Step |
Hyp |
Ref |
Expression |
1 |
|
xkococn.1 |
⊢ 𝐹 = ( 𝑓 ∈ ( 𝑆 Cn 𝑇 ) , 𝑔 ∈ ( 𝑅 Cn 𝑆 ) ↦ ( 𝑓 ∘ 𝑔 ) ) |
2 |
|
simprr |
⊢ ( ( ( 𝑅 ∈ Top ∧ 𝑆 ∈ 𝑛-Locally Comp ∧ 𝑇 ∈ Top ) ∧ ( 𝑓 ∈ ( 𝑆 Cn 𝑇 ) ∧ 𝑔 ∈ ( 𝑅 Cn 𝑆 ) ) ) → 𝑔 ∈ ( 𝑅 Cn 𝑆 ) ) |
3 |
|
simprl |
⊢ ( ( ( 𝑅 ∈ Top ∧ 𝑆 ∈ 𝑛-Locally Comp ∧ 𝑇 ∈ Top ) ∧ ( 𝑓 ∈ ( 𝑆 Cn 𝑇 ) ∧ 𝑔 ∈ ( 𝑅 Cn 𝑆 ) ) ) → 𝑓 ∈ ( 𝑆 Cn 𝑇 ) ) |
4 |
|
cnco |
⊢ ( ( 𝑔 ∈ ( 𝑅 Cn 𝑆 ) ∧ 𝑓 ∈ ( 𝑆 Cn 𝑇 ) ) → ( 𝑓 ∘ 𝑔 ) ∈ ( 𝑅 Cn 𝑇 ) ) |
5 |
2 3 4
|
syl2anc |
⊢ ( ( ( 𝑅 ∈ Top ∧ 𝑆 ∈ 𝑛-Locally Comp ∧ 𝑇 ∈ Top ) ∧ ( 𝑓 ∈ ( 𝑆 Cn 𝑇 ) ∧ 𝑔 ∈ ( 𝑅 Cn 𝑆 ) ) ) → ( 𝑓 ∘ 𝑔 ) ∈ ( 𝑅 Cn 𝑇 ) ) |
6 |
5
|
ralrimivva |
⊢ ( ( 𝑅 ∈ Top ∧ 𝑆 ∈ 𝑛-Locally Comp ∧ 𝑇 ∈ Top ) → ∀ 𝑓 ∈ ( 𝑆 Cn 𝑇 ) ∀ 𝑔 ∈ ( 𝑅 Cn 𝑆 ) ( 𝑓 ∘ 𝑔 ) ∈ ( 𝑅 Cn 𝑇 ) ) |
7 |
1
|
fmpo |
⊢ ( ∀ 𝑓 ∈ ( 𝑆 Cn 𝑇 ) ∀ 𝑔 ∈ ( 𝑅 Cn 𝑆 ) ( 𝑓 ∘ 𝑔 ) ∈ ( 𝑅 Cn 𝑇 ) ↔ 𝐹 : ( ( 𝑆 Cn 𝑇 ) × ( 𝑅 Cn 𝑆 ) ) ⟶ ( 𝑅 Cn 𝑇 ) ) |
8 |
6 7
|
sylib |
⊢ ( ( 𝑅 ∈ Top ∧ 𝑆 ∈ 𝑛-Locally Comp ∧ 𝑇 ∈ Top ) → 𝐹 : ( ( 𝑆 Cn 𝑇 ) × ( 𝑅 Cn 𝑆 ) ) ⟶ ( 𝑅 Cn 𝑇 ) ) |
9 |
|
eqid |
⊢ ( 𝑘 ∈ { 𝑦 ∈ 𝒫 ∪ 𝑅 ∣ ( 𝑅 ↾t 𝑦 ) ∈ Comp } , 𝑣 ∈ 𝑇 ↦ { ℎ ∈ ( 𝑅 Cn 𝑇 ) ∣ ( ℎ “ 𝑘 ) ⊆ 𝑣 } ) = ( 𝑘 ∈ { 𝑦 ∈ 𝒫 ∪ 𝑅 ∣ ( 𝑅 ↾t 𝑦 ) ∈ Comp } , 𝑣 ∈ 𝑇 ↦ { ℎ ∈ ( 𝑅 Cn 𝑇 ) ∣ ( ℎ “ 𝑘 ) ⊆ 𝑣 } ) |
10 |
9
|
rnmpo |
⊢ ran ( 𝑘 ∈ { 𝑦 ∈ 𝒫 ∪ 𝑅 ∣ ( 𝑅 ↾t 𝑦 ) ∈ Comp } , 𝑣 ∈ 𝑇 ↦ { ℎ ∈ ( 𝑅 Cn 𝑇 ) ∣ ( ℎ “ 𝑘 ) ⊆ 𝑣 } ) = { 𝑥 ∣ ∃ 𝑘 ∈ { 𝑦 ∈ 𝒫 ∪ 𝑅 ∣ ( 𝑅 ↾t 𝑦 ) ∈ Comp } ∃ 𝑣 ∈ 𝑇 𝑥 = { ℎ ∈ ( 𝑅 Cn 𝑇 ) ∣ ( ℎ “ 𝑘 ) ⊆ 𝑣 } } |
11 |
10
|
eleq2i |
⊢ ( 𝑥 ∈ ran ( 𝑘 ∈ { 𝑦 ∈ 𝒫 ∪ 𝑅 ∣ ( 𝑅 ↾t 𝑦 ) ∈ Comp } , 𝑣 ∈ 𝑇 ↦ { ℎ ∈ ( 𝑅 Cn 𝑇 ) ∣ ( ℎ “ 𝑘 ) ⊆ 𝑣 } ) ↔ 𝑥 ∈ { 𝑥 ∣ ∃ 𝑘 ∈ { 𝑦 ∈ 𝒫 ∪ 𝑅 ∣ ( 𝑅 ↾t 𝑦 ) ∈ Comp } ∃ 𝑣 ∈ 𝑇 𝑥 = { ℎ ∈ ( 𝑅 Cn 𝑇 ) ∣ ( ℎ “ 𝑘 ) ⊆ 𝑣 } } ) |
12 |
|
abid |
⊢ ( 𝑥 ∈ { 𝑥 ∣ ∃ 𝑘 ∈ { 𝑦 ∈ 𝒫 ∪ 𝑅 ∣ ( 𝑅 ↾t 𝑦 ) ∈ Comp } ∃ 𝑣 ∈ 𝑇 𝑥 = { ℎ ∈ ( 𝑅 Cn 𝑇 ) ∣ ( ℎ “ 𝑘 ) ⊆ 𝑣 } } ↔ ∃ 𝑘 ∈ { 𝑦 ∈ 𝒫 ∪ 𝑅 ∣ ( 𝑅 ↾t 𝑦 ) ∈ Comp } ∃ 𝑣 ∈ 𝑇 𝑥 = { ℎ ∈ ( 𝑅 Cn 𝑇 ) ∣ ( ℎ “ 𝑘 ) ⊆ 𝑣 } ) |
13 |
|
oveq2 |
⊢ ( 𝑦 = 𝑘 → ( 𝑅 ↾t 𝑦 ) = ( 𝑅 ↾t 𝑘 ) ) |
14 |
13
|
eleq1d |
⊢ ( 𝑦 = 𝑘 → ( ( 𝑅 ↾t 𝑦 ) ∈ Comp ↔ ( 𝑅 ↾t 𝑘 ) ∈ Comp ) ) |
15 |
14
|
rexrab |
⊢ ( ∃ 𝑘 ∈ { 𝑦 ∈ 𝒫 ∪ 𝑅 ∣ ( 𝑅 ↾t 𝑦 ) ∈ Comp } ∃ 𝑣 ∈ 𝑇 𝑥 = { ℎ ∈ ( 𝑅 Cn 𝑇 ) ∣ ( ℎ “ 𝑘 ) ⊆ 𝑣 } ↔ ∃ 𝑘 ∈ 𝒫 ∪ 𝑅 ( ( 𝑅 ↾t 𝑘 ) ∈ Comp ∧ ∃ 𝑣 ∈ 𝑇 𝑥 = { ℎ ∈ ( 𝑅 Cn 𝑇 ) ∣ ( ℎ “ 𝑘 ) ⊆ 𝑣 } ) ) |
16 |
11 12 15
|
3bitri |
⊢ ( 𝑥 ∈ ran ( 𝑘 ∈ { 𝑦 ∈ 𝒫 ∪ 𝑅 ∣ ( 𝑅 ↾t 𝑦 ) ∈ Comp } , 𝑣 ∈ 𝑇 ↦ { ℎ ∈ ( 𝑅 Cn 𝑇 ) ∣ ( ℎ “ 𝑘 ) ⊆ 𝑣 } ) ↔ ∃ 𝑘 ∈ 𝒫 ∪ 𝑅 ( ( 𝑅 ↾t 𝑘 ) ∈ Comp ∧ ∃ 𝑣 ∈ 𝑇 𝑥 = { ℎ ∈ ( 𝑅 Cn 𝑇 ) ∣ ( ℎ “ 𝑘 ) ⊆ 𝑣 } ) ) |
17 |
8
|
ad2antrr |
⊢ ( ( ( ( 𝑅 ∈ Top ∧ 𝑆 ∈ 𝑛-Locally Comp ∧ 𝑇 ∈ Top ) ∧ ( 𝑘 ∈ 𝒫 ∪ 𝑅 ∧ ( 𝑅 ↾t 𝑘 ) ∈ Comp ) ) ∧ 𝑣 ∈ 𝑇 ) → 𝐹 : ( ( 𝑆 Cn 𝑇 ) × ( 𝑅 Cn 𝑆 ) ) ⟶ ( 𝑅 Cn 𝑇 ) ) |
18 |
|
ffn |
⊢ ( 𝐹 : ( ( 𝑆 Cn 𝑇 ) × ( 𝑅 Cn 𝑆 ) ) ⟶ ( 𝑅 Cn 𝑇 ) → 𝐹 Fn ( ( 𝑆 Cn 𝑇 ) × ( 𝑅 Cn 𝑆 ) ) ) |
19 |
|
elpreima |
⊢ ( 𝐹 Fn ( ( 𝑆 Cn 𝑇 ) × ( 𝑅 Cn 𝑆 ) ) → ( 𝑦 ∈ ( ◡ 𝐹 “ { ℎ ∈ ( 𝑅 Cn 𝑇 ) ∣ ( ℎ “ 𝑘 ) ⊆ 𝑣 } ) ↔ ( 𝑦 ∈ ( ( 𝑆 Cn 𝑇 ) × ( 𝑅 Cn 𝑆 ) ) ∧ ( 𝐹 ‘ 𝑦 ) ∈ { ℎ ∈ ( 𝑅 Cn 𝑇 ) ∣ ( ℎ “ 𝑘 ) ⊆ 𝑣 } ) ) ) |
20 |
17 18 19
|
3syl |
⊢ ( ( ( ( 𝑅 ∈ Top ∧ 𝑆 ∈ 𝑛-Locally Comp ∧ 𝑇 ∈ Top ) ∧ ( 𝑘 ∈ 𝒫 ∪ 𝑅 ∧ ( 𝑅 ↾t 𝑘 ) ∈ Comp ) ) ∧ 𝑣 ∈ 𝑇 ) → ( 𝑦 ∈ ( ◡ 𝐹 “ { ℎ ∈ ( 𝑅 Cn 𝑇 ) ∣ ( ℎ “ 𝑘 ) ⊆ 𝑣 } ) ↔ ( 𝑦 ∈ ( ( 𝑆 Cn 𝑇 ) × ( 𝑅 Cn 𝑆 ) ) ∧ ( 𝐹 ‘ 𝑦 ) ∈ { ℎ ∈ ( 𝑅 Cn 𝑇 ) ∣ ( ℎ “ 𝑘 ) ⊆ 𝑣 } ) ) ) |
21 |
|
coeq1 |
⊢ ( 𝑓 = 𝑎 → ( 𝑓 ∘ 𝑔 ) = ( 𝑎 ∘ 𝑔 ) ) |
22 |
|
coeq2 |
⊢ ( 𝑔 = 𝑏 → ( 𝑎 ∘ 𝑔 ) = ( 𝑎 ∘ 𝑏 ) ) |
23 |
|
vex |
⊢ 𝑎 ∈ V |
24 |
|
vex |
⊢ 𝑏 ∈ V |
25 |
23 24
|
coex |
⊢ ( 𝑎 ∘ 𝑏 ) ∈ V |
26 |
21 22 1 25
|
ovmpo |
⊢ ( ( 𝑎 ∈ ( 𝑆 Cn 𝑇 ) ∧ 𝑏 ∈ ( 𝑅 Cn 𝑆 ) ) → ( 𝑎 𝐹 𝑏 ) = ( 𝑎 ∘ 𝑏 ) ) |
27 |
26
|
adantl |
⊢ ( ( ( ( ( 𝑅 ∈ Top ∧ 𝑆 ∈ 𝑛-Locally Comp ∧ 𝑇 ∈ Top ) ∧ ( 𝑘 ∈ 𝒫 ∪ 𝑅 ∧ ( 𝑅 ↾t 𝑘 ) ∈ Comp ) ) ∧ 𝑣 ∈ 𝑇 ) ∧ ( 𝑎 ∈ ( 𝑆 Cn 𝑇 ) ∧ 𝑏 ∈ ( 𝑅 Cn 𝑆 ) ) ) → ( 𝑎 𝐹 𝑏 ) = ( 𝑎 ∘ 𝑏 ) ) |
28 |
27
|
eleq1d |
⊢ ( ( ( ( ( 𝑅 ∈ Top ∧ 𝑆 ∈ 𝑛-Locally Comp ∧ 𝑇 ∈ Top ) ∧ ( 𝑘 ∈ 𝒫 ∪ 𝑅 ∧ ( 𝑅 ↾t 𝑘 ) ∈ Comp ) ) ∧ 𝑣 ∈ 𝑇 ) ∧ ( 𝑎 ∈ ( 𝑆 Cn 𝑇 ) ∧ 𝑏 ∈ ( 𝑅 Cn 𝑆 ) ) ) → ( ( 𝑎 𝐹 𝑏 ) ∈ { ℎ ∈ ( 𝑅 Cn 𝑇 ) ∣ ( ℎ “ 𝑘 ) ⊆ 𝑣 } ↔ ( 𝑎 ∘ 𝑏 ) ∈ { ℎ ∈ ( 𝑅 Cn 𝑇 ) ∣ ( ℎ “ 𝑘 ) ⊆ 𝑣 } ) ) |
29 |
|
imaeq1 |
⊢ ( ℎ = ( 𝑎 ∘ 𝑏 ) → ( ℎ “ 𝑘 ) = ( ( 𝑎 ∘ 𝑏 ) “ 𝑘 ) ) |
30 |
29
|
sseq1d |
⊢ ( ℎ = ( 𝑎 ∘ 𝑏 ) → ( ( ℎ “ 𝑘 ) ⊆ 𝑣 ↔ ( ( 𝑎 ∘ 𝑏 ) “ 𝑘 ) ⊆ 𝑣 ) ) |
31 |
30
|
elrab |
⊢ ( ( 𝑎 ∘ 𝑏 ) ∈ { ℎ ∈ ( 𝑅 Cn 𝑇 ) ∣ ( ℎ “ 𝑘 ) ⊆ 𝑣 } ↔ ( ( 𝑎 ∘ 𝑏 ) ∈ ( 𝑅 Cn 𝑇 ) ∧ ( ( 𝑎 ∘ 𝑏 ) “ 𝑘 ) ⊆ 𝑣 ) ) |
32 |
31
|
simprbi |
⊢ ( ( 𝑎 ∘ 𝑏 ) ∈ { ℎ ∈ ( 𝑅 Cn 𝑇 ) ∣ ( ℎ “ 𝑘 ) ⊆ 𝑣 } → ( ( 𝑎 ∘ 𝑏 ) “ 𝑘 ) ⊆ 𝑣 ) |
33 |
|
simp2 |
⊢ ( ( 𝑅 ∈ Top ∧ 𝑆 ∈ 𝑛-Locally Comp ∧ 𝑇 ∈ Top ) → 𝑆 ∈ 𝑛-Locally Comp ) |
34 |
33
|
ad3antrrr |
⊢ ( ( ( ( ( 𝑅 ∈ Top ∧ 𝑆 ∈ 𝑛-Locally Comp ∧ 𝑇 ∈ Top ) ∧ ( 𝑘 ∈ 𝒫 ∪ 𝑅 ∧ ( 𝑅 ↾t 𝑘 ) ∈ Comp ) ) ∧ 𝑣 ∈ 𝑇 ) ∧ ( ( 𝑎 ∈ ( 𝑆 Cn 𝑇 ) ∧ 𝑏 ∈ ( 𝑅 Cn 𝑆 ) ) ∧ ( ( 𝑎 ∘ 𝑏 ) “ 𝑘 ) ⊆ 𝑣 ) ) → 𝑆 ∈ 𝑛-Locally Comp ) |
35 |
|
elpwi |
⊢ ( 𝑘 ∈ 𝒫 ∪ 𝑅 → 𝑘 ⊆ ∪ 𝑅 ) |
36 |
35
|
ad2antrl |
⊢ ( ( ( 𝑅 ∈ Top ∧ 𝑆 ∈ 𝑛-Locally Comp ∧ 𝑇 ∈ Top ) ∧ ( 𝑘 ∈ 𝒫 ∪ 𝑅 ∧ ( 𝑅 ↾t 𝑘 ) ∈ Comp ) ) → 𝑘 ⊆ ∪ 𝑅 ) |
37 |
36
|
ad2antrr |
⊢ ( ( ( ( ( 𝑅 ∈ Top ∧ 𝑆 ∈ 𝑛-Locally Comp ∧ 𝑇 ∈ Top ) ∧ ( 𝑘 ∈ 𝒫 ∪ 𝑅 ∧ ( 𝑅 ↾t 𝑘 ) ∈ Comp ) ) ∧ 𝑣 ∈ 𝑇 ) ∧ ( ( 𝑎 ∈ ( 𝑆 Cn 𝑇 ) ∧ 𝑏 ∈ ( 𝑅 Cn 𝑆 ) ) ∧ ( ( 𝑎 ∘ 𝑏 ) “ 𝑘 ) ⊆ 𝑣 ) ) → 𝑘 ⊆ ∪ 𝑅 ) |
38 |
|
simprr |
⊢ ( ( ( 𝑅 ∈ Top ∧ 𝑆 ∈ 𝑛-Locally Comp ∧ 𝑇 ∈ Top ) ∧ ( 𝑘 ∈ 𝒫 ∪ 𝑅 ∧ ( 𝑅 ↾t 𝑘 ) ∈ Comp ) ) → ( 𝑅 ↾t 𝑘 ) ∈ Comp ) |
39 |
38
|
ad2antrr |
⊢ ( ( ( ( ( 𝑅 ∈ Top ∧ 𝑆 ∈ 𝑛-Locally Comp ∧ 𝑇 ∈ Top ) ∧ ( 𝑘 ∈ 𝒫 ∪ 𝑅 ∧ ( 𝑅 ↾t 𝑘 ) ∈ Comp ) ) ∧ 𝑣 ∈ 𝑇 ) ∧ ( ( 𝑎 ∈ ( 𝑆 Cn 𝑇 ) ∧ 𝑏 ∈ ( 𝑅 Cn 𝑆 ) ) ∧ ( ( 𝑎 ∘ 𝑏 ) “ 𝑘 ) ⊆ 𝑣 ) ) → ( 𝑅 ↾t 𝑘 ) ∈ Comp ) |
40 |
|
simplr |
⊢ ( ( ( ( ( 𝑅 ∈ Top ∧ 𝑆 ∈ 𝑛-Locally Comp ∧ 𝑇 ∈ Top ) ∧ ( 𝑘 ∈ 𝒫 ∪ 𝑅 ∧ ( 𝑅 ↾t 𝑘 ) ∈ Comp ) ) ∧ 𝑣 ∈ 𝑇 ) ∧ ( ( 𝑎 ∈ ( 𝑆 Cn 𝑇 ) ∧ 𝑏 ∈ ( 𝑅 Cn 𝑆 ) ) ∧ ( ( 𝑎 ∘ 𝑏 ) “ 𝑘 ) ⊆ 𝑣 ) ) → 𝑣 ∈ 𝑇 ) |
41 |
|
simprll |
⊢ ( ( ( ( ( 𝑅 ∈ Top ∧ 𝑆 ∈ 𝑛-Locally Comp ∧ 𝑇 ∈ Top ) ∧ ( 𝑘 ∈ 𝒫 ∪ 𝑅 ∧ ( 𝑅 ↾t 𝑘 ) ∈ Comp ) ) ∧ 𝑣 ∈ 𝑇 ) ∧ ( ( 𝑎 ∈ ( 𝑆 Cn 𝑇 ) ∧ 𝑏 ∈ ( 𝑅 Cn 𝑆 ) ) ∧ ( ( 𝑎 ∘ 𝑏 ) “ 𝑘 ) ⊆ 𝑣 ) ) → 𝑎 ∈ ( 𝑆 Cn 𝑇 ) ) |
42 |
|
simprlr |
⊢ ( ( ( ( ( 𝑅 ∈ Top ∧ 𝑆 ∈ 𝑛-Locally Comp ∧ 𝑇 ∈ Top ) ∧ ( 𝑘 ∈ 𝒫 ∪ 𝑅 ∧ ( 𝑅 ↾t 𝑘 ) ∈ Comp ) ) ∧ 𝑣 ∈ 𝑇 ) ∧ ( ( 𝑎 ∈ ( 𝑆 Cn 𝑇 ) ∧ 𝑏 ∈ ( 𝑅 Cn 𝑆 ) ) ∧ ( ( 𝑎 ∘ 𝑏 ) “ 𝑘 ) ⊆ 𝑣 ) ) → 𝑏 ∈ ( 𝑅 Cn 𝑆 ) ) |
43 |
|
simprr |
⊢ ( ( ( ( ( 𝑅 ∈ Top ∧ 𝑆 ∈ 𝑛-Locally Comp ∧ 𝑇 ∈ Top ) ∧ ( 𝑘 ∈ 𝒫 ∪ 𝑅 ∧ ( 𝑅 ↾t 𝑘 ) ∈ Comp ) ) ∧ 𝑣 ∈ 𝑇 ) ∧ ( ( 𝑎 ∈ ( 𝑆 Cn 𝑇 ) ∧ 𝑏 ∈ ( 𝑅 Cn 𝑆 ) ) ∧ ( ( 𝑎 ∘ 𝑏 ) “ 𝑘 ) ⊆ 𝑣 ) ) → ( ( 𝑎 ∘ 𝑏 ) “ 𝑘 ) ⊆ 𝑣 ) |
44 |
1 34 37 39 40 41 42 43
|
xkococnlem |
⊢ ( ( ( ( ( 𝑅 ∈ Top ∧ 𝑆 ∈ 𝑛-Locally Comp ∧ 𝑇 ∈ Top ) ∧ ( 𝑘 ∈ 𝒫 ∪ 𝑅 ∧ ( 𝑅 ↾t 𝑘 ) ∈ Comp ) ) ∧ 𝑣 ∈ 𝑇 ) ∧ ( ( 𝑎 ∈ ( 𝑆 Cn 𝑇 ) ∧ 𝑏 ∈ ( 𝑅 Cn 𝑆 ) ) ∧ ( ( 𝑎 ∘ 𝑏 ) “ 𝑘 ) ⊆ 𝑣 ) ) → ∃ 𝑧 ∈ ( ( 𝑇 ↑ko 𝑆 ) ×t ( 𝑆 ↑ko 𝑅 ) ) ( 〈 𝑎 , 𝑏 〉 ∈ 𝑧 ∧ 𝑧 ⊆ ( ◡ 𝐹 “ { ℎ ∈ ( 𝑅 Cn 𝑇 ) ∣ ( ℎ “ 𝑘 ) ⊆ 𝑣 } ) ) ) |
45 |
44
|
expr |
⊢ ( ( ( ( ( 𝑅 ∈ Top ∧ 𝑆 ∈ 𝑛-Locally Comp ∧ 𝑇 ∈ Top ) ∧ ( 𝑘 ∈ 𝒫 ∪ 𝑅 ∧ ( 𝑅 ↾t 𝑘 ) ∈ Comp ) ) ∧ 𝑣 ∈ 𝑇 ) ∧ ( 𝑎 ∈ ( 𝑆 Cn 𝑇 ) ∧ 𝑏 ∈ ( 𝑅 Cn 𝑆 ) ) ) → ( ( ( 𝑎 ∘ 𝑏 ) “ 𝑘 ) ⊆ 𝑣 → ∃ 𝑧 ∈ ( ( 𝑇 ↑ko 𝑆 ) ×t ( 𝑆 ↑ko 𝑅 ) ) ( 〈 𝑎 , 𝑏 〉 ∈ 𝑧 ∧ 𝑧 ⊆ ( ◡ 𝐹 “ { ℎ ∈ ( 𝑅 Cn 𝑇 ) ∣ ( ℎ “ 𝑘 ) ⊆ 𝑣 } ) ) ) ) |
46 |
32 45
|
syl5 |
⊢ ( ( ( ( ( 𝑅 ∈ Top ∧ 𝑆 ∈ 𝑛-Locally Comp ∧ 𝑇 ∈ Top ) ∧ ( 𝑘 ∈ 𝒫 ∪ 𝑅 ∧ ( 𝑅 ↾t 𝑘 ) ∈ Comp ) ) ∧ 𝑣 ∈ 𝑇 ) ∧ ( 𝑎 ∈ ( 𝑆 Cn 𝑇 ) ∧ 𝑏 ∈ ( 𝑅 Cn 𝑆 ) ) ) → ( ( 𝑎 ∘ 𝑏 ) ∈ { ℎ ∈ ( 𝑅 Cn 𝑇 ) ∣ ( ℎ “ 𝑘 ) ⊆ 𝑣 } → ∃ 𝑧 ∈ ( ( 𝑇 ↑ko 𝑆 ) ×t ( 𝑆 ↑ko 𝑅 ) ) ( 〈 𝑎 , 𝑏 〉 ∈ 𝑧 ∧ 𝑧 ⊆ ( ◡ 𝐹 “ { ℎ ∈ ( 𝑅 Cn 𝑇 ) ∣ ( ℎ “ 𝑘 ) ⊆ 𝑣 } ) ) ) ) |
47 |
28 46
|
sylbid |
⊢ ( ( ( ( ( 𝑅 ∈ Top ∧ 𝑆 ∈ 𝑛-Locally Comp ∧ 𝑇 ∈ Top ) ∧ ( 𝑘 ∈ 𝒫 ∪ 𝑅 ∧ ( 𝑅 ↾t 𝑘 ) ∈ Comp ) ) ∧ 𝑣 ∈ 𝑇 ) ∧ ( 𝑎 ∈ ( 𝑆 Cn 𝑇 ) ∧ 𝑏 ∈ ( 𝑅 Cn 𝑆 ) ) ) → ( ( 𝑎 𝐹 𝑏 ) ∈ { ℎ ∈ ( 𝑅 Cn 𝑇 ) ∣ ( ℎ “ 𝑘 ) ⊆ 𝑣 } → ∃ 𝑧 ∈ ( ( 𝑇 ↑ko 𝑆 ) ×t ( 𝑆 ↑ko 𝑅 ) ) ( 〈 𝑎 , 𝑏 〉 ∈ 𝑧 ∧ 𝑧 ⊆ ( ◡ 𝐹 “ { ℎ ∈ ( 𝑅 Cn 𝑇 ) ∣ ( ℎ “ 𝑘 ) ⊆ 𝑣 } ) ) ) ) |
48 |
47
|
ralrimivva |
⊢ ( ( ( ( 𝑅 ∈ Top ∧ 𝑆 ∈ 𝑛-Locally Comp ∧ 𝑇 ∈ Top ) ∧ ( 𝑘 ∈ 𝒫 ∪ 𝑅 ∧ ( 𝑅 ↾t 𝑘 ) ∈ Comp ) ) ∧ 𝑣 ∈ 𝑇 ) → ∀ 𝑎 ∈ ( 𝑆 Cn 𝑇 ) ∀ 𝑏 ∈ ( 𝑅 Cn 𝑆 ) ( ( 𝑎 𝐹 𝑏 ) ∈ { ℎ ∈ ( 𝑅 Cn 𝑇 ) ∣ ( ℎ “ 𝑘 ) ⊆ 𝑣 } → ∃ 𝑧 ∈ ( ( 𝑇 ↑ko 𝑆 ) ×t ( 𝑆 ↑ko 𝑅 ) ) ( 〈 𝑎 , 𝑏 〉 ∈ 𝑧 ∧ 𝑧 ⊆ ( ◡ 𝐹 “ { ℎ ∈ ( 𝑅 Cn 𝑇 ) ∣ ( ℎ “ 𝑘 ) ⊆ 𝑣 } ) ) ) ) |
49 |
|
fveq2 |
⊢ ( 𝑦 = 〈 𝑎 , 𝑏 〉 → ( 𝐹 ‘ 𝑦 ) = ( 𝐹 ‘ 〈 𝑎 , 𝑏 〉 ) ) |
50 |
|
df-ov |
⊢ ( 𝑎 𝐹 𝑏 ) = ( 𝐹 ‘ 〈 𝑎 , 𝑏 〉 ) |
51 |
49 50
|
eqtr4di |
⊢ ( 𝑦 = 〈 𝑎 , 𝑏 〉 → ( 𝐹 ‘ 𝑦 ) = ( 𝑎 𝐹 𝑏 ) ) |
52 |
51
|
eleq1d |
⊢ ( 𝑦 = 〈 𝑎 , 𝑏 〉 → ( ( 𝐹 ‘ 𝑦 ) ∈ { ℎ ∈ ( 𝑅 Cn 𝑇 ) ∣ ( ℎ “ 𝑘 ) ⊆ 𝑣 } ↔ ( 𝑎 𝐹 𝑏 ) ∈ { ℎ ∈ ( 𝑅 Cn 𝑇 ) ∣ ( ℎ “ 𝑘 ) ⊆ 𝑣 } ) ) |
53 |
|
eleq1 |
⊢ ( 𝑦 = 〈 𝑎 , 𝑏 〉 → ( 𝑦 ∈ 𝑧 ↔ 〈 𝑎 , 𝑏 〉 ∈ 𝑧 ) ) |
54 |
53
|
anbi1d |
⊢ ( 𝑦 = 〈 𝑎 , 𝑏 〉 → ( ( 𝑦 ∈ 𝑧 ∧ 𝑧 ⊆ ( ◡ 𝐹 “ { ℎ ∈ ( 𝑅 Cn 𝑇 ) ∣ ( ℎ “ 𝑘 ) ⊆ 𝑣 } ) ) ↔ ( 〈 𝑎 , 𝑏 〉 ∈ 𝑧 ∧ 𝑧 ⊆ ( ◡ 𝐹 “ { ℎ ∈ ( 𝑅 Cn 𝑇 ) ∣ ( ℎ “ 𝑘 ) ⊆ 𝑣 } ) ) ) ) |
55 |
54
|
rexbidv |
⊢ ( 𝑦 = 〈 𝑎 , 𝑏 〉 → ( ∃ 𝑧 ∈ ( ( 𝑇 ↑ko 𝑆 ) ×t ( 𝑆 ↑ko 𝑅 ) ) ( 𝑦 ∈ 𝑧 ∧ 𝑧 ⊆ ( ◡ 𝐹 “ { ℎ ∈ ( 𝑅 Cn 𝑇 ) ∣ ( ℎ “ 𝑘 ) ⊆ 𝑣 } ) ) ↔ ∃ 𝑧 ∈ ( ( 𝑇 ↑ko 𝑆 ) ×t ( 𝑆 ↑ko 𝑅 ) ) ( 〈 𝑎 , 𝑏 〉 ∈ 𝑧 ∧ 𝑧 ⊆ ( ◡ 𝐹 “ { ℎ ∈ ( 𝑅 Cn 𝑇 ) ∣ ( ℎ “ 𝑘 ) ⊆ 𝑣 } ) ) ) ) |
56 |
52 55
|
imbi12d |
⊢ ( 𝑦 = 〈 𝑎 , 𝑏 〉 → ( ( ( 𝐹 ‘ 𝑦 ) ∈ { ℎ ∈ ( 𝑅 Cn 𝑇 ) ∣ ( ℎ “ 𝑘 ) ⊆ 𝑣 } → ∃ 𝑧 ∈ ( ( 𝑇 ↑ko 𝑆 ) ×t ( 𝑆 ↑ko 𝑅 ) ) ( 𝑦 ∈ 𝑧 ∧ 𝑧 ⊆ ( ◡ 𝐹 “ { ℎ ∈ ( 𝑅 Cn 𝑇 ) ∣ ( ℎ “ 𝑘 ) ⊆ 𝑣 } ) ) ) ↔ ( ( 𝑎 𝐹 𝑏 ) ∈ { ℎ ∈ ( 𝑅 Cn 𝑇 ) ∣ ( ℎ “ 𝑘 ) ⊆ 𝑣 } → ∃ 𝑧 ∈ ( ( 𝑇 ↑ko 𝑆 ) ×t ( 𝑆 ↑ko 𝑅 ) ) ( 〈 𝑎 , 𝑏 〉 ∈ 𝑧 ∧ 𝑧 ⊆ ( ◡ 𝐹 “ { ℎ ∈ ( 𝑅 Cn 𝑇 ) ∣ ( ℎ “ 𝑘 ) ⊆ 𝑣 } ) ) ) ) ) |
57 |
56
|
ralxp |
⊢ ( ∀ 𝑦 ∈ ( ( 𝑆 Cn 𝑇 ) × ( 𝑅 Cn 𝑆 ) ) ( ( 𝐹 ‘ 𝑦 ) ∈ { ℎ ∈ ( 𝑅 Cn 𝑇 ) ∣ ( ℎ “ 𝑘 ) ⊆ 𝑣 } → ∃ 𝑧 ∈ ( ( 𝑇 ↑ko 𝑆 ) ×t ( 𝑆 ↑ko 𝑅 ) ) ( 𝑦 ∈ 𝑧 ∧ 𝑧 ⊆ ( ◡ 𝐹 “ { ℎ ∈ ( 𝑅 Cn 𝑇 ) ∣ ( ℎ “ 𝑘 ) ⊆ 𝑣 } ) ) ) ↔ ∀ 𝑎 ∈ ( 𝑆 Cn 𝑇 ) ∀ 𝑏 ∈ ( 𝑅 Cn 𝑆 ) ( ( 𝑎 𝐹 𝑏 ) ∈ { ℎ ∈ ( 𝑅 Cn 𝑇 ) ∣ ( ℎ “ 𝑘 ) ⊆ 𝑣 } → ∃ 𝑧 ∈ ( ( 𝑇 ↑ko 𝑆 ) ×t ( 𝑆 ↑ko 𝑅 ) ) ( 〈 𝑎 , 𝑏 〉 ∈ 𝑧 ∧ 𝑧 ⊆ ( ◡ 𝐹 “ { ℎ ∈ ( 𝑅 Cn 𝑇 ) ∣ ( ℎ “ 𝑘 ) ⊆ 𝑣 } ) ) ) ) |
58 |
48 57
|
sylibr |
⊢ ( ( ( ( 𝑅 ∈ Top ∧ 𝑆 ∈ 𝑛-Locally Comp ∧ 𝑇 ∈ Top ) ∧ ( 𝑘 ∈ 𝒫 ∪ 𝑅 ∧ ( 𝑅 ↾t 𝑘 ) ∈ Comp ) ) ∧ 𝑣 ∈ 𝑇 ) → ∀ 𝑦 ∈ ( ( 𝑆 Cn 𝑇 ) × ( 𝑅 Cn 𝑆 ) ) ( ( 𝐹 ‘ 𝑦 ) ∈ { ℎ ∈ ( 𝑅 Cn 𝑇 ) ∣ ( ℎ “ 𝑘 ) ⊆ 𝑣 } → ∃ 𝑧 ∈ ( ( 𝑇 ↑ko 𝑆 ) ×t ( 𝑆 ↑ko 𝑅 ) ) ( 𝑦 ∈ 𝑧 ∧ 𝑧 ⊆ ( ◡ 𝐹 “ { ℎ ∈ ( 𝑅 Cn 𝑇 ) ∣ ( ℎ “ 𝑘 ) ⊆ 𝑣 } ) ) ) ) |
59 |
58
|
r19.21bi |
⊢ ( ( ( ( ( 𝑅 ∈ Top ∧ 𝑆 ∈ 𝑛-Locally Comp ∧ 𝑇 ∈ Top ) ∧ ( 𝑘 ∈ 𝒫 ∪ 𝑅 ∧ ( 𝑅 ↾t 𝑘 ) ∈ Comp ) ) ∧ 𝑣 ∈ 𝑇 ) ∧ 𝑦 ∈ ( ( 𝑆 Cn 𝑇 ) × ( 𝑅 Cn 𝑆 ) ) ) → ( ( 𝐹 ‘ 𝑦 ) ∈ { ℎ ∈ ( 𝑅 Cn 𝑇 ) ∣ ( ℎ “ 𝑘 ) ⊆ 𝑣 } → ∃ 𝑧 ∈ ( ( 𝑇 ↑ko 𝑆 ) ×t ( 𝑆 ↑ko 𝑅 ) ) ( 𝑦 ∈ 𝑧 ∧ 𝑧 ⊆ ( ◡ 𝐹 “ { ℎ ∈ ( 𝑅 Cn 𝑇 ) ∣ ( ℎ “ 𝑘 ) ⊆ 𝑣 } ) ) ) ) |
60 |
59
|
expimpd |
⊢ ( ( ( ( 𝑅 ∈ Top ∧ 𝑆 ∈ 𝑛-Locally Comp ∧ 𝑇 ∈ Top ) ∧ ( 𝑘 ∈ 𝒫 ∪ 𝑅 ∧ ( 𝑅 ↾t 𝑘 ) ∈ Comp ) ) ∧ 𝑣 ∈ 𝑇 ) → ( ( 𝑦 ∈ ( ( 𝑆 Cn 𝑇 ) × ( 𝑅 Cn 𝑆 ) ) ∧ ( 𝐹 ‘ 𝑦 ) ∈ { ℎ ∈ ( 𝑅 Cn 𝑇 ) ∣ ( ℎ “ 𝑘 ) ⊆ 𝑣 } ) → ∃ 𝑧 ∈ ( ( 𝑇 ↑ko 𝑆 ) ×t ( 𝑆 ↑ko 𝑅 ) ) ( 𝑦 ∈ 𝑧 ∧ 𝑧 ⊆ ( ◡ 𝐹 “ { ℎ ∈ ( 𝑅 Cn 𝑇 ) ∣ ( ℎ “ 𝑘 ) ⊆ 𝑣 } ) ) ) ) |
61 |
20 60
|
sylbid |
⊢ ( ( ( ( 𝑅 ∈ Top ∧ 𝑆 ∈ 𝑛-Locally Comp ∧ 𝑇 ∈ Top ) ∧ ( 𝑘 ∈ 𝒫 ∪ 𝑅 ∧ ( 𝑅 ↾t 𝑘 ) ∈ Comp ) ) ∧ 𝑣 ∈ 𝑇 ) → ( 𝑦 ∈ ( ◡ 𝐹 “ { ℎ ∈ ( 𝑅 Cn 𝑇 ) ∣ ( ℎ “ 𝑘 ) ⊆ 𝑣 } ) → ∃ 𝑧 ∈ ( ( 𝑇 ↑ko 𝑆 ) ×t ( 𝑆 ↑ko 𝑅 ) ) ( 𝑦 ∈ 𝑧 ∧ 𝑧 ⊆ ( ◡ 𝐹 “ { ℎ ∈ ( 𝑅 Cn 𝑇 ) ∣ ( ℎ “ 𝑘 ) ⊆ 𝑣 } ) ) ) ) |
62 |
61
|
ralrimiv |
⊢ ( ( ( ( 𝑅 ∈ Top ∧ 𝑆 ∈ 𝑛-Locally Comp ∧ 𝑇 ∈ Top ) ∧ ( 𝑘 ∈ 𝒫 ∪ 𝑅 ∧ ( 𝑅 ↾t 𝑘 ) ∈ Comp ) ) ∧ 𝑣 ∈ 𝑇 ) → ∀ 𝑦 ∈ ( ◡ 𝐹 “ { ℎ ∈ ( 𝑅 Cn 𝑇 ) ∣ ( ℎ “ 𝑘 ) ⊆ 𝑣 } ) ∃ 𝑧 ∈ ( ( 𝑇 ↑ko 𝑆 ) ×t ( 𝑆 ↑ko 𝑅 ) ) ( 𝑦 ∈ 𝑧 ∧ 𝑧 ⊆ ( ◡ 𝐹 “ { ℎ ∈ ( 𝑅 Cn 𝑇 ) ∣ ( ℎ “ 𝑘 ) ⊆ 𝑣 } ) ) ) |
63 |
|
nllytop |
⊢ ( 𝑆 ∈ 𝑛-Locally Comp → 𝑆 ∈ Top ) |
64 |
63
|
3ad2ant2 |
⊢ ( ( 𝑅 ∈ Top ∧ 𝑆 ∈ 𝑛-Locally Comp ∧ 𝑇 ∈ Top ) → 𝑆 ∈ Top ) |
65 |
|
simp3 |
⊢ ( ( 𝑅 ∈ Top ∧ 𝑆 ∈ 𝑛-Locally Comp ∧ 𝑇 ∈ Top ) → 𝑇 ∈ Top ) |
66 |
|
xkotop |
⊢ ( ( 𝑆 ∈ Top ∧ 𝑇 ∈ Top ) → ( 𝑇 ↑ko 𝑆 ) ∈ Top ) |
67 |
64 65 66
|
syl2anc |
⊢ ( ( 𝑅 ∈ Top ∧ 𝑆 ∈ 𝑛-Locally Comp ∧ 𝑇 ∈ Top ) → ( 𝑇 ↑ko 𝑆 ) ∈ Top ) |
68 |
|
simp1 |
⊢ ( ( 𝑅 ∈ Top ∧ 𝑆 ∈ 𝑛-Locally Comp ∧ 𝑇 ∈ Top ) → 𝑅 ∈ Top ) |
69 |
|
xkotop |
⊢ ( ( 𝑅 ∈ Top ∧ 𝑆 ∈ Top ) → ( 𝑆 ↑ko 𝑅 ) ∈ Top ) |
70 |
68 64 69
|
syl2anc |
⊢ ( ( 𝑅 ∈ Top ∧ 𝑆 ∈ 𝑛-Locally Comp ∧ 𝑇 ∈ Top ) → ( 𝑆 ↑ko 𝑅 ) ∈ Top ) |
71 |
|
txtop |
⊢ ( ( ( 𝑇 ↑ko 𝑆 ) ∈ Top ∧ ( 𝑆 ↑ko 𝑅 ) ∈ Top ) → ( ( 𝑇 ↑ko 𝑆 ) ×t ( 𝑆 ↑ko 𝑅 ) ) ∈ Top ) |
72 |
67 70 71
|
syl2anc |
⊢ ( ( 𝑅 ∈ Top ∧ 𝑆 ∈ 𝑛-Locally Comp ∧ 𝑇 ∈ Top ) → ( ( 𝑇 ↑ko 𝑆 ) ×t ( 𝑆 ↑ko 𝑅 ) ) ∈ Top ) |
73 |
72
|
ad2antrr |
⊢ ( ( ( ( 𝑅 ∈ Top ∧ 𝑆 ∈ 𝑛-Locally Comp ∧ 𝑇 ∈ Top ) ∧ ( 𝑘 ∈ 𝒫 ∪ 𝑅 ∧ ( 𝑅 ↾t 𝑘 ) ∈ Comp ) ) ∧ 𝑣 ∈ 𝑇 ) → ( ( 𝑇 ↑ko 𝑆 ) ×t ( 𝑆 ↑ko 𝑅 ) ) ∈ Top ) |
74 |
|
eltop2 |
⊢ ( ( ( 𝑇 ↑ko 𝑆 ) ×t ( 𝑆 ↑ko 𝑅 ) ) ∈ Top → ( ( ◡ 𝐹 “ { ℎ ∈ ( 𝑅 Cn 𝑇 ) ∣ ( ℎ “ 𝑘 ) ⊆ 𝑣 } ) ∈ ( ( 𝑇 ↑ko 𝑆 ) ×t ( 𝑆 ↑ko 𝑅 ) ) ↔ ∀ 𝑦 ∈ ( ◡ 𝐹 “ { ℎ ∈ ( 𝑅 Cn 𝑇 ) ∣ ( ℎ “ 𝑘 ) ⊆ 𝑣 } ) ∃ 𝑧 ∈ ( ( 𝑇 ↑ko 𝑆 ) ×t ( 𝑆 ↑ko 𝑅 ) ) ( 𝑦 ∈ 𝑧 ∧ 𝑧 ⊆ ( ◡ 𝐹 “ { ℎ ∈ ( 𝑅 Cn 𝑇 ) ∣ ( ℎ “ 𝑘 ) ⊆ 𝑣 } ) ) ) ) |
75 |
73 74
|
syl |
⊢ ( ( ( ( 𝑅 ∈ Top ∧ 𝑆 ∈ 𝑛-Locally Comp ∧ 𝑇 ∈ Top ) ∧ ( 𝑘 ∈ 𝒫 ∪ 𝑅 ∧ ( 𝑅 ↾t 𝑘 ) ∈ Comp ) ) ∧ 𝑣 ∈ 𝑇 ) → ( ( ◡ 𝐹 “ { ℎ ∈ ( 𝑅 Cn 𝑇 ) ∣ ( ℎ “ 𝑘 ) ⊆ 𝑣 } ) ∈ ( ( 𝑇 ↑ko 𝑆 ) ×t ( 𝑆 ↑ko 𝑅 ) ) ↔ ∀ 𝑦 ∈ ( ◡ 𝐹 “ { ℎ ∈ ( 𝑅 Cn 𝑇 ) ∣ ( ℎ “ 𝑘 ) ⊆ 𝑣 } ) ∃ 𝑧 ∈ ( ( 𝑇 ↑ko 𝑆 ) ×t ( 𝑆 ↑ko 𝑅 ) ) ( 𝑦 ∈ 𝑧 ∧ 𝑧 ⊆ ( ◡ 𝐹 “ { ℎ ∈ ( 𝑅 Cn 𝑇 ) ∣ ( ℎ “ 𝑘 ) ⊆ 𝑣 } ) ) ) ) |
76 |
62 75
|
mpbird |
⊢ ( ( ( ( 𝑅 ∈ Top ∧ 𝑆 ∈ 𝑛-Locally Comp ∧ 𝑇 ∈ Top ) ∧ ( 𝑘 ∈ 𝒫 ∪ 𝑅 ∧ ( 𝑅 ↾t 𝑘 ) ∈ Comp ) ) ∧ 𝑣 ∈ 𝑇 ) → ( ◡ 𝐹 “ { ℎ ∈ ( 𝑅 Cn 𝑇 ) ∣ ( ℎ “ 𝑘 ) ⊆ 𝑣 } ) ∈ ( ( 𝑇 ↑ko 𝑆 ) ×t ( 𝑆 ↑ko 𝑅 ) ) ) |
77 |
|
imaeq2 |
⊢ ( 𝑥 = { ℎ ∈ ( 𝑅 Cn 𝑇 ) ∣ ( ℎ “ 𝑘 ) ⊆ 𝑣 } → ( ◡ 𝐹 “ 𝑥 ) = ( ◡ 𝐹 “ { ℎ ∈ ( 𝑅 Cn 𝑇 ) ∣ ( ℎ “ 𝑘 ) ⊆ 𝑣 } ) ) |
78 |
77
|
eleq1d |
⊢ ( 𝑥 = { ℎ ∈ ( 𝑅 Cn 𝑇 ) ∣ ( ℎ “ 𝑘 ) ⊆ 𝑣 } → ( ( ◡ 𝐹 “ 𝑥 ) ∈ ( ( 𝑇 ↑ko 𝑆 ) ×t ( 𝑆 ↑ko 𝑅 ) ) ↔ ( ◡ 𝐹 “ { ℎ ∈ ( 𝑅 Cn 𝑇 ) ∣ ( ℎ “ 𝑘 ) ⊆ 𝑣 } ) ∈ ( ( 𝑇 ↑ko 𝑆 ) ×t ( 𝑆 ↑ko 𝑅 ) ) ) ) |
79 |
76 78
|
syl5ibrcom |
⊢ ( ( ( ( 𝑅 ∈ Top ∧ 𝑆 ∈ 𝑛-Locally Comp ∧ 𝑇 ∈ Top ) ∧ ( 𝑘 ∈ 𝒫 ∪ 𝑅 ∧ ( 𝑅 ↾t 𝑘 ) ∈ Comp ) ) ∧ 𝑣 ∈ 𝑇 ) → ( 𝑥 = { ℎ ∈ ( 𝑅 Cn 𝑇 ) ∣ ( ℎ “ 𝑘 ) ⊆ 𝑣 } → ( ◡ 𝐹 “ 𝑥 ) ∈ ( ( 𝑇 ↑ko 𝑆 ) ×t ( 𝑆 ↑ko 𝑅 ) ) ) ) |
80 |
79
|
rexlimdva |
⊢ ( ( ( 𝑅 ∈ Top ∧ 𝑆 ∈ 𝑛-Locally Comp ∧ 𝑇 ∈ Top ) ∧ ( 𝑘 ∈ 𝒫 ∪ 𝑅 ∧ ( 𝑅 ↾t 𝑘 ) ∈ Comp ) ) → ( ∃ 𝑣 ∈ 𝑇 𝑥 = { ℎ ∈ ( 𝑅 Cn 𝑇 ) ∣ ( ℎ “ 𝑘 ) ⊆ 𝑣 } → ( ◡ 𝐹 “ 𝑥 ) ∈ ( ( 𝑇 ↑ko 𝑆 ) ×t ( 𝑆 ↑ko 𝑅 ) ) ) ) |
81 |
80
|
anassrs |
⊢ ( ( ( ( 𝑅 ∈ Top ∧ 𝑆 ∈ 𝑛-Locally Comp ∧ 𝑇 ∈ Top ) ∧ 𝑘 ∈ 𝒫 ∪ 𝑅 ) ∧ ( 𝑅 ↾t 𝑘 ) ∈ Comp ) → ( ∃ 𝑣 ∈ 𝑇 𝑥 = { ℎ ∈ ( 𝑅 Cn 𝑇 ) ∣ ( ℎ “ 𝑘 ) ⊆ 𝑣 } → ( ◡ 𝐹 “ 𝑥 ) ∈ ( ( 𝑇 ↑ko 𝑆 ) ×t ( 𝑆 ↑ko 𝑅 ) ) ) ) |
82 |
81
|
expimpd |
⊢ ( ( ( 𝑅 ∈ Top ∧ 𝑆 ∈ 𝑛-Locally Comp ∧ 𝑇 ∈ Top ) ∧ 𝑘 ∈ 𝒫 ∪ 𝑅 ) → ( ( ( 𝑅 ↾t 𝑘 ) ∈ Comp ∧ ∃ 𝑣 ∈ 𝑇 𝑥 = { ℎ ∈ ( 𝑅 Cn 𝑇 ) ∣ ( ℎ “ 𝑘 ) ⊆ 𝑣 } ) → ( ◡ 𝐹 “ 𝑥 ) ∈ ( ( 𝑇 ↑ko 𝑆 ) ×t ( 𝑆 ↑ko 𝑅 ) ) ) ) |
83 |
82
|
rexlimdva |
⊢ ( ( 𝑅 ∈ Top ∧ 𝑆 ∈ 𝑛-Locally Comp ∧ 𝑇 ∈ Top ) → ( ∃ 𝑘 ∈ 𝒫 ∪ 𝑅 ( ( 𝑅 ↾t 𝑘 ) ∈ Comp ∧ ∃ 𝑣 ∈ 𝑇 𝑥 = { ℎ ∈ ( 𝑅 Cn 𝑇 ) ∣ ( ℎ “ 𝑘 ) ⊆ 𝑣 } ) → ( ◡ 𝐹 “ 𝑥 ) ∈ ( ( 𝑇 ↑ko 𝑆 ) ×t ( 𝑆 ↑ko 𝑅 ) ) ) ) |
84 |
16 83
|
syl5bi |
⊢ ( ( 𝑅 ∈ Top ∧ 𝑆 ∈ 𝑛-Locally Comp ∧ 𝑇 ∈ Top ) → ( 𝑥 ∈ ran ( 𝑘 ∈ { 𝑦 ∈ 𝒫 ∪ 𝑅 ∣ ( 𝑅 ↾t 𝑦 ) ∈ Comp } , 𝑣 ∈ 𝑇 ↦ { ℎ ∈ ( 𝑅 Cn 𝑇 ) ∣ ( ℎ “ 𝑘 ) ⊆ 𝑣 } ) → ( ◡ 𝐹 “ 𝑥 ) ∈ ( ( 𝑇 ↑ko 𝑆 ) ×t ( 𝑆 ↑ko 𝑅 ) ) ) ) |
85 |
84
|
ralrimiv |
⊢ ( ( 𝑅 ∈ Top ∧ 𝑆 ∈ 𝑛-Locally Comp ∧ 𝑇 ∈ Top ) → ∀ 𝑥 ∈ ran ( 𝑘 ∈ { 𝑦 ∈ 𝒫 ∪ 𝑅 ∣ ( 𝑅 ↾t 𝑦 ) ∈ Comp } , 𝑣 ∈ 𝑇 ↦ { ℎ ∈ ( 𝑅 Cn 𝑇 ) ∣ ( ℎ “ 𝑘 ) ⊆ 𝑣 } ) ( ◡ 𝐹 “ 𝑥 ) ∈ ( ( 𝑇 ↑ko 𝑆 ) ×t ( 𝑆 ↑ko 𝑅 ) ) ) |
86 |
|
eqid |
⊢ ( 𝑇 ↑ko 𝑆 ) = ( 𝑇 ↑ko 𝑆 ) |
87 |
86
|
xkotopon |
⊢ ( ( 𝑆 ∈ Top ∧ 𝑇 ∈ Top ) → ( 𝑇 ↑ko 𝑆 ) ∈ ( TopOn ‘ ( 𝑆 Cn 𝑇 ) ) ) |
88 |
64 65 87
|
syl2anc |
⊢ ( ( 𝑅 ∈ Top ∧ 𝑆 ∈ 𝑛-Locally Comp ∧ 𝑇 ∈ Top ) → ( 𝑇 ↑ko 𝑆 ) ∈ ( TopOn ‘ ( 𝑆 Cn 𝑇 ) ) ) |
89 |
|
eqid |
⊢ ( 𝑆 ↑ko 𝑅 ) = ( 𝑆 ↑ko 𝑅 ) |
90 |
89
|
xkotopon |
⊢ ( ( 𝑅 ∈ Top ∧ 𝑆 ∈ Top ) → ( 𝑆 ↑ko 𝑅 ) ∈ ( TopOn ‘ ( 𝑅 Cn 𝑆 ) ) ) |
91 |
68 64 90
|
syl2anc |
⊢ ( ( 𝑅 ∈ Top ∧ 𝑆 ∈ 𝑛-Locally Comp ∧ 𝑇 ∈ Top ) → ( 𝑆 ↑ko 𝑅 ) ∈ ( TopOn ‘ ( 𝑅 Cn 𝑆 ) ) ) |
92 |
|
txtopon |
⊢ ( ( ( 𝑇 ↑ko 𝑆 ) ∈ ( TopOn ‘ ( 𝑆 Cn 𝑇 ) ) ∧ ( 𝑆 ↑ko 𝑅 ) ∈ ( TopOn ‘ ( 𝑅 Cn 𝑆 ) ) ) → ( ( 𝑇 ↑ko 𝑆 ) ×t ( 𝑆 ↑ko 𝑅 ) ) ∈ ( TopOn ‘ ( ( 𝑆 Cn 𝑇 ) × ( 𝑅 Cn 𝑆 ) ) ) ) |
93 |
88 91 92
|
syl2anc |
⊢ ( ( 𝑅 ∈ Top ∧ 𝑆 ∈ 𝑛-Locally Comp ∧ 𝑇 ∈ Top ) → ( ( 𝑇 ↑ko 𝑆 ) ×t ( 𝑆 ↑ko 𝑅 ) ) ∈ ( TopOn ‘ ( ( 𝑆 Cn 𝑇 ) × ( 𝑅 Cn 𝑆 ) ) ) ) |
94 |
|
ovex |
⊢ ( 𝑅 Cn 𝑇 ) ∈ V |
95 |
94
|
pwex |
⊢ 𝒫 ( 𝑅 Cn 𝑇 ) ∈ V |
96 |
|
eqid |
⊢ ∪ 𝑅 = ∪ 𝑅 |
97 |
|
eqid |
⊢ { 𝑦 ∈ 𝒫 ∪ 𝑅 ∣ ( 𝑅 ↾t 𝑦 ) ∈ Comp } = { 𝑦 ∈ 𝒫 ∪ 𝑅 ∣ ( 𝑅 ↾t 𝑦 ) ∈ Comp } |
98 |
96 97 9
|
xkotf |
⊢ ( 𝑘 ∈ { 𝑦 ∈ 𝒫 ∪ 𝑅 ∣ ( 𝑅 ↾t 𝑦 ) ∈ Comp } , 𝑣 ∈ 𝑇 ↦ { ℎ ∈ ( 𝑅 Cn 𝑇 ) ∣ ( ℎ “ 𝑘 ) ⊆ 𝑣 } ) : ( { 𝑦 ∈ 𝒫 ∪ 𝑅 ∣ ( 𝑅 ↾t 𝑦 ) ∈ Comp } × 𝑇 ) ⟶ 𝒫 ( 𝑅 Cn 𝑇 ) |
99 |
|
frn |
⊢ ( ( 𝑘 ∈ { 𝑦 ∈ 𝒫 ∪ 𝑅 ∣ ( 𝑅 ↾t 𝑦 ) ∈ Comp } , 𝑣 ∈ 𝑇 ↦ { ℎ ∈ ( 𝑅 Cn 𝑇 ) ∣ ( ℎ “ 𝑘 ) ⊆ 𝑣 } ) : ( { 𝑦 ∈ 𝒫 ∪ 𝑅 ∣ ( 𝑅 ↾t 𝑦 ) ∈ Comp } × 𝑇 ) ⟶ 𝒫 ( 𝑅 Cn 𝑇 ) → ran ( 𝑘 ∈ { 𝑦 ∈ 𝒫 ∪ 𝑅 ∣ ( 𝑅 ↾t 𝑦 ) ∈ Comp } , 𝑣 ∈ 𝑇 ↦ { ℎ ∈ ( 𝑅 Cn 𝑇 ) ∣ ( ℎ “ 𝑘 ) ⊆ 𝑣 } ) ⊆ 𝒫 ( 𝑅 Cn 𝑇 ) ) |
100 |
98 99
|
ax-mp |
⊢ ran ( 𝑘 ∈ { 𝑦 ∈ 𝒫 ∪ 𝑅 ∣ ( 𝑅 ↾t 𝑦 ) ∈ Comp } , 𝑣 ∈ 𝑇 ↦ { ℎ ∈ ( 𝑅 Cn 𝑇 ) ∣ ( ℎ “ 𝑘 ) ⊆ 𝑣 } ) ⊆ 𝒫 ( 𝑅 Cn 𝑇 ) |
101 |
95 100
|
ssexi |
⊢ ran ( 𝑘 ∈ { 𝑦 ∈ 𝒫 ∪ 𝑅 ∣ ( 𝑅 ↾t 𝑦 ) ∈ Comp } , 𝑣 ∈ 𝑇 ↦ { ℎ ∈ ( 𝑅 Cn 𝑇 ) ∣ ( ℎ “ 𝑘 ) ⊆ 𝑣 } ) ∈ V |
102 |
101
|
a1i |
⊢ ( ( 𝑅 ∈ Top ∧ 𝑆 ∈ 𝑛-Locally Comp ∧ 𝑇 ∈ Top ) → ran ( 𝑘 ∈ { 𝑦 ∈ 𝒫 ∪ 𝑅 ∣ ( 𝑅 ↾t 𝑦 ) ∈ Comp } , 𝑣 ∈ 𝑇 ↦ { ℎ ∈ ( 𝑅 Cn 𝑇 ) ∣ ( ℎ “ 𝑘 ) ⊆ 𝑣 } ) ∈ V ) |
103 |
96 97 9
|
xkoval |
⊢ ( ( 𝑅 ∈ Top ∧ 𝑇 ∈ Top ) → ( 𝑇 ↑ko 𝑅 ) = ( topGen ‘ ( fi ‘ ran ( 𝑘 ∈ { 𝑦 ∈ 𝒫 ∪ 𝑅 ∣ ( 𝑅 ↾t 𝑦 ) ∈ Comp } , 𝑣 ∈ 𝑇 ↦ { ℎ ∈ ( 𝑅 Cn 𝑇 ) ∣ ( ℎ “ 𝑘 ) ⊆ 𝑣 } ) ) ) ) |
104 |
103
|
3adant2 |
⊢ ( ( 𝑅 ∈ Top ∧ 𝑆 ∈ 𝑛-Locally Comp ∧ 𝑇 ∈ Top ) → ( 𝑇 ↑ko 𝑅 ) = ( topGen ‘ ( fi ‘ ran ( 𝑘 ∈ { 𝑦 ∈ 𝒫 ∪ 𝑅 ∣ ( 𝑅 ↾t 𝑦 ) ∈ Comp } , 𝑣 ∈ 𝑇 ↦ { ℎ ∈ ( 𝑅 Cn 𝑇 ) ∣ ( ℎ “ 𝑘 ) ⊆ 𝑣 } ) ) ) ) |
105 |
|
eqid |
⊢ ( 𝑇 ↑ko 𝑅 ) = ( 𝑇 ↑ko 𝑅 ) |
106 |
105
|
xkotopon |
⊢ ( ( 𝑅 ∈ Top ∧ 𝑇 ∈ Top ) → ( 𝑇 ↑ko 𝑅 ) ∈ ( TopOn ‘ ( 𝑅 Cn 𝑇 ) ) ) |
107 |
106
|
3adant2 |
⊢ ( ( 𝑅 ∈ Top ∧ 𝑆 ∈ 𝑛-Locally Comp ∧ 𝑇 ∈ Top ) → ( 𝑇 ↑ko 𝑅 ) ∈ ( TopOn ‘ ( 𝑅 Cn 𝑇 ) ) ) |
108 |
93 102 104 107
|
subbascn |
⊢ ( ( 𝑅 ∈ Top ∧ 𝑆 ∈ 𝑛-Locally Comp ∧ 𝑇 ∈ Top ) → ( 𝐹 ∈ ( ( ( 𝑇 ↑ko 𝑆 ) ×t ( 𝑆 ↑ko 𝑅 ) ) Cn ( 𝑇 ↑ko 𝑅 ) ) ↔ ( 𝐹 : ( ( 𝑆 Cn 𝑇 ) × ( 𝑅 Cn 𝑆 ) ) ⟶ ( 𝑅 Cn 𝑇 ) ∧ ∀ 𝑥 ∈ ran ( 𝑘 ∈ { 𝑦 ∈ 𝒫 ∪ 𝑅 ∣ ( 𝑅 ↾t 𝑦 ) ∈ Comp } , 𝑣 ∈ 𝑇 ↦ { ℎ ∈ ( 𝑅 Cn 𝑇 ) ∣ ( ℎ “ 𝑘 ) ⊆ 𝑣 } ) ( ◡ 𝐹 “ 𝑥 ) ∈ ( ( 𝑇 ↑ko 𝑆 ) ×t ( 𝑆 ↑ko 𝑅 ) ) ) ) ) |
109 |
8 85 108
|
mpbir2and |
⊢ ( ( 𝑅 ∈ Top ∧ 𝑆 ∈ 𝑛-Locally Comp ∧ 𝑇 ∈ Top ) → 𝐹 ∈ ( ( ( 𝑇 ↑ko 𝑆 ) ×t ( 𝑆 ↑ko 𝑅 ) ) Cn ( 𝑇 ↑ko 𝑅 ) ) ) |