( 𝑅  Cn  𝑇 ) ) ) | 
						
							| 78 | 1 73 77 | syl2anc | ⊢ ( 𝜑  →  ( 𝑇  ↑ko  𝑅 )  ∈  ( TopOn ‘ ( 𝑅  Cn  𝑇 ) ) ) | 
						
							| 79 | 64 71 75 78 | subbascn | ⊢ ( 𝜑  →  ( ( 𝑔  ∈  ( 𝑅  Cn  𝑆 )  ↦  ( 𝐹  ∘  𝑔 ) )  ∈  ( ( 𝑆  ↑ko  𝑅 )  Cn  ( 𝑇  ↑ko  𝑅 ) )  ↔  ( ( 𝑔  ∈  ( 𝑅  Cn  𝑆 )  ↦  ( 𝐹  ∘  𝑔 ) ) : ( 𝑅  Cn  𝑆 ) ⟶ ( 𝑅  Cn  𝑇 )  ∧  ∀ 𝑥  ∈  ran  ( 𝑘  ∈  { 𝑦  ∈  𝒫  ∪  𝑅  ∣  ( 𝑅  ↾t  𝑦 )  ∈  Comp } ,  𝑣  ∈  𝑇  ↦  { ℎ  ∈  ( 𝑅  Cn  𝑇 )  ∣  ( ℎ  “  𝑘 )  ⊆  𝑣 } ) ( ◡ ( 𝑔  ∈  ( 𝑅  Cn  𝑆 )  ↦  ( 𝐹  ∘  𝑔 ) )  “  𝑥 )  ∈  ( 𝑆  ↑ko  𝑅 ) ) ) ) | 
						
							| 80 | 7 61 79 | mpbir2and | ⊢ ( 𝜑  →  ( 𝑔  ∈  ( 𝑅  Cn  𝑆 )  ↦  ( 𝐹  ∘  𝑔 ) )  ∈  ( ( 𝑆  ↑ko  𝑅 )  Cn  ( 𝑇  ↑ko  𝑅 ) ) ) |