Step |
Hyp |
Ref |
Expression |
1 |
|
xkococn.1 |
⊢ 𝐹 = ( 𝑓 ∈ ( 𝑆 Cn 𝑇 ) , 𝑔 ∈ ( 𝑅 Cn 𝑆 ) ↦ ( 𝑓 ∘ 𝑔 ) ) |
2 |
|
xkococn.s |
⊢ ( 𝜑 → 𝑆 ∈ 𝑛-Locally Comp ) |
3 |
|
xkococn.k |
⊢ ( 𝜑 → 𝐾 ⊆ ∪ 𝑅 ) |
4 |
|
xkococn.c |
⊢ ( 𝜑 → ( 𝑅 ↾t 𝐾 ) ∈ Comp ) |
5 |
|
xkococn.v |
⊢ ( 𝜑 → 𝑉 ∈ 𝑇 ) |
6 |
|
xkococn.a |
⊢ ( 𝜑 → 𝐴 ∈ ( 𝑆 Cn 𝑇 ) ) |
7 |
|
xkococn.b |
⊢ ( 𝜑 → 𝐵 ∈ ( 𝑅 Cn 𝑆 ) ) |
8 |
|
xkococn.i |
⊢ ( 𝜑 → ( ( 𝐴 ∘ 𝐵 ) “ 𝐾 ) ⊆ 𝑉 ) |
9 |
|
imacmp |
⊢ ( ( 𝐵 ∈ ( 𝑅 Cn 𝑆 ) ∧ ( 𝑅 ↾t 𝐾 ) ∈ Comp ) → ( 𝑆 ↾t ( 𝐵 “ 𝐾 ) ) ∈ Comp ) |
10 |
7 4 9
|
syl2anc |
⊢ ( 𝜑 → ( 𝑆 ↾t ( 𝐵 “ 𝐾 ) ) ∈ Comp ) |
11 |
2
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐵 “ 𝐾 ) ) → 𝑆 ∈ 𝑛-Locally Comp ) |
12 |
|
cnima |
⊢ ( ( 𝐴 ∈ ( 𝑆 Cn 𝑇 ) ∧ 𝑉 ∈ 𝑇 ) → ( ◡ 𝐴 “ 𝑉 ) ∈ 𝑆 ) |
13 |
6 5 12
|
syl2anc |
⊢ ( 𝜑 → ( ◡ 𝐴 “ 𝑉 ) ∈ 𝑆 ) |
14 |
13
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐵 “ 𝐾 ) ) → ( ◡ 𝐴 “ 𝑉 ) ∈ 𝑆 ) |
15 |
|
imaco |
⊢ ( ( 𝐴 ∘ 𝐵 ) “ 𝐾 ) = ( 𝐴 “ ( 𝐵 “ 𝐾 ) ) |
16 |
15 8
|
eqsstrrid |
⊢ ( 𝜑 → ( 𝐴 “ ( 𝐵 “ 𝐾 ) ) ⊆ 𝑉 ) |
17 |
|
eqid |
⊢ ∪ 𝑆 = ∪ 𝑆 |
18 |
|
eqid |
⊢ ∪ 𝑇 = ∪ 𝑇 |
19 |
17 18
|
cnf |
⊢ ( 𝐴 ∈ ( 𝑆 Cn 𝑇 ) → 𝐴 : ∪ 𝑆 ⟶ ∪ 𝑇 ) |
20 |
|
ffun |
⊢ ( 𝐴 : ∪ 𝑆 ⟶ ∪ 𝑇 → Fun 𝐴 ) |
21 |
6 19 20
|
3syl |
⊢ ( 𝜑 → Fun 𝐴 ) |
22 |
|
imassrn |
⊢ ( 𝐵 “ 𝐾 ) ⊆ ran 𝐵 |
23 |
|
eqid |
⊢ ∪ 𝑅 = ∪ 𝑅 |
24 |
23 17
|
cnf |
⊢ ( 𝐵 ∈ ( 𝑅 Cn 𝑆 ) → 𝐵 : ∪ 𝑅 ⟶ ∪ 𝑆 ) |
25 |
|
frn |
⊢ ( 𝐵 : ∪ 𝑅 ⟶ ∪ 𝑆 → ran 𝐵 ⊆ ∪ 𝑆 ) |
26 |
7 24 25
|
3syl |
⊢ ( 𝜑 → ran 𝐵 ⊆ ∪ 𝑆 ) |
27 |
22 26
|
sstrid |
⊢ ( 𝜑 → ( 𝐵 “ 𝐾 ) ⊆ ∪ 𝑆 ) |
28 |
|
fdm |
⊢ ( 𝐴 : ∪ 𝑆 ⟶ ∪ 𝑇 → dom 𝐴 = ∪ 𝑆 ) |
29 |
6 19 28
|
3syl |
⊢ ( 𝜑 → dom 𝐴 = ∪ 𝑆 ) |
30 |
27 29
|
sseqtrrd |
⊢ ( 𝜑 → ( 𝐵 “ 𝐾 ) ⊆ dom 𝐴 ) |
31 |
|
funimass3 |
⊢ ( ( Fun 𝐴 ∧ ( 𝐵 “ 𝐾 ) ⊆ dom 𝐴 ) → ( ( 𝐴 “ ( 𝐵 “ 𝐾 ) ) ⊆ 𝑉 ↔ ( 𝐵 “ 𝐾 ) ⊆ ( ◡ 𝐴 “ 𝑉 ) ) ) |
32 |
21 30 31
|
syl2anc |
⊢ ( 𝜑 → ( ( 𝐴 “ ( 𝐵 “ 𝐾 ) ) ⊆ 𝑉 ↔ ( 𝐵 “ 𝐾 ) ⊆ ( ◡ 𝐴 “ 𝑉 ) ) ) |
33 |
16 32
|
mpbid |
⊢ ( 𝜑 → ( 𝐵 “ 𝐾 ) ⊆ ( ◡ 𝐴 “ 𝑉 ) ) |
34 |
33
|
sselda |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐵 “ 𝐾 ) ) → 𝑥 ∈ ( ◡ 𝐴 “ 𝑉 ) ) |
35 |
|
nlly2i |
⊢ ( ( 𝑆 ∈ 𝑛-Locally Comp ∧ ( ◡ 𝐴 “ 𝑉 ) ∈ 𝑆 ∧ 𝑥 ∈ ( ◡ 𝐴 “ 𝑉 ) ) → ∃ 𝑠 ∈ 𝒫 ( ◡ 𝐴 “ 𝑉 ) ∃ 𝑢 ∈ 𝑆 ( 𝑥 ∈ 𝑢 ∧ 𝑢 ⊆ 𝑠 ∧ ( 𝑆 ↾t 𝑠 ) ∈ Comp ) ) |
36 |
11 14 34 35
|
syl3anc |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐵 “ 𝐾 ) ) → ∃ 𝑠 ∈ 𝒫 ( ◡ 𝐴 “ 𝑉 ) ∃ 𝑢 ∈ 𝑆 ( 𝑥 ∈ 𝑢 ∧ 𝑢 ⊆ 𝑠 ∧ ( 𝑆 ↾t 𝑠 ) ∈ Comp ) ) |
37 |
|
nllytop |
⊢ ( 𝑆 ∈ 𝑛-Locally Comp → 𝑆 ∈ Top ) |
38 |
2 37
|
syl |
⊢ ( 𝜑 → 𝑆 ∈ Top ) |
39 |
38
|
ad3antrrr |
⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐵 “ 𝐾 ) ) ∧ 𝑠 ∈ 𝒫 ( ◡ 𝐴 “ 𝑉 ) ) ∧ ( 𝑢 ∈ 𝑆 ∧ ( 𝑥 ∈ 𝑢 ∧ 𝑢 ⊆ 𝑠 ∧ ( 𝑆 ↾t 𝑠 ) ∈ Comp ) ) ) → 𝑆 ∈ Top ) |
40 |
|
imaexg |
⊢ ( 𝐵 ∈ ( 𝑅 Cn 𝑆 ) → ( 𝐵 “ 𝐾 ) ∈ V ) |
41 |
7 40
|
syl |
⊢ ( 𝜑 → ( 𝐵 “ 𝐾 ) ∈ V ) |
42 |
41
|
ad3antrrr |
⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐵 “ 𝐾 ) ) ∧ 𝑠 ∈ 𝒫 ( ◡ 𝐴 “ 𝑉 ) ) ∧ ( 𝑢 ∈ 𝑆 ∧ ( 𝑥 ∈ 𝑢 ∧ 𝑢 ⊆ 𝑠 ∧ ( 𝑆 ↾t 𝑠 ) ∈ Comp ) ) ) → ( 𝐵 “ 𝐾 ) ∈ V ) |
43 |
|
simprl |
⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐵 “ 𝐾 ) ) ∧ 𝑠 ∈ 𝒫 ( ◡ 𝐴 “ 𝑉 ) ) ∧ ( 𝑢 ∈ 𝑆 ∧ ( 𝑥 ∈ 𝑢 ∧ 𝑢 ⊆ 𝑠 ∧ ( 𝑆 ↾t 𝑠 ) ∈ Comp ) ) ) → 𝑢 ∈ 𝑆 ) |
44 |
|
elrestr |
⊢ ( ( 𝑆 ∈ Top ∧ ( 𝐵 “ 𝐾 ) ∈ V ∧ 𝑢 ∈ 𝑆 ) → ( 𝑢 ∩ ( 𝐵 “ 𝐾 ) ) ∈ ( 𝑆 ↾t ( 𝐵 “ 𝐾 ) ) ) |
45 |
39 42 43 44
|
syl3anc |
⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐵 “ 𝐾 ) ) ∧ 𝑠 ∈ 𝒫 ( ◡ 𝐴 “ 𝑉 ) ) ∧ ( 𝑢 ∈ 𝑆 ∧ ( 𝑥 ∈ 𝑢 ∧ 𝑢 ⊆ 𝑠 ∧ ( 𝑆 ↾t 𝑠 ) ∈ Comp ) ) ) → ( 𝑢 ∩ ( 𝐵 “ 𝐾 ) ) ∈ ( 𝑆 ↾t ( 𝐵 “ 𝐾 ) ) ) |
46 |
|
simprr1 |
⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐵 “ 𝐾 ) ) ∧ 𝑠 ∈ 𝒫 ( ◡ 𝐴 “ 𝑉 ) ) ∧ ( 𝑢 ∈ 𝑆 ∧ ( 𝑥 ∈ 𝑢 ∧ 𝑢 ⊆ 𝑠 ∧ ( 𝑆 ↾t 𝑠 ) ∈ Comp ) ) ) → 𝑥 ∈ 𝑢 ) |
47 |
|
simpllr |
⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐵 “ 𝐾 ) ) ∧ 𝑠 ∈ 𝒫 ( ◡ 𝐴 “ 𝑉 ) ) ∧ ( 𝑢 ∈ 𝑆 ∧ ( 𝑥 ∈ 𝑢 ∧ 𝑢 ⊆ 𝑠 ∧ ( 𝑆 ↾t 𝑠 ) ∈ Comp ) ) ) → 𝑥 ∈ ( 𝐵 “ 𝐾 ) ) |
48 |
46 47
|
elind |
⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐵 “ 𝐾 ) ) ∧ 𝑠 ∈ 𝒫 ( ◡ 𝐴 “ 𝑉 ) ) ∧ ( 𝑢 ∈ 𝑆 ∧ ( 𝑥 ∈ 𝑢 ∧ 𝑢 ⊆ 𝑠 ∧ ( 𝑆 ↾t 𝑠 ) ∈ Comp ) ) ) → 𝑥 ∈ ( 𝑢 ∩ ( 𝐵 “ 𝐾 ) ) ) |
49 |
|
inss1 |
⊢ ( 𝑢 ∩ ( 𝐵 “ 𝐾 ) ) ⊆ 𝑢 |
50 |
|
elpwi |
⊢ ( 𝑠 ∈ 𝒫 ( ◡ 𝐴 “ 𝑉 ) → 𝑠 ⊆ ( ◡ 𝐴 “ 𝑉 ) ) |
51 |
50
|
ad2antlr |
⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐵 “ 𝐾 ) ) ∧ 𝑠 ∈ 𝒫 ( ◡ 𝐴 “ 𝑉 ) ) ∧ ( 𝑢 ∈ 𝑆 ∧ ( 𝑥 ∈ 𝑢 ∧ 𝑢 ⊆ 𝑠 ∧ ( 𝑆 ↾t 𝑠 ) ∈ Comp ) ) ) → 𝑠 ⊆ ( ◡ 𝐴 “ 𝑉 ) ) |
52 |
|
elssuni |
⊢ ( ( ◡ 𝐴 “ 𝑉 ) ∈ 𝑆 → ( ◡ 𝐴 “ 𝑉 ) ⊆ ∪ 𝑆 ) |
53 |
13 52
|
syl |
⊢ ( 𝜑 → ( ◡ 𝐴 “ 𝑉 ) ⊆ ∪ 𝑆 ) |
54 |
53
|
ad3antrrr |
⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐵 “ 𝐾 ) ) ∧ 𝑠 ∈ 𝒫 ( ◡ 𝐴 “ 𝑉 ) ) ∧ ( 𝑢 ∈ 𝑆 ∧ ( 𝑥 ∈ 𝑢 ∧ 𝑢 ⊆ 𝑠 ∧ ( 𝑆 ↾t 𝑠 ) ∈ Comp ) ) ) → ( ◡ 𝐴 “ 𝑉 ) ⊆ ∪ 𝑆 ) |
55 |
51 54
|
sstrd |
⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐵 “ 𝐾 ) ) ∧ 𝑠 ∈ 𝒫 ( ◡ 𝐴 “ 𝑉 ) ) ∧ ( 𝑢 ∈ 𝑆 ∧ ( 𝑥 ∈ 𝑢 ∧ 𝑢 ⊆ 𝑠 ∧ ( 𝑆 ↾t 𝑠 ) ∈ Comp ) ) ) → 𝑠 ⊆ ∪ 𝑆 ) |
56 |
|
simprr2 |
⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐵 “ 𝐾 ) ) ∧ 𝑠 ∈ 𝒫 ( ◡ 𝐴 “ 𝑉 ) ) ∧ ( 𝑢 ∈ 𝑆 ∧ ( 𝑥 ∈ 𝑢 ∧ 𝑢 ⊆ 𝑠 ∧ ( 𝑆 ↾t 𝑠 ) ∈ Comp ) ) ) → 𝑢 ⊆ 𝑠 ) |
57 |
17
|
ssntr |
⊢ ( ( ( 𝑆 ∈ Top ∧ 𝑠 ⊆ ∪ 𝑆 ) ∧ ( 𝑢 ∈ 𝑆 ∧ 𝑢 ⊆ 𝑠 ) ) → 𝑢 ⊆ ( ( int ‘ 𝑆 ) ‘ 𝑠 ) ) |
58 |
39 55 43 56 57
|
syl22anc |
⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐵 “ 𝐾 ) ) ∧ 𝑠 ∈ 𝒫 ( ◡ 𝐴 “ 𝑉 ) ) ∧ ( 𝑢 ∈ 𝑆 ∧ ( 𝑥 ∈ 𝑢 ∧ 𝑢 ⊆ 𝑠 ∧ ( 𝑆 ↾t 𝑠 ) ∈ Comp ) ) ) → 𝑢 ⊆ ( ( int ‘ 𝑆 ) ‘ 𝑠 ) ) |
59 |
49 58
|
sstrid |
⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐵 “ 𝐾 ) ) ∧ 𝑠 ∈ 𝒫 ( ◡ 𝐴 “ 𝑉 ) ) ∧ ( 𝑢 ∈ 𝑆 ∧ ( 𝑥 ∈ 𝑢 ∧ 𝑢 ⊆ 𝑠 ∧ ( 𝑆 ↾t 𝑠 ) ∈ Comp ) ) ) → ( 𝑢 ∩ ( 𝐵 “ 𝐾 ) ) ⊆ ( ( int ‘ 𝑆 ) ‘ 𝑠 ) ) |
60 |
|
simprr3 |
⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐵 “ 𝐾 ) ) ∧ 𝑠 ∈ 𝒫 ( ◡ 𝐴 “ 𝑉 ) ) ∧ ( 𝑢 ∈ 𝑆 ∧ ( 𝑥 ∈ 𝑢 ∧ 𝑢 ⊆ 𝑠 ∧ ( 𝑆 ↾t 𝑠 ) ∈ Comp ) ) ) → ( 𝑆 ↾t 𝑠 ) ∈ Comp ) |
61 |
59 60
|
jca |
⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐵 “ 𝐾 ) ) ∧ 𝑠 ∈ 𝒫 ( ◡ 𝐴 “ 𝑉 ) ) ∧ ( 𝑢 ∈ 𝑆 ∧ ( 𝑥 ∈ 𝑢 ∧ 𝑢 ⊆ 𝑠 ∧ ( 𝑆 ↾t 𝑠 ) ∈ Comp ) ) ) → ( ( 𝑢 ∩ ( 𝐵 “ 𝐾 ) ) ⊆ ( ( int ‘ 𝑆 ) ‘ 𝑠 ) ∧ ( 𝑆 ↾t 𝑠 ) ∈ Comp ) ) |
62 |
|
eleq2 |
⊢ ( 𝑦 = ( 𝑢 ∩ ( 𝐵 “ 𝐾 ) ) → ( 𝑥 ∈ 𝑦 ↔ 𝑥 ∈ ( 𝑢 ∩ ( 𝐵 “ 𝐾 ) ) ) ) |
63 |
|
cleq1lem |
⊢ ( 𝑦 = ( 𝑢 ∩ ( 𝐵 “ 𝐾 ) ) → ( ( 𝑦 ⊆ ( ( int ‘ 𝑆 ) ‘ 𝑠 ) ∧ ( 𝑆 ↾t 𝑠 ) ∈ Comp ) ↔ ( ( 𝑢 ∩ ( 𝐵 “ 𝐾 ) ) ⊆ ( ( int ‘ 𝑆 ) ‘ 𝑠 ) ∧ ( 𝑆 ↾t 𝑠 ) ∈ Comp ) ) ) |
64 |
62 63
|
anbi12d |
⊢ ( 𝑦 = ( 𝑢 ∩ ( 𝐵 “ 𝐾 ) ) → ( ( 𝑥 ∈ 𝑦 ∧ ( 𝑦 ⊆ ( ( int ‘ 𝑆 ) ‘ 𝑠 ) ∧ ( 𝑆 ↾t 𝑠 ) ∈ Comp ) ) ↔ ( 𝑥 ∈ ( 𝑢 ∩ ( 𝐵 “ 𝐾 ) ) ∧ ( ( 𝑢 ∩ ( 𝐵 “ 𝐾 ) ) ⊆ ( ( int ‘ 𝑆 ) ‘ 𝑠 ) ∧ ( 𝑆 ↾t 𝑠 ) ∈ Comp ) ) ) ) |
65 |
64
|
rspcev |
⊢ ( ( ( 𝑢 ∩ ( 𝐵 “ 𝐾 ) ) ∈ ( 𝑆 ↾t ( 𝐵 “ 𝐾 ) ) ∧ ( 𝑥 ∈ ( 𝑢 ∩ ( 𝐵 “ 𝐾 ) ) ∧ ( ( 𝑢 ∩ ( 𝐵 “ 𝐾 ) ) ⊆ ( ( int ‘ 𝑆 ) ‘ 𝑠 ) ∧ ( 𝑆 ↾t 𝑠 ) ∈ Comp ) ) ) → ∃ 𝑦 ∈ ( 𝑆 ↾t ( 𝐵 “ 𝐾 ) ) ( 𝑥 ∈ 𝑦 ∧ ( 𝑦 ⊆ ( ( int ‘ 𝑆 ) ‘ 𝑠 ) ∧ ( 𝑆 ↾t 𝑠 ) ∈ Comp ) ) ) |
66 |
45 48 61 65
|
syl12anc |
⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐵 “ 𝐾 ) ) ∧ 𝑠 ∈ 𝒫 ( ◡ 𝐴 “ 𝑉 ) ) ∧ ( 𝑢 ∈ 𝑆 ∧ ( 𝑥 ∈ 𝑢 ∧ 𝑢 ⊆ 𝑠 ∧ ( 𝑆 ↾t 𝑠 ) ∈ Comp ) ) ) → ∃ 𝑦 ∈ ( 𝑆 ↾t ( 𝐵 “ 𝐾 ) ) ( 𝑥 ∈ 𝑦 ∧ ( 𝑦 ⊆ ( ( int ‘ 𝑆 ) ‘ 𝑠 ) ∧ ( 𝑆 ↾t 𝑠 ) ∈ Comp ) ) ) |
67 |
66
|
rexlimdvaa |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐵 “ 𝐾 ) ) ∧ 𝑠 ∈ 𝒫 ( ◡ 𝐴 “ 𝑉 ) ) → ( ∃ 𝑢 ∈ 𝑆 ( 𝑥 ∈ 𝑢 ∧ 𝑢 ⊆ 𝑠 ∧ ( 𝑆 ↾t 𝑠 ) ∈ Comp ) → ∃ 𝑦 ∈ ( 𝑆 ↾t ( 𝐵 “ 𝐾 ) ) ( 𝑥 ∈ 𝑦 ∧ ( 𝑦 ⊆ ( ( int ‘ 𝑆 ) ‘ 𝑠 ) ∧ ( 𝑆 ↾t 𝑠 ) ∈ Comp ) ) ) ) |
68 |
67
|
reximdva |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐵 “ 𝐾 ) ) → ( ∃ 𝑠 ∈ 𝒫 ( ◡ 𝐴 “ 𝑉 ) ∃ 𝑢 ∈ 𝑆 ( 𝑥 ∈ 𝑢 ∧ 𝑢 ⊆ 𝑠 ∧ ( 𝑆 ↾t 𝑠 ) ∈ Comp ) → ∃ 𝑠 ∈ 𝒫 ( ◡ 𝐴 “ 𝑉 ) ∃ 𝑦 ∈ ( 𝑆 ↾t ( 𝐵 “ 𝐾 ) ) ( 𝑥 ∈ 𝑦 ∧ ( 𝑦 ⊆ ( ( int ‘ 𝑆 ) ‘ 𝑠 ) ∧ ( 𝑆 ↾t 𝑠 ) ∈ Comp ) ) ) ) |
69 |
36 68
|
mpd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐵 “ 𝐾 ) ) → ∃ 𝑠 ∈ 𝒫 ( ◡ 𝐴 “ 𝑉 ) ∃ 𝑦 ∈ ( 𝑆 ↾t ( 𝐵 “ 𝐾 ) ) ( 𝑥 ∈ 𝑦 ∧ ( 𝑦 ⊆ ( ( int ‘ 𝑆 ) ‘ 𝑠 ) ∧ ( 𝑆 ↾t 𝑠 ) ∈ Comp ) ) ) |
70 |
|
rexcom |
⊢ ( ∃ 𝑠 ∈ 𝒫 ( ◡ 𝐴 “ 𝑉 ) ∃ 𝑦 ∈ ( 𝑆 ↾t ( 𝐵 “ 𝐾 ) ) ( 𝑥 ∈ 𝑦 ∧ ( 𝑦 ⊆ ( ( int ‘ 𝑆 ) ‘ 𝑠 ) ∧ ( 𝑆 ↾t 𝑠 ) ∈ Comp ) ) ↔ ∃ 𝑦 ∈ ( 𝑆 ↾t ( 𝐵 “ 𝐾 ) ) ∃ 𝑠 ∈ 𝒫 ( ◡ 𝐴 “ 𝑉 ) ( 𝑥 ∈ 𝑦 ∧ ( 𝑦 ⊆ ( ( int ‘ 𝑆 ) ‘ 𝑠 ) ∧ ( 𝑆 ↾t 𝑠 ) ∈ Comp ) ) ) |
71 |
|
r19.42v |
⊢ ( ∃ 𝑠 ∈ 𝒫 ( ◡ 𝐴 “ 𝑉 ) ( 𝑥 ∈ 𝑦 ∧ ( 𝑦 ⊆ ( ( int ‘ 𝑆 ) ‘ 𝑠 ) ∧ ( 𝑆 ↾t 𝑠 ) ∈ Comp ) ) ↔ ( 𝑥 ∈ 𝑦 ∧ ∃ 𝑠 ∈ 𝒫 ( ◡ 𝐴 “ 𝑉 ) ( 𝑦 ⊆ ( ( int ‘ 𝑆 ) ‘ 𝑠 ) ∧ ( 𝑆 ↾t 𝑠 ) ∈ Comp ) ) ) |
72 |
71
|
rexbii |
⊢ ( ∃ 𝑦 ∈ ( 𝑆 ↾t ( 𝐵 “ 𝐾 ) ) ∃ 𝑠 ∈ 𝒫 ( ◡ 𝐴 “ 𝑉 ) ( 𝑥 ∈ 𝑦 ∧ ( 𝑦 ⊆ ( ( int ‘ 𝑆 ) ‘ 𝑠 ) ∧ ( 𝑆 ↾t 𝑠 ) ∈ Comp ) ) ↔ ∃ 𝑦 ∈ ( 𝑆 ↾t ( 𝐵 “ 𝐾 ) ) ( 𝑥 ∈ 𝑦 ∧ ∃ 𝑠 ∈ 𝒫 ( ◡ 𝐴 “ 𝑉 ) ( 𝑦 ⊆ ( ( int ‘ 𝑆 ) ‘ 𝑠 ) ∧ ( 𝑆 ↾t 𝑠 ) ∈ Comp ) ) ) |
73 |
70 72
|
bitri |
⊢ ( ∃ 𝑠 ∈ 𝒫 ( ◡ 𝐴 “ 𝑉 ) ∃ 𝑦 ∈ ( 𝑆 ↾t ( 𝐵 “ 𝐾 ) ) ( 𝑥 ∈ 𝑦 ∧ ( 𝑦 ⊆ ( ( int ‘ 𝑆 ) ‘ 𝑠 ) ∧ ( 𝑆 ↾t 𝑠 ) ∈ Comp ) ) ↔ ∃ 𝑦 ∈ ( 𝑆 ↾t ( 𝐵 “ 𝐾 ) ) ( 𝑥 ∈ 𝑦 ∧ ∃ 𝑠 ∈ 𝒫 ( ◡ 𝐴 “ 𝑉 ) ( 𝑦 ⊆ ( ( int ‘ 𝑆 ) ‘ 𝑠 ) ∧ ( 𝑆 ↾t 𝑠 ) ∈ Comp ) ) ) |
74 |
69 73
|
sylib |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐵 “ 𝐾 ) ) → ∃ 𝑦 ∈ ( 𝑆 ↾t ( 𝐵 “ 𝐾 ) ) ( 𝑥 ∈ 𝑦 ∧ ∃ 𝑠 ∈ 𝒫 ( ◡ 𝐴 “ 𝑉 ) ( 𝑦 ⊆ ( ( int ‘ 𝑆 ) ‘ 𝑠 ) ∧ ( 𝑆 ↾t 𝑠 ) ∈ Comp ) ) ) |
75 |
74
|
ralrimiva |
⊢ ( 𝜑 → ∀ 𝑥 ∈ ( 𝐵 “ 𝐾 ) ∃ 𝑦 ∈ ( 𝑆 ↾t ( 𝐵 “ 𝐾 ) ) ( 𝑥 ∈ 𝑦 ∧ ∃ 𝑠 ∈ 𝒫 ( ◡ 𝐴 “ 𝑉 ) ( 𝑦 ⊆ ( ( int ‘ 𝑆 ) ‘ 𝑠 ) ∧ ( 𝑆 ↾t 𝑠 ) ∈ Comp ) ) ) |
76 |
17
|
restuni |
⊢ ( ( 𝑆 ∈ Top ∧ ( 𝐵 “ 𝐾 ) ⊆ ∪ 𝑆 ) → ( 𝐵 “ 𝐾 ) = ∪ ( 𝑆 ↾t ( 𝐵 “ 𝐾 ) ) ) |
77 |
38 27 76
|
syl2anc |
⊢ ( 𝜑 → ( 𝐵 “ 𝐾 ) = ∪ ( 𝑆 ↾t ( 𝐵 “ 𝐾 ) ) ) |
78 |
77
|
raleqdv |
⊢ ( 𝜑 → ( ∀ 𝑥 ∈ ( 𝐵 “ 𝐾 ) ∃ 𝑦 ∈ ( 𝑆 ↾t ( 𝐵 “ 𝐾 ) ) ( 𝑥 ∈ 𝑦 ∧ ∃ 𝑠 ∈ 𝒫 ( ◡ 𝐴 “ 𝑉 ) ( 𝑦 ⊆ ( ( int ‘ 𝑆 ) ‘ 𝑠 ) ∧ ( 𝑆 ↾t 𝑠 ) ∈ Comp ) ) ↔ ∀ 𝑥 ∈ ∪ ( 𝑆 ↾t ( 𝐵 “ 𝐾 ) ) ∃ 𝑦 ∈ ( 𝑆 ↾t ( 𝐵 “ 𝐾 ) ) ( 𝑥 ∈ 𝑦 ∧ ∃ 𝑠 ∈ 𝒫 ( ◡ 𝐴 “ 𝑉 ) ( 𝑦 ⊆ ( ( int ‘ 𝑆 ) ‘ 𝑠 ) ∧ ( 𝑆 ↾t 𝑠 ) ∈ Comp ) ) ) ) |
79 |
75 78
|
mpbid |
⊢ ( 𝜑 → ∀ 𝑥 ∈ ∪ ( 𝑆 ↾t ( 𝐵 “ 𝐾 ) ) ∃ 𝑦 ∈ ( 𝑆 ↾t ( 𝐵 “ 𝐾 ) ) ( 𝑥 ∈ 𝑦 ∧ ∃ 𝑠 ∈ 𝒫 ( ◡ 𝐴 “ 𝑉 ) ( 𝑦 ⊆ ( ( int ‘ 𝑆 ) ‘ 𝑠 ) ∧ ( 𝑆 ↾t 𝑠 ) ∈ Comp ) ) ) |
80 |
|
eqid |
⊢ ∪ ( 𝑆 ↾t ( 𝐵 “ 𝐾 ) ) = ∪ ( 𝑆 ↾t ( 𝐵 “ 𝐾 ) ) |
81 |
|
fveq2 |
⊢ ( 𝑠 = ( 𝑘 ‘ 𝑦 ) → ( ( int ‘ 𝑆 ) ‘ 𝑠 ) = ( ( int ‘ 𝑆 ) ‘ ( 𝑘 ‘ 𝑦 ) ) ) |
82 |
81
|
sseq2d |
⊢ ( 𝑠 = ( 𝑘 ‘ 𝑦 ) → ( 𝑦 ⊆ ( ( int ‘ 𝑆 ) ‘ 𝑠 ) ↔ 𝑦 ⊆ ( ( int ‘ 𝑆 ) ‘ ( 𝑘 ‘ 𝑦 ) ) ) ) |
83 |
|
oveq2 |
⊢ ( 𝑠 = ( 𝑘 ‘ 𝑦 ) → ( 𝑆 ↾t 𝑠 ) = ( 𝑆 ↾t ( 𝑘 ‘ 𝑦 ) ) ) |
84 |
83
|
eleq1d |
⊢ ( 𝑠 = ( 𝑘 ‘ 𝑦 ) → ( ( 𝑆 ↾t 𝑠 ) ∈ Comp ↔ ( 𝑆 ↾t ( 𝑘 ‘ 𝑦 ) ) ∈ Comp ) ) |
85 |
82 84
|
anbi12d |
⊢ ( 𝑠 = ( 𝑘 ‘ 𝑦 ) → ( ( 𝑦 ⊆ ( ( int ‘ 𝑆 ) ‘ 𝑠 ) ∧ ( 𝑆 ↾t 𝑠 ) ∈ Comp ) ↔ ( 𝑦 ⊆ ( ( int ‘ 𝑆 ) ‘ ( 𝑘 ‘ 𝑦 ) ) ∧ ( 𝑆 ↾t ( 𝑘 ‘ 𝑦 ) ) ∈ Comp ) ) ) |
86 |
80 85
|
cmpcovf |
⊢ ( ( ( 𝑆 ↾t ( 𝐵 “ 𝐾 ) ) ∈ Comp ∧ ∀ 𝑥 ∈ ∪ ( 𝑆 ↾t ( 𝐵 “ 𝐾 ) ) ∃ 𝑦 ∈ ( 𝑆 ↾t ( 𝐵 “ 𝐾 ) ) ( 𝑥 ∈ 𝑦 ∧ ∃ 𝑠 ∈ 𝒫 ( ◡ 𝐴 “ 𝑉 ) ( 𝑦 ⊆ ( ( int ‘ 𝑆 ) ‘ 𝑠 ) ∧ ( 𝑆 ↾t 𝑠 ) ∈ Comp ) ) ) → ∃ 𝑤 ∈ ( 𝒫 ( 𝑆 ↾t ( 𝐵 “ 𝐾 ) ) ∩ Fin ) ( ∪ ( 𝑆 ↾t ( 𝐵 “ 𝐾 ) ) = ∪ 𝑤 ∧ ∃ 𝑘 ( 𝑘 : 𝑤 ⟶ 𝒫 ( ◡ 𝐴 “ 𝑉 ) ∧ ∀ 𝑦 ∈ 𝑤 ( 𝑦 ⊆ ( ( int ‘ 𝑆 ) ‘ ( 𝑘 ‘ 𝑦 ) ) ∧ ( 𝑆 ↾t ( 𝑘 ‘ 𝑦 ) ) ∈ Comp ) ) ) ) |
87 |
10 79 86
|
syl2anc |
⊢ ( 𝜑 → ∃ 𝑤 ∈ ( 𝒫 ( 𝑆 ↾t ( 𝐵 “ 𝐾 ) ) ∩ Fin ) ( ∪ ( 𝑆 ↾t ( 𝐵 “ 𝐾 ) ) = ∪ 𝑤 ∧ ∃ 𝑘 ( 𝑘 : 𝑤 ⟶ 𝒫 ( ◡ 𝐴 “ 𝑉 ) ∧ ∀ 𝑦 ∈ 𝑤 ( 𝑦 ⊆ ( ( int ‘ 𝑆 ) ‘ ( 𝑘 ‘ 𝑦 ) ) ∧ ( 𝑆 ↾t ( 𝑘 ‘ 𝑦 ) ) ∈ Comp ) ) ) ) |
88 |
77
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑤 ∈ ( 𝒫 ( 𝑆 ↾t ( 𝐵 “ 𝐾 ) ) ∩ Fin ) ) → ( 𝐵 “ 𝐾 ) = ∪ ( 𝑆 ↾t ( 𝐵 “ 𝐾 ) ) ) |
89 |
88
|
eqeq1d |
⊢ ( ( 𝜑 ∧ 𝑤 ∈ ( 𝒫 ( 𝑆 ↾t ( 𝐵 “ 𝐾 ) ) ∩ Fin ) ) → ( ( 𝐵 “ 𝐾 ) = ∪ 𝑤 ↔ ∪ ( 𝑆 ↾t ( 𝐵 “ 𝐾 ) ) = ∪ 𝑤 ) ) |
90 |
89
|
biimpar |
⊢ ( ( ( 𝜑 ∧ 𝑤 ∈ ( 𝒫 ( 𝑆 ↾t ( 𝐵 “ 𝐾 ) ) ∩ Fin ) ) ∧ ∪ ( 𝑆 ↾t ( 𝐵 “ 𝐾 ) ) = ∪ 𝑤 ) → ( 𝐵 “ 𝐾 ) = ∪ 𝑤 ) |
91 |
38
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑤 ∈ ( 𝒫 ( 𝑆 ↾t ( 𝐵 “ 𝐾 ) ) ∩ Fin ) ) ∧ ( ( 𝐵 “ 𝐾 ) = ∪ 𝑤 ∧ ( 𝑘 : 𝑤 ⟶ 𝒫 ( ◡ 𝐴 “ 𝑉 ) ∧ ∀ 𝑦 ∈ 𝑤 ( 𝑦 ⊆ ( ( int ‘ 𝑆 ) ‘ ( 𝑘 ‘ 𝑦 ) ) ∧ ( 𝑆 ↾t ( 𝑘 ‘ 𝑦 ) ) ∈ Comp ) ) ) ) → 𝑆 ∈ Top ) |
92 |
|
cntop2 |
⊢ ( 𝐴 ∈ ( 𝑆 Cn 𝑇 ) → 𝑇 ∈ Top ) |
93 |
6 92
|
syl |
⊢ ( 𝜑 → 𝑇 ∈ Top ) |
94 |
93
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑤 ∈ ( 𝒫 ( 𝑆 ↾t ( 𝐵 “ 𝐾 ) ) ∩ Fin ) ) ∧ ( ( 𝐵 “ 𝐾 ) = ∪ 𝑤 ∧ ( 𝑘 : 𝑤 ⟶ 𝒫 ( ◡ 𝐴 “ 𝑉 ) ∧ ∀ 𝑦 ∈ 𝑤 ( 𝑦 ⊆ ( ( int ‘ 𝑆 ) ‘ ( 𝑘 ‘ 𝑦 ) ) ∧ ( 𝑆 ↾t ( 𝑘 ‘ 𝑦 ) ) ∈ Comp ) ) ) ) → 𝑇 ∈ Top ) |
95 |
|
xkotop |
⊢ ( ( 𝑆 ∈ Top ∧ 𝑇 ∈ Top ) → ( 𝑇 ↑ko 𝑆 ) ∈ Top ) |
96 |
91 94 95
|
syl2anc |
⊢ ( ( ( 𝜑 ∧ 𝑤 ∈ ( 𝒫 ( 𝑆 ↾t ( 𝐵 “ 𝐾 ) ) ∩ Fin ) ) ∧ ( ( 𝐵 “ 𝐾 ) = ∪ 𝑤 ∧ ( 𝑘 : 𝑤 ⟶ 𝒫 ( ◡ 𝐴 “ 𝑉 ) ∧ ∀ 𝑦 ∈ 𝑤 ( 𝑦 ⊆ ( ( int ‘ 𝑆 ) ‘ ( 𝑘 ‘ 𝑦 ) ) ∧ ( 𝑆 ↾t ( 𝑘 ‘ 𝑦 ) ) ∈ Comp ) ) ) ) → ( 𝑇 ↑ko 𝑆 ) ∈ Top ) |
97 |
|
cntop1 |
⊢ ( 𝐵 ∈ ( 𝑅 Cn 𝑆 ) → 𝑅 ∈ Top ) |
98 |
7 97
|
syl |
⊢ ( 𝜑 → 𝑅 ∈ Top ) |
99 |
98
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑤 ∈ ( 𝒫 ( 𝑆 ↾t ( 𝐵 “ 𝐾 ) ) ∩ Fin ) ) ∧ ( ( 𝐵 “ 𝐾 ) = ∪ 𝑤 ∧ ( 𝑘 : 𝑤 ⟶ 𝒫 ( ◡ 𝐴 “ 𝑉 ) ∧ ∀ 𝑦 ∈ 𝑤 ( 𝑦 ⊆ ( ( int ‘ 𝑆 ) ‘ ( 𝑘 ‘ 𝑦 ) ) ∧ ( 𝑆 ↾t ( 𝑘 ‘ 𝑦 ) ) ∈ Comp ) ) ) ) → 𝑅 ∈ Top ) |
100 |
|
xkotop |
⊢ ( ( 𝑅 ∈ Top ∧ 𝑆 ∈ Top ) → ( 𝑆 ↑ko 𝑅 ) ∈ Top ) |
101 |
99 91 100
|
syl2anc |
⊢ ( ( ( 𝜑 ∧ 𝑤 ∈ ( 𝒫 ( 𝑆 ↾t ( 𝐵 “ 𝐾 ) ) ∩ Fin ) ) ∧ ( ( 𝐵 “ 𝐾 ) = ∪ 𝑤 ∧ ( 𝑘 : 𝑤 ⟶ 𝒫 ( ◡ 𝐴 “ 𝑉 ) ∧ ∀ 𝑦 ∈ 𝑤 ( 𝑦 ⊆ ( ( int ‘ 𝑆 ) ‘ ( 𝑘 ‘ 𝑦 ) ) ∧ ( 𝑆 ↾t ( 𝑘 ‘ 𝑦 ) ) ∈ Comp ) ) ) ) → ( 𝑆 ↑ko 𝑅 ) ∈ Top ) |
102 |
|
simprrl |
⊢ ( ( ( 𝜑 ∧ 𝑤 ∈ ( 𝒫 ( 𝑆 ↾t ( 𝐵 “ 𝐾 ) ) ∩ Fin ) ) ∧ ( ( 𝐵 “ 𝐾 ) = ∪ 𝑤 ∧ ( 𝑘 : 𝑤 ⟶ 𝒫 ( ◡ 𝐴 “ 𝑉 ) ∧ ∀ 𝑦 ∈ 𝑤 ( 𝑦 ⊆ ( ( int ‘ 𝑆 ) ‘ ( 𝑘 ‘ 𝑦 ) ) ∧ ( 𝑆 ↾t ( 𝑘 ‘ 𝑦 ) ) ∈ Comp ) ) ) ) → 𝑘 : 𝑤 ⟶ 𝒫 ( ◡ 𝐴 “ 𝑉 ) ) |
103 |
102
|
frnd |
⊢ ( ( ( 𝜑 ∧ 𝑤 ∈ ( 𝒫 ( 𝑆 ↾t ( 𝐵 “ 𝐾 ) ) ∩ Fin ) ) ∧ ( ( 𝐵 “ 𝐾 ) = ∪ 𝑤 ∧ ( 𝑘 : 𝑤 ⟶ 𝒫 ( ◡ 𝐴 “ 𝑉 ) ∧ ∀ 𝑦 ∈ 𝑤 ( 𝑦 ⊆ ( ( int ‘ 𝑆 ) ‘ ( 𝑘 ‘ 𝑦 ) ) ∧ ( 𝑆 ↾t ( 𝑘 ‘ 𝑦 ) ) ∈ Comp ) ) ) ) → ran 𝑘 ⊆ 𝒫 ( ◡ 𝐴 “ 𝑉 ) ) |
104 |
|
sspwuni |
⊢ ( ran 𝑘 ⊆ 𝒫 ( ◡ 𝐴 “ 𝑉 ) ↔ ∪ ran 𝑘 ⊆ ( ◡ 𝐴 “ 𝑉 ) ) |
105 |
103 104
|
sylib |
⊢ ( ( ( 𝜑 ∧ 𝑤 ∈ ( 𝒫 ( 𝑆 ↾t ( 𝐵 “ 𝐾 ) ) ∩ Fin ) ) ∧ ( ( 𝐵 “ 𝐾 ) = ∪ 𝑤 ∧ ( 𝑘 : 𝑤 ⟶ 𝒫 ( ◡ 𝐴 “ 𝑉 ) ∧ ∀ 𝑦 ∈ 𝑤 ( 𝑦 ⊆ ( ( int ‘ 𝑆 ) ‘ ( 𝑘 ‘ 𝑦 ) ) ∧ ( 𝑆 ↾t ( 𝑘 ‘ 𝑦 ) ) ∈ Comp ) ) ) ) → ∪ ran 𝑘 ⊆ ( ◡ 𝐴 “ 𝑉 ) ) |
106 |
13
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑤 ∈ ( 𝒫 ( 𝑆 ↾t ( 𝐵 “ 𝐾 ) ) ∩ Fin ) ) ∧ ( ( 𝐵 “ 𝐾 ) = ∪ 𝑤 ∧ ( 𝑘 : 𝑤 ⟶ 𝒫 ( ◡ 𝐴 “ 𝑉 ) ∧ ∀ 𝑦 ∈ 𝑤 ( 𝑦 ⊆ ( ( int ‘ 𝑆 ) ‘ ( 𝑘 ‘ 𝑦 ) ) ∧ ( 𝑆 ↾t ( 𝑘 ‘ 𝑦 ) ) ∈ Comp ) ) ) ) → ( ◡ 𝐴 “ 𝑉 ) ∈ 𝑆 ) |
107 |
106 52
|
syl |
⊢ ( ( ( 𝜑 ∧ 𝑤 ∈ ( 𝒫 ( 𝑆 ↾t ( 𝐵 “ 𝐾 ) ) ∩ Fin ) ) ∧ ( ( 𝐵 “ 𝐾 ) = ∪ 𝑤 ∧ ( 𝑘 : 𝑤 ⟶ 𝒫 ( ◡ 𝐴 “ 𝑉 ) ∧ ∀ 𝑦 ∈ 𝑤 ( 𝑦 ⊆ ( ( int ‘ 𝑆 ) ‘ ( 𝑘 ‘ 𝑦 ) ) ∧ ( 𝑆 ↾t ( 𝑘 ‘ 𝑦 ) ) ∈ Comp ) ) ) ) → ( ◡ 𝐴 “ 𝑉 ) ⊆ ∪ 𝑆 ) |
108 |
105 107
|
sstrd |
⊢ ( ( ( 𝜑 ∧ 𝑤 ∈ ( 𝒫 ( 𝑆 ↾t ( 𝐵 “ 𝐾 ) ) ∩ Fin ) ) ∧ ( ( 𝐵 “ 𝐾 ) = ∪ 𝑤 ∧ ( 𝑘 : 𝑤 ⟶ 𝒫 ( ◡ 𝐴 “ 𝑉 ) ∧ ∀ 𝑦 ∈ 𝑤 ( 𝑦 ⊆ ( ( int ‘ 𝑆 ) ‘ ( 𝑘 ‘ 𝑦 ) ) ∧ ( 𝑆 ↾t ( 𝑘 ‘ 𝑦 ) ) ∈ Comp ) ) ) ) → ∪ ran 𝑘 ⊆ ∪ 𝑆 ) |
109 |
|
ffn |
⊢ ( 𝑘 : 𝑤 ⟶ 𝒫 ( ◡ 𝐴 “ 𝑉 ) → 𝑘 Fn 𝑤 ) |
110 |
|
fniunfv |
⊢ ( 𝑘 Fn 𝑤 → ∪ 𝑦 ∈ 𝑤 ( 𝑘 ‘ 𝑦 ) = ∪ ran 𝑘 ) |
111 |
102 109 110
|
3syl |
⊢ ( ( ( 𝜑 ∧ 𝑤 ∈ ( 𝒫 ( 𝑆 ↾t ( 𝐵 “ 𝐾 ) ) ∩ Fin ) ) ∧ ( ( 𝐵 “ 𝐾 ) = ∪ 𝑤 ∧ ( 𝑘 : 𝑤 ⟶ 𝒫 ( ◡ 𝐴 “ 𝑉 ) ∧ ∀ 𝑦 ∈ 𝑤 ( 𝑦 ⊆ ( ( int ‘ 𝑆 ) ‘ ( 𝑘 ‘ 𝑦 ) ) ∧ ( 𝑆 ↾t ( 𝑘 ‘ 𝑦 ) ) ∈ Comp ) ) ) ) → ∪ 𝑦 ∈ 𝑤 ( 𝑘 ‘ 𝑦 ) = ∪ ran 𝑘 ) |
112 |
111
|
oveq2d |
⊢ ( ( ( 𝜑 ∧ 𝑤 ∈ ( 𝒫 ( 𝑆 ↾t ( 𝐵 “ 𝐾 ) ) ∩ Fin ) ) ∧ ( ( 𝐵 “ 𝐾 ) = ∪ 𝑤 ∧ ( 𝑘 : 𝑤 ⟶ 𝒫 ( ◡ 𝐴 “ 𝑉 ) ∧ ∀ 𝑦 ∈ 𝑤 ( 𝑦 ⊆ ( ( int ‘ 𝑆 ) ‘ ( 𝑘 ‘ 𝑦 ) ) ∧ ( 𝑆 ↾t ( 𝑘 ‘ 𝑦 ) ) ∈ Comp ) ) ) ) → ( 𝑆 ↾t ∪ 𝑦 ∈ 𝑤 ( 𝑘 ‘ 𝑦 ) ) = ( 𝑆 ↾t ∪ ran 𝑘 ) ) |
113 |
|
simplr |
⊢ ( ( ( 𝜑 ∧ 𝑤 ∈ ( 𝒫 ( 𝑆 ↾t ( 𝐵 “ 𝐾 ) ) ∩ Fin ) ) ∧ ( ( 𝐵 “ 𝐾 ) = ∪ 𝑤 ∧ ( 𝑘 : 𝑤 ⟶ 𝒫 ( ◡ 𝐴 “ 𝑉 ) ∧ ∀ 𝑦 ∈ 𝑤 ( 𝑦 ⊆ ( ( int ‘ 𝑆 ) ‘ ( 𝑘 ‘ 𝑦 ) ) ∧ ( 𝑆 ↾t ( 𝑘 ‘ 𝑦 ) ) ∈ Comp ) ) ) ) → 𝑤 ∈ ( 𝒫 ( 𝑆 ↾t ( 𝐵 “ 𝐾 ) ) ∩ Fin ) ) |
114 |
113
|
elin2d |
⊢ ( ( ( 𝜑 ∧ 𝑤 ∈ ( 𝒫 ( 𝑆 ↾t ( 𝐵 “ 𝐾 ) ) ∩ Fin ) ) ∧ ( ( 𝐵 “ 𝐾 ) = ∪ 𝑤 ∧ ( 𝑘 : 𝑤 ⟶ 𝒫 ( ◡ 𝐴 “ 𝑉 ) ∧ ∀ 𝑦 ∈ 𝑤 ( 𝑦 ⊆ ( ( int ‘ 𝑆 ) ‘ ( 𝑘 ‘ 𝑦 ) ) ∧ ( 𝑆 ↾t ( 𝑘 ‘ 𝑦 ) ) ∈ Comp ) ) ) ) → 𝑤 ∈ Fin ) |
115 |
|
simprrr |
⊢ ( ( ( 𝜑 ∧ 𝑤 ∈ ( 𝒫 ( 𝑆 ↾t ( 𝐵 “ 𝐾 ) ) ∩ Fin ) ) ∧ ( ( 𝐵 “ 𝐾 ) = ∪ 𝑤 ∧ ( 𝑘 : 𝑤 ⟶ 𝒫 ( ◡ 𝐴 “ 𝑉 ) ∧ ∀ 𝑦 ∈ 𝑤 ( 𝑦 ⊆ ( ( int ‘ 𝑆 ) ‘ ( 𝑘 ‘ 𝑦 ) ) ∧ ( 𝑆 ↾t ( 𝑘 ‘ 𝑦 ) ) ∈ Comp ) ) ) ) → ∀ 𝑦 ∈ 𝑤 ( 𝑦 ⊆ ( ( int ‘ 𝑆 ) ‘ ( 𝑘 ‘ 𝑦 ) ) ∧ ( 𝑆 ↾t ( 𝑘 ‘ 𝑦 ) ) ∈ Comp ) ) |
116 |
|
simpr |
⊢ ( ( 𝑦 ⊆ ( ( int ‘ 𝑆 ) ‘ ( 𝑘 ‘ 𝑦 ) ) ∧ ( 𝑆 ↾t ( 𝑘 ‘ 𝑦 ) ) ∈ Comp ) → ( 𝑆 ↾t ( 𝑘 ‘ 𝑦 ) ) ∈ Comp ) |
117 |
116
|
ralimi |
⊢ ( ∀ 𝑦 ∈ 𝑤 ( 𝑦 ⊆ ( ( int ‘ 𝑆 ) ‘ ( 𝑘 ‘ 𝑦 ) ) ∧ ( 𝑆 ↾t ( 𝑘 ‘ 𝑦 ) ) ∈ Comp ) → ∀ 𝑦 ∈ 𝑤 ( 𝑆 ↾t ( 𝑘 ‘ 𝑦 ) ) ∈ Comp ) |
118 |
115 117
|
syl |
⊢ ( ( ( 𝜑 ∧ 𝑤 ∈ ( 𝒫 ( 𝑆 ↾t ( 𝐵 “ 𝐾 ) ) ∩ Fin ) ) ∧ ( ( 𝐵 “ 𝐾 ) = ∪ 𝑤 ∧ ( 𝑘 : 𝑤 ⟶ 𝒫 ( ◡ 𝐴 “ 𝑉 ) ∧ ∀ 𝑦 ∈ 𝑤 ( 𝑦 ⊆ ( ( int ‘ 𝑆 ) ‘ ( 𝑘 ‘ 𝑦 ) ) ∧ ( 𝑆 ↾t ( 𝑘 ‘ 𝑦 ) ) ∈ Comp ) ) ) ) → ∀ 𝑦 ∈ 𝑤 ( 𝑆 ↾t ( 𝑘 ‘ 𝑦 ) ) ∈ Comp ) |
119 |
17
|
fiuncmp |
⊢ ( ( 𝑆 ∈ Top ∧ 𝑤 ∈ Fin ∧ ∀ 𝑦 ∈ 𝑤 ( 𝑆 ↾t ( 𝑘 ‘ 𝑦 ) ) ∈ Comp ) → ( 𝑆 ↾t ∪ 𝑦 ∈ 𝑤 ( 𝑘 ‘ 𝑦 ) ) ∈ Comp ) |
120 |
91 114 118 119
|
syl3anc |
⊢ ( ( ( 𝜑 ∧ 𝑤 ∈ ( 𝒫 ( 𝑆 ↾t ( 𝐵 “ 𝐾 ) ) ∩ Fin ) ) ∧ ( ( 𝐵 “ 𝐾 ) = ∪ 𝑤 ∧ ( 𝑘 : 𝑤 ⟶ 𝒫 ( ◡ 𝐴 “ 𝑉 ) ∧ ∀ 𝑦 ∈ 𝑤 ( 𝑦 ⊆ ( ( int ‘ 𝑆 ) ‘ ( 𝑘 ‘ 𝑦 ) ) ∧ ( 𝑆 ↾t ( 𝑘 ‘ 𝑦 ) ) ∈ Comp ) ) ) ) → ( 𝑆 ↾t ∪ 𝑦 ∈ 𝑤 ( 𝑘 ‘ 𝑦 ) ) ∈ Comp ) |
121 |
112 120
|
eqeltrrd |
⊢ ( ( ( 𝜑 ∧ 𝑤 ∈ ( 𝒫 ( 𝑆 ↾t ( 𝐵 “ 𝐾 ) ) ∩ Fin ) ) ∧ ( ( 𝐵 “ 𝐾 ) = ∪ 𝑤 ∧ ( 𝑘 : 𝑤 ⟶ 𝒫 ( ◡ 𝐴 “ 𝑉 ) ∧ ∀ 𝑦 ∈ 𝑤 ( 𝑦 ⊆ ( ( int ‘ 𝑆 ) ‘ ( 𝑘 ‘ 𝑦 ) ) ∧ ( 𝑆 ↾t ( 𝑘 ‘ 𝑦 ) ) ∈ Comp ) ) ) ) → ( 𝑆 ↾t ∪ ran 𝑘 ) ∈ Comp ) |
122 |
5
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑤 ∈ ( 𝒫 ( 𝑆 ↾t ( 𝐵 “ 𝐾 ) ) ∩ Fin ) ) ∧ ( ( 𝐵 “ 𝐾 ) = ∪ 𝑤 ∧ ( 𝑘 : 𝑤 ⟶ 𝒫 ( ◡ 𝐴 “ 𝑉 ) ∧ ∀ 𝑦 ∈ 𝑤 ( 𝑦 ⊆ ( ( int ‘ 𝑆 ) ‘ ( 𝑘 ‘ 𝑦 ) ) ∧ ( 𝑆 ↾t ( 𝑘 ‘ 𝑦 ) ) ∈ Comp ) ) ) ) → 𝑉 ∈ 𝑇 ) |
123 |
17 91 94 108 121 122
|
xkoopn |
⊢ ( ( ( 𝜑 ∧ 𝑤 ∈ ( 𝒫 ( 𝑆 ↾t ( 𝐵 “ 𝐾 ) ) ∩ Fin ) ) ∧ ( ( 𝐵 “ 𝐾 ) = ∪ 𝑤 ∧ ( 𝑘 : 𝑤 ⟶ 𝒫 ( ◡ 𝐴 “ 𝑉 ) ∧ ∀ 𝑦 ∈ 𝑤 ( 𝑦 ⊆ ( ( int ‘ 𝑆 ) ‘ ( 𝑘 ‘ 𝑦 ) ) ∧ ( 𝑆 ↾t ( 𝑘 ‘ 𝑦 ) ) ∈ Comp ) ) ) ) → { 𝑎 ∈ ( 𝑆 Cn 𝑇 ) ∣ ( 𝑎 “ ∪ ran 𝑘 ) ⊆ 𝑉 } ∈ ( 𝑇 ↑ko 𝑆 ) ) |
124 |
3
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑤 ∈ ( 𝒫 ( 𝑆 ↾t ( 𝐵 “ 𝐾 ) ) ∩ Fin ) ) ∧ ( ( 𝐵 “ 𝐾 ) = ∪ 𝑤 ∧ ( 𝑘 : 𝑤 ⟶ 𝒫 ( ◡ 𝐴 “ 𝑉 ) ∧ ∀ 𝑦 ∈ 𝑤 ( 𝑦 ⊆ ( ( int ‘ 𝑆 ) ‘ ( 𝑘 ‘ 𝑦 ) ) ∧ ( 𝑆 ↾t ( 𝑘 ‘ 𝑦 ) ) ∈ Comp ) ) ) ) → 𝐾 ⊆ ∪ 𝑅 ) |
125 |
4
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑤 ∈ ( 𝒫 ( 𝑆 ↾t ( 𝐵 “ 𝐾 ) ) ∩ Fin ) ) ∧ ( ( 𝐵 “ 𝐾 ) = ∪ 𝑤 ∧ ( 𝑘 : 𝑤 ⟶ 𝒫 ( ◡ 𝐴 “ 𝑉 ) ∧ ∀ 𝑦 ∈ 𝑤 ( 𝑦 ⊆ ( ( int ‘ 𝑆 ) ‘ ( 𝑘 ‘ 𝑦 ) ) ∧ ( 𝑆 ↾t ( 𝑘 ‘ 𝑦 ) ) ∈ Comp ) ) ) ) → ( 𝑅 ↾t 𝐾 ) ∈ Comp ) |
126 |
111 108
|
eqsstrd |
⊢ ( ( ( 𝜑 ∧ 𝑤 ∈ ( 𝒫 ( 𝑆 ↾t ( 𝐵 “ 𝐾 ) ) ∩ Fin ) ) ∧ ( ( 𝐵 “ 𝐾 ) = ∪ 𝑤 ∧ ( 𝑘 : 𝑤 ⟶ 𝒫 ( ◡ 𝐴 “ 𝑉 ) ∧ ∀ 𝑦 ∈ 𝑤 ( 𝑦 ⊆ ( ( int ‘ 𝑆 ) ‘ ( 𝑘 ‘ 𝑦 ) ) ∧ ( 𝑆 ↾t ( 𝑘 ‘ 𝑦 ) ) ∈ Comp ) ) ) ) → ∪ 𝑦 ∈ 𝑤 ( 𝑘 ‘ 𝑦 ) ⊆ ∪ 𝑆 ) |
127 |
|
iunss |
⊢ ( ∪ 𝑦 ∈ 𝑤 ( 𝑘 ‘ 𝑦 ) ⊆ ∪ 𝑆 ↔ ∀ 𝑦 ∈ 𝑤 ( 𝑘 ‘ 𝑦 ) ⊆ ∪ 𝑆 ) |
128 |
126 127
|
sylib |
⊢ ( ( ( 𝜑 ∧ 𝑤 ∈ ( 𝒫 ( 𝑆 ↾t ( 𝐵 “ 𝐾 ) ) ∩ Fin ) ) ∧ ( ( 𝐵 “ 𝐾 ) = ∪ 𝑤 ∧ ( 𝑘 : 𝑤 ⟶ 𝒫 ( ◡ 𝐴 “ 𝑉 ) ∧ ∀ 𝑦 ∈ 𝑤 ( 𝑦 ⊆ ( ( int ‘ 𝑆 ) ‘ ( 𝑘 ‘ 𝑦 ) ) ∧ ( 𝑆 ↾t ( 𝑘 ‘ 𝑦 ) ) ∈ Comp ) ) ) ) → ∀ 𝑦 ∈ 𝑤 ( 𝑘 ‘ 𝑦 ) ⊆ ∪ 𝑆 ) |
129 |
17
|
ntropn |
⊢ ( ( 𝑆 ∈ Top ∧ ( 𝑘 ‘ 𝑦 ) ⊆ ∪ 𝑆 ) → ( ( int ‘ 𝑆 ) ‘ ( 𝑘 ‘ 𝑦 ) ) ∈ 𝑆 ) |
130 |
129
|
ex |
⊢ ( 𝑆 ∈ Top → ( ( 𝑘 ‘ 𝑦 ) ⊆ ∪ 𝑆 → ( ( int ‘ 𝑆 ) ‘ ( 𝑘 ‘ 𝑦 ) ) ∈ 𝑆 ) ) |
131 |
130
|
ralimdv |
⊢ ( 𝑆 ∈ Top → ( ∀ 𝑦 ∈ 𝑤 ( 𝑘 ‘ 𝑦 ) ⊆ ∪ 𝑆 → ∀ 𝑦 ∈ 𝑤 ( ( int ‘ 𝑆 ) ‘ ( 𝑘 ‘ 𝑦 ) ) ∈ 𝑆 ) ) |
132 |
91 128 131
|
sylc |
⊢ ( ( ( 𝜑 ∧ 𝑤 ∈ ( 𝒫 ( 𝑆 ↾t ( 𝐵 “ 𝐾 ) ) ∩ Fin ) ) ∧ ( ( 𝐵 “ 𝐾 ) = ∪ 𝑤 ∧ ( 𝑘 : 𝑤 ⟶ 𝒫 ( ◡ 𝐴 “ 𝑉 ) ∧ ∀ 𝑦 ∈ 𝑤 ( 𝑦 ⊆ ( ( int ‘ 𝑆 ) ‘ ( 𝑘 ‘ 𝑦 ) ) ∧ ( 𝑆 ↾t ( 𝑘 ‘ 𝑦 ) ) ∈ Comp ) ) ) ) → ∀ 𝑦 ∈ 𝑤 ( ( int ‘ 𝑆 ) ‘ ( 𝑘 ‘ 𝑦 ) ) ∈ 𝑆 ) |
133 |
|
iunopn |
⊢ ( ( 𝑆 ∈ Top ∧ ∀ 𝑦 ∈ 𝑤 ( ( int ‘ 𝑆 ) ‘ ( 𝑘 ‘ 𝑦 ) ) ∈ 𝑆 ) → ∪ 𝑦 ∈ 𝑤 ( ( int ‘ 𝑆 ) ‘ ( 𝑘 ‘ 𝑦 ) ) ∈ 𝑆 ) |
134 |
91 132 133
|
syl2anc |
⊢ ( ( ( 𝜑 ∧ 𝑤 ∈ ( 𝒫 ( 𝑆 ↾t ( 𝐵 “ 𝐾 ) ) ∩ Fin ) ) ∧ ( ( 𝐵 “ 𝐾 ) = ∪ 𝑤 ∧ ( 𝑘 : 𝑤 ⟶ 𝒫 ( ◡ 𝐴 “ 𝑉 ) ∧ ∀ 𝑦 ∈ 𝑤 ( 𝑦 ⊆ ( ( int ‘ 𝑆 ) ‘ ( 𝑘 ‘ 𝑦 ) ) ∧ ( 𝑆 ↾t ( 𝑘 ‘ 𝑦 ) ) ∈ Comp ) ) ) ) → ∪ 𝑦 ∈ 𝑤 ( ( int ‘ 𝑆 ) ‘ ( 𝑘 ‘ 𝑦 ) ) ∈ 𝑆 ) |
135 |
23 99 91 124 125 134
|
xkoopn |
⊢ ( ( ( 𝜑 ∧ 𝑤 ∈ ( 𝒫 ( 𝑆 ↾t ( 𝐵 “ 𝐾 ) ) ∩ Fin ) ) ∧ ( ( 𝐵 “ 𝐾 ) = ∪ 𝑤 ∧ ( 𝑘 : 𝑤 ⟶ 𝒫 ( ◡ 𝐴 “ 𝑉 ) ∧ ∀ 𝑦 ∈ 𝑤 ( 𝑦 ⊆ ( ( int ‘ 𝑆 ) ‘ ( 𝑘 ‘ 𝑦 ) ) ∧ ( 𝑆 ↾t ( 𝑘 ‘ 𝑦 ) ) ∈ Comp ) ) ) ) → { 𝑏 ∈ ( 𝑅 Cn 𝑆 ) ∣ ( 𝑏 “ 𝐾 ) ⊆ ∪ 𝑦 ∈ 𝑤 ( ( int ‘ 𝑆 ) ‘ ( 𝑘 ‘ 𝑦 ) ) } ∈ ( 𝑆 ↑ko 𝑅 ) ) |
136 |
|
txopn |
⊢ ( ( ( ( 𝑇 ↑ko 𝑆 ) ∈ Top ∧ ( 𝑆 ↑ko 𝑅 ) ∈ Top ) ∧ ( { 𝑎 ∈ ( 𝑆 Cn 𝑇 ) ∣ ( 𝑎 “ ∪ ran 𝑘 ) ⊆ 𝑉 } ∈ ( 𝑇 ↑ko 𝑆 ) ∧ { 𝑏 ∈ ( 𝑅 Cn 𝑆 ) ∣ ( 𝑏 “ 𝐾 ) ⊆ ∪ 𝑦 ∈ 𝑤 ( ( int ‘ 𝑆 ) ‘ ( 𝑘 ‘ 𝑦 ) ) } ∈ ( 𝑆 ↑ko 𝑅 ) ) ) → ( { 𝑎 ∈ ( 𝑆 Cn 𝑇 ) ∣ ( 𝑎 “ ∪ ran 𝑘 ) ⊆ 𝑉 } × { 𝑏 ∈ ( 𝑅 Cn 𝑆 ) ∣ ( 𝑏 “ 𝐾 ) ⊆ ∪ 𝑦 ∈ 𝑤 ( ( int ‘ 𝑆 ) ‘ ( 𝑘 ‘ 𝑦 ) ) } ) ∈ ( ( 𝑇 ↑ko 𝑆 ) ×t ( 𝑆 ↑ko 𝑅 ) ) ) |
137 |
96 101 123 135 136
|
syl22anc |
⊢ ( ( ( 𝜑 ∧ 𝑤 ∈ ( 𝒫 ( 𝑆 ↾t ( 𝐵 “ 𝐾 ) ) ∩ Fin ) ) ∧ ( ( 𝐵 “ 𝐾 ) = ∪ 𝑤 ∧ ( 𝑘 : 𝑤 ⟶ 𝒫 ( ◡ 𝐴 “ 𝑉 ) ∧ ∀ 𝑦 ∈ 𝑤 ( 𝑦 ⊆ ( ( int ‘ 𝑆 ) ‘ ( 𝑘 ‘ 𝑦 ) ) ∧ ( 𝑆 ↾t ( 𝑘 ‘ 𝑦 ) ) ∈ Comp ) ) ) ) → ( { 𝑎 ∈ ( 𝑆 Cn 𝑇 ) ∣ ( 𝑎 “ ∪ ran 𝑘 ) ⊆ 𝑉 } × { 𝑏 ∈ ( 𝑅 Cn 𝑆 ) ∣ ( 𝑏 “ 𝐾 ) ⊆ ∪ 𝑦 ∈ 𝑤 ( ( int ‘ 𝑆 ) ‘ ( 𝑘 ‘ 𝑦 ) ) } ) ∈ ( ( 𝑇 ↑ko 𝑆 ) ×t ( 𝑆 ↑ko 𝑅 ) ) ) |
138 |
|
imaeq1 |
⊢ ( 𝑎 = 𝐴 → ( 𝑎 “ ∪ ran 𝑘 ) = ( 𝐴 “ ∪ ran 𝑘 ) ) |
139 |
138
|
sseq1d |
⊢ ( 𝑎 = 𝐴 → ( ( 𝑎 “ ∪ ran 𝑘 ) ⊆ 𝑉 ↔ ( 𝐴 “ ∪ ran 𝑘 ) ⊆ 𝑉 ) ) |
140 |
6
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑤 ∈ ( 𝒫 ( 𝑆 ↾t ( 𝐵 “ 𝐾 ) ) ∩ Fin ) ) ∧ ( ( 𝐵 “ 𝐾 ) = ∪ 𝑤 ∧ ( 𝑘 : 𝑤 ⟶ 𝒫 ( ◡ 𝐴 “ 𝑉 ) ∧ ∀ 𝑦 ∈ 𝑤 ( 𝑦 ⊆ ( ( int ‘ 𝑆 ) ‘ ( 𝑘 ‘ 𝑦 ) ) ∧ ( 𝑆 ↾t ( 𝑘 ‘ 𝑦 ) ) ∈ Comp ) ) ) ) → 𝐴 ∈ ( 𝑆 Cn 𝑇 ) ) |
141 |
|
imaiun |
⊢ ( 𝐴 “ ∪ 𝑦 ∈ 𝑤 ( 𝑘 ‘ 𝑦 ) ) = ∪ 𝑦 ∈ 𝑤 ( 𝐴 “ ( 𝑘 ‘ 𝑦 ) ) |
142 |
111
|
imaeq2d |
⊢ ( ( ( 𝜑 ∧ 𝑤 ∈ ( 𝒫 ( 𝑆 ↾t ( 𝐵 “ 𝐾 ) ) ∩ Fin ) ) ∧ ( ( 𝐵 “ 𝐾 ) = ∪ 𝑤 ∧ ( 𝑘 : 𝑤 ⟶ 𝒫 ( ◡ 𝐴 “ 𝑉 ) ∧ ∀ 𝑦 ∈ 𝑤 ( 𝑦 ⊆ ( ( int ‘ 𝑆 ) ‘ ( 𝑘 ‘ 𝑦 ) ) ∧ ( 𝑆 ↾t ( 𝑘 ‘ 𝑦 ) ) ∈ Comp ) ) ) ) → ( 𝐴 “ ∪ 𝑦 ∈ 𝑤 ( 𝑘 ‘ 𝑦 ) ) = ( 𝐴 “ ∪ ran 𝑘 ) ) |
143 |
141 142
|
eqtr3id |
⊢ ( ( ( 𝜑 ∧ 𝑤 ∈ ( 𝒫 ( 𝑆 ↾t ( 𝐵 “ 𝐾 ) ) ∩ Fin ) ) ∧ ( ( 𝐵 “ 𝐾 ) = ∪ 𝑤 ∧ ( 𝑘 : 𝑤 ⟶ 𝒫 ( ◡ 𝐴 “ 𝑉 ) ∧ ∀ 𝑦 ∈ 𝑤 ( 𝑦 ⊆ ( ( int ‘ 𝑆 ) ‘ ( 𝑘 ‘ 𝑦 ) ) ∧ ( 𝑆 ↾t ( 𝑘 ‘ 𝑦 ) ) ∈ Comp ) ) ) ) → ∪ 𝑦 ∈ 𝑤 ( 𝐴 “ ( 𝑘 ‘ 𝑦 ) ) = ( 𝐴 “ ∪ ran 𝑘 ) ) |
144 |
111 105
|
eqsstrd |
⊢ ( ( ( 𝜑 ∧ 𝑤 ∈ ( 𝒫 ( 𝑆 ↾t ( 𝐵 “ 𝐾 ) ) ∩ Fin ) ) ∧ ( ( 𝐵 “ 𝐾 ) = ∪ 𝑤 ∧ ( 𝑘 : 𝑤 ⟶ 𝒫 ( ◡ 𝐴 “ 𝑉 ) ∧ ∀ 𝑦 ∈ 𝑤 ( 𝑦 ⊆ ( ( int ‘ 𝑆 ) ‘ ( 𝑘 ‘ 𝑦 ) ) ∧ ( 𝑆 ↾t ( 𝑘 ‘ 𝑦 ) ) ∈ Comp ) ) ) ) → ∪ 𝑦 ∈ 𝑤 ( 𝑘 ‘ 𝑦 ) ⊆ ( ◡ 𝐴 “ 𝑉 ) ) |
145 |
21
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑤 ∈ ( 𝒫 ( 𝑆 ↾t ( 𝐵 “ 𝐾 ) ) ∩ Fin ) ) ∧ ( ( 𝐵 “ 𝐾 ) = ∪ 𝑤 ∧ ( 𝑘 : 𝑤 ⟶ 𝒫 ( ◡ 𝐴 “ 𝑉 ) ∧ ∀ 𝑦 ∈ 𝑤 ( 𝑦 ⊆ ( ( int ‘ 𝑆 ) ‘ ( 𝑘 ‘ 𝑦 ) ) ∧ ( 𝑆 ↾t ( 𝑘 ‘ 𝑦 ) ) ∈ Comp ) ) ) ) → Fun 𝐴 ) |
146 |
102 109
|
syl |
⊢ ( ( ( 𝜑 ∧ 𝑤 ∈ ( 𝒫 ( 𝑆 ↾t ( 𝐵 “ 𝐾 ) ) ∩ Fin ) ) ∧ ( ( 𝐵 “ 𝐾 ) = ∪ 𝑤 ∧ ( 𝑘 : 𝑤 ⟶ 𝒫 ( ◡ 𝐴 “ 𝑉 ) ∧ ∀ 𝑦 ∈ 𝑤 ( 𝑦 ⊆ ( ( int ‘ 𝑆 ) ‘ ( 𝑘 ‘ 𝑦 ) ) ∧ ( 𝑆 ↾t ( 𝑘 ‘ 𝑦 ) ) ∈ Comp ) ) ) ) → 𝑘 Fn 𝑤 ) |
147 |
29
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑤 ∈ ( 𝒫 ( 𝑆 ↾t ( 𝐵 “ 𝐾 ) ) ∩ Fin ) ) ∧ ( ( 𝐵 “ 𝐾 ) = ∪ 𝑤 ∧ ( 𝑘 : 𝑤 ⟶ 𝒫 ( ◡ 𝐴 “ 𝑉 ) ∧ ∀ 𝑦 ∈ 𝑤 ( 𝑦 ⊆ ( ( int ‘ 𝑆 ) ‘ ( 𝑘 ‘ 𝑦 ) ) ∧ ( 𝑆 ↾t ( 𝑘 ‘ 𝑦 ) ) ∈ Comp ) ) ) ) → dom 𝐴 = ∪ 𝑆 ) |
148 |
108 147
|
sseqtrrd |
⊢ ( ( ( 𝜑 ∧ 𝑤 ∈ ( 𝒫 ( 𝑆 ↾t ( 𝐵 “ 𝐾 ) ) ∩ Fin ) ) ∧ ( ( 𝐵 “ 𝐾 ) = ∪ 𝑤 ∧ ( 𝑘 : 𝑤 ⟶ 𝒫 ( ◡ 𝐴 “ 𝑉 ) ∧ ∀ 𝑦 ∈ 𝑤 ( 𝑦 ⊆ ( ( int ‘ 𝑆 ) ‘ ( 𝑘 ‘ 𝑦 ) ) ∧ ( 𝑆 ↾t ( 𝑘 ‘ 𝑦 ) ) ∈ Comp ) ) ) ) → ∪ ran 𝑘 ⊆ dom 𝐴 ) |
149 |
|
simpl1 |
⊢ ( ( ( Fun 𝐴 ∧ 𝑘 Fn 𝑤 ∧ ∪ ran 𝑘 ⊆ dom 𝐴 ) ∧ 𝑦 ∈ 𝑤 ) → Fun 𝐴 ) |
150 |
110
|
3ad2ant2 |
⊢ ( ( Fun 𝐴 ∧ 𝑘 Fn 𝑤 ∧ ∪ ran 𝑘 ⊆ dom 𝐴 ) → ∪ 𝑦 ∈ 𝑤 ( 𝑘 ‘ 𝑦 ) = ∪ ran 𝑘 ) |
151 |
|
simp3 |
⊢ ( ( Fun 𝐴 ∧ 𝑘 Fn 𝑤 ∧ ∪ ran 𝑘 ⊆ dom 𝐴 ) → ∪ ran 𝑘 ⊆ dom 𝐴 ) |
152 |
150 151
|
eqsstrd |
⊢ ( ( Fun 𝐴 ∧ 𝑘 Fn 𝑤 ∧ ∪ ran 𝑘 ⊆ dom 𝐴 ) → ∪ 𝑦 ∈ 𝑤 ( 𝑘 ‘ 𝑦 ) ⊆ dom 𝐴 ) |
153 |
|
iunss |
⊢ ( ∪ 𝑦 ∈ 𝑤 ( 𝑘 ‘ 𝑦 ) ⊆ dom 𝐴 ↔ ∀ 𝑦 ∈ 𝑤 ( 𝑘 ‘ 𝑦 ) ⊆ dom 𝐴 ) |
154 |
152 153
|
sylib |
⊢ ( ( Fun 𝐴 ∧ 𝑘 Fn 𝑤 ∧ ∪ ran 𝑘 ⊆ dom 𝐴 ) → ∀ 𝑦 ∈ 𝑤 ( 𝑘 ‘ 𝑦 ) ⊆ dom 𝐴 ) |
155 |
154
|
r19.21bi |
⊢ ( ( ( Fun 𝐴 ∧ 𝑘 Fn 𝑤 ∧ ∪ ran 𝑘 ⊆ dom 𝐴 ) ∧ 𝑦 ∈ 𝑤 ) → ( 𝑘 ‘ 𝑦 ) ⊆ dom 𝐴 ) |
156 |
|
funimass3 |
⊢ ( ( Fun 𝐴 ∧ ( 𝑘 ‘ 𝑦 ) ⊆ dom 𝐴 ) → ( ( 𝐴 “ ( 𝑘 ‘ 𝑦 ) ) ⊆ 𝑉 ↔ ( 𝑘 ‘ 𝑦 ) ⊆ ( ◡ 𝐴 “ 𝑉 ) ) ) |
157 |
149 155 156
|
syl2anc |
⊢ ( ( ( Fun 𝐴 ∧ 𝑘 Fn 𝑤 ∧ ∪ ran 𝑘 ⊆ dom 𝐴 ) ∧ 𝑦 ∈ 𝑤 ) → ( ( 𝐴 “ ( 𝑘 ‘ 𝑦 ) ) ⊆ 𝑉 ↔ ( 𝑘 ‘ 𝑦 ) ⊆ ( ◡ 𝐴 “ 𝑉 ) ) ) |
158 |
157
|
ralbidva |
⊢ ( ( Fun 𝐴 ∧ 𝑘 Fn 𝑤 ∧ ∪ ran 𝑘 ⊆ dom 𝐴 ) → ( ∀ 𝑦 ∈ 𝑤 ( 𝐴 “ ( 𝑘 ‘ 𝑦 ) ) ⊆ 𝑉 ↔ ∀ 𝑦 ∈ 𝑤 ( 𝑘 ‘ 𝑦 ) ⊆ ( ◡ 𝐴 “ 𝑉 ) ) ) |
159 |
|
iunss |
⊢ ( ∪ 𝑦 ∈ 𝑤 ( 𝐴 “ ( 𝑘 ‘ 𝑦 ) ) ⊆ 𝑉 ↔ ∀ 𝑦 ∈ 𝑤 ( 𝐴 “ ( 𝑘 ‘ 𝑦 ) ) ⊆ 𝑉 ) |
160 |
|
iunss |
⊢ ( ∪ 𝑦 ∈ 𝑤 ( 𝑘 ‘ 𝑦 ) ⊆ ( ◡ 𝐴 “ 𝑉 ) ↔ ∀ 𝑦 ∈ 𝑤 ( 𝑘 ‘ 𝑦 ) ⊆ ( ◡ 𝐴 “ 𝑉 ) ) |
161 |
158 159 160
|
3bitr4g |
⊢ ( ( Fun 𝐴 ∧ 𝑘 Fn 𝑤 ∧ ∪ ran 𝑘 ⊆ dom 𝐴 ) → ( ∪ 𝑦 ∈ 𝑤 ( 𝐴 “ ( 𝑘 ‘ 𝑦 ) ) ⊆ 𝑉 ↔ ∪ 𝑦 ∈ 𝑤 ( 𝑘 ‘ 𝑦 ) ⊆ ( ◡ 𝐴 “ 𝑉 ) ) ) |
162 |
145 146 148 161
|
syl3anc |
⊢ ( ( ( 𝜑 ∧ 𝑤 ∈ ( 𝒫 ( 𝑆 ↾t ( 𝐵 “ 𝐾 ) ) ∩ Fin ) ) ∧ ( ( 𝐵 “ 𝐾 ) = ∪ 𝑤 ∧ ( 𝑘 : 𝑤 ⟶ 𝒫 ( ◡ 𝐴 “ 𝑉 ) ∧ ∀ 𝑦 ∈ 𝑤 ( 𝑦 ⊆ ( ( int ‘ 𝑆 ) ‘ ( 𝑘 ‘ 𝑦 ) ) ∧ ( 𝑆 ↾t ( 𝑘 ‘ 𝑦 ) ) ∈ Comp ) ) ) ) → ( ∪ 𝑦 ∈ 𝑤 ( 𝐴 “ ( 𝑘 ‘ 𝑦 ) ) ⊆ 𝑉 ↔ ∪ 𝑦 ∈ 𝑤 ( 𝑘 ‘ 𝑦 ) ⊆ ( ◡ 𝐴 “ 𝑉 ) ) ) |
163 |
144 162
|
mpbird |
⊢ ( ( ( 𝜑 ∧ 𝑤 ∈ ( 𝒫 ( 𝑆 ↾t ( 𝐵 “ 𝐾 ) ) ∩ Fin ) ) ∧ ( ( 𝐵 “ 𝐾 ) = ∪ 𝑤 ∧ ( 𝑘 : 𝑤 ⟶ 𝒫 ( ◡ 𝐴 “ 𝑉 ) ∧ ∀ 𝑦 ∈ 𝑤 ( 𝑦 ⊆ ( ( int ‘ 𝑆 ) ‘ ( 𝑘 ‘ 𝑦 ) ) ∧ ( 𝑆 ↾t ( 𝑘 ‘ 𝑦 ) ) ∈ Comp ) ) ) ) → ∪ 𝑦 ∈ 𝑤 ( 𝐴 “ ( 𝑘 ‘ 𝑦 ) ) ⊆ 𝑉 ) |
164 |
143 163
|
eqsstrrd |
⊢ ( ( ( 𝜑 ∧ 𝑤 ∈ ( 𝒫 ( 𝑆 ↾t ( 𝐵 “ 𝐾 ) ) ∩ Fin ) ) ∧ ( ( 𝐵 “ 𝐾 ) = ∪ 𝑤 ∧ ( 𝑘 : 𝑤 ⟶ 𝒫 ( ◡ 𝐴 “ 𝑉 ) ∧ ∀ 𝑦 ∈ 𝑤 ( 𝑦 ⊆ ( ( int ‘ 𝑆 ) ‘ ( 𝑘 ‘ 𝑦 ) ) ∧ ( 𝑆 ↾t ( 𝑘 ‘ 𝑦 ) ) ∈ Comp ) ) ) ) → ( 𝐴 “ ∪ ran 𝑘 ) ⊆ 𝑉 ) |
165 |
139 140 164
|
elrabd |
⊢ ( ( ( 𝜑 ∧ 𝑤 ∈ ( 𝒫 ( 𝑆 ↾t ( 𝐵 “ 𝐾 ) ) ∩ Fin ) ) ∧ ( ( 𝐵 “ 𝐾 ) = ∪ 𝑤 ∧ ( 𝑘 : 𝑤 ⟶ 𝒫 ( ◡ 𝐴 “ 𝑉 ) ∧ ∀ 𝑦 ∈ 𝑤 ( 𝑦 ⊆ ( ( int ‘ 𝑆 ) ‘ ( 𝑘 ‘ 𝑦 ) ) ∧ ( 𝑆 ↾t ( 𝑘 ‘ 𝑦 ) ) ∈ Comp ) ) ) ) → 𝐴 ∈ { 𝑎 ∈ ( 𝑆 Cn 𝑇 ) ∣ ( 𝑎 “ ∪ ran 𝑘 ) ⊆ 𝑉 } ) |
166 |
|
imaeq1 |
⊢ ( 𝑏 = 𝐵 → ( 𝑏 “ 𝐾 ) = ( 𝐵 “ 𝐾 ) ) |
167 |
166
|
sseq1d |
⊢ ( 𝑏 = 𝐵 → ( ( 𝑏 “ 𝐾 ) ⊆ ∪ 𝑦 ∈ 𝑤 ( ( int ‘ 𝑆 ) ‘ ( 𝑘 ‘ 𝑦 ) ) ↔ ( 𝐵 “ 𝐾 ) ⊆ ∪ 𝑦 ∈ 𝑤 ( ( int ‘ 𝑆 ) ‘ ( 𝑘 ‘ 𝑦 ) ) ) ) |
168 |
7
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑤 ∈ ( 𝒫 ( 𝑆 ↾t ( 𝐵 “ 𝐾 ) ) ∩ Fin ) ) ∧ ( ( 𝐵 “ 𝐾 ) = ∪ 𝑤 ∧ ( 𝑘 : 𝑤 ⟶ 𝒫 ( ◡ 𝐴 “ 𝑉 ) ∧ ∀ 𝑦 ∈ 𝑤 ( 𝑦 ⊆ ( ( int ‘ 𝑆 ) ‘ ( 𝑘 ‘ 𝑦 ) ) ∧ ( 𝑆 ↾t ( 𝑘 ‘ 𝑦 ) ) ∈ Comp ) ) ) ) → 𝐵 ∈ ( 𝑅 Cn 𝑆 ) ) |
169 |
|
simprl |
⊢ ( ( ( 𝜑 ∧ 𝑤 ∈ ( 𝒫 ( 𝑆 ↾t ( 𝐵 “ 𝐾 ) ) ∩ Fin ) ) ∧ ( ( 𝐵 “ 𝐾 ) = ∪ 𝑤 ∧ ( 𝑘 : 𝑤 ⟶ 𝒫 ( ◡ 𝐴 “ 𝑉 ) ∧ ∀ 𝑦 ∈ 𝑤 ( 𝑦 ⊆ ( ( int ‘ 𝑆 ) ‘ ( 𝑘 ‘ 𝑦 ) ) ∧ ( 𝑆 ↾t ( 𝑘 ‘ 𝑦 ) ) ∈ Comp ) ) ) ) → ( 𝐵 “ 𝐾 ) = ∪ 𝑤 ) |
170 |
|
uniiun |
⊢ ∪ 𝑤 = ∪ 𝑦 ∈ 𝑤 𝑦 |
171 |
169 170
|
eqtrdi |
⊢ ( ( ( 𝜑 ∧ 𝑤 ∈ ( 𝒫 ( 𝑆 ↾t ( 𝐵 “ 𝐾 ) ) ∩ Fin ) ) ∧ ( ( 𝐵 “ 𝐾 ) = ∪ 𝑤 ∧ ( 𝑘 : 𝑤 ⟶ 𝒫 ( ◡ 𝐴 “ 𝑉 ) ∧ ∀ 𝑦 ∈ 𝑤 ( 𝑦 ⊆ ( ( int ‘ 𝑆 ) ‘ ( 𝑘 ‘ 𝑦 ) ) ∧ ( 𝑆 ↾t ( 𝑘 ‘ 𝑦 ) ) ∈ Comp ) ) ) ) → ( 𝐵 “ 𝐾 ) = ∪ 𝑦 ∈ 𝑤 𝑦 ) |
172 |
|
simpl |
⊢ ( ( 𝑦 ⊆ ( ( int ‘ 𝑆 ) ‘ ( 𝑘 ‘ 𝑦 ) ) ∧ ( 𝑆 ↾t ( 𝑘 ‘ 𝑦 ) ) ∈ Comp ) → 𝑦 ⊆ ( ( int ‘ 𝑆 ) ‘ ( 𝑘 ‘ 𝑦 ) ) ) |
173 |
172
|
ralimi |
⊢ ( ∀ 𝑦 ∈ 𝑤 ( 𝑦 ⊆ ( ( int ‘ 𝑆 ) ‘ ( 𝑘 ‘ 𝑦 ) ) ∧ ( 𝑆 ↾t ( 𝑘 ‘ 𝑦 ) ) ∈ Comp ) → ∀ 𝑦 ∈ 𝑤 𝑦 ⊆ ( ( int ‘ 𝑆 ) ‘ ( 𝑘 ‘ 𝑦 ) ) ) |
174 |
|
ss2iun |
⊢ ( ∀ 𝑦 ∈ 𝑤 𝑦 ⊆ ( ( int ‘ 𝑆 ) ‘ ( 𝑘 ‘ 𝑦 ) ) → ∪ 𝑦 ∈ 𝑤 𝑦 ⊆ ∪ 𝑦 ∈ 𝑤 ( ( int ‘ 𝑆 ) ‘ ( 𝑘 ‘ 𝑦 ) ) ) |
175 |
115 173 174
|
3syl |
⊢ ( ( ( 𝜑 ∧ 𝑤 ∈ ( 𝒫 ( 𝑆 ↾t ( 𝐵 “ 𝐾 ) ) ∩ Fin ) ) ∧ ( ( 𝐵 “ 𝐾 ) = ∪ 𝑤 ∧ ( 𝑘 : 𝑤 ⟶ 𝒫 ( ◡ 𝐴 “ 𝑉 ) ∧ ∀ 𝑦 ∈ 𝑤 ( 𝑦 ⊆ ( ( int ‘ 𝑆 ) ‘ ( 𝑘 ‘ 𝑦 ) ) ∧ ( 𝑆 ↾t ( 𝑘 ‘ 𝑦 ) ) ∈ Comp ) ) ) ) → ∪ 𝑦 ∈ 𝑤 𝑦 ⊆ ∪ 𝑦 ∈ 𝑤 ( ( int ‘ 𝑆 ) ‘ ( 𝑘 ‘ 𝑦 ) ) ) |
176 |
171 175
|
eqsstrd |
⊢ ( ( ( 𝜑 ∧ 𝑤 ∈ ( 𝒫 ( 𝑆 ↾t ( 𝐵 “ 𝐾 ) ) ∩ Fin ) ) ∧ ( ( 𝐵 “ 𝐾 ) = ∪ 𝑤 ∧ ( 𝑘 : 𝑤 ⟶ 𝒫 ( ◡ 𝐴 “ 𝑉 ) ∧ ∀ 𝑦 ∈ 𝑤 ( 𝑦 ⊆ ( ( int ‘ 𝑆 ) ‘ ( 𝑘 ‘ 𝑦 ) ) ∧ ( 𝑆 ↾t ( 𝑘 ‘ 𝑦 ) ) ∈ Comp ) ) ) ) → ( 𝐵 “ 𝐾 ) ⊆ ∪ 𝑦 ∈ 𝑤 ( ( int ‘ 𝑆 ) ‘ ( 𝑘 ‘ 𝑦 ) ) ) |
177 |
167 168 176
|
elrabd |
⊢ ( ( ( 𝜑 ∧ 𝑤 ∈ ( 𝒫 ( 𝑆 ↾t ( 𝐵 “ 𝐾 ) ) ∩ Fin ) ) ∧ ( ( 𝐵 “ 𝐾 ) = ∪ 𝑤 ∧ ( 𝑘 : 𝑤 ⟶ 𝒫 ( ◡ 𝐴 “ 𝑉 ) ∧ ∀ 𝑦 ∈ 𝑤 ( 𝑦 ⊆ ( ( int ‘ 𝑆 ) ‘ ( 𝑘 ‘ 𝑦 ) ) ∧ ( 𝑆 ↾t ( 𝑘 ‘ 𝑦 ) ) ∈ Comp ) ) ) ) → 𝐵 ∈ { 𝑏 ∈ ( 𝑅 Cn 𝑆 ) ∣ ( 𝑏 “ 𝐾 ) ⊆ ∪ 𝑦 ∈ 𝑤 ( ( int ‘ 𝑆 ) ‘ ( 𝑘 ‘ 𝑦 ) ) } ) |
178 |
165 177
|
opelxpd |
⊢ ( ( ( 𝜑 ∧ 𝑤 ∈ ( 𝒫 ( 𝑆 ↾t ( 𝐵 “ 𝐾 ) ) ∩ Fin ) ) ∧ ( ( 𝐵 “ 𝐾 ) = ∪ 𝑤 ∧ ( 𝑘 : 𝑤 ⟶ 𝒫 ( ◡ 𝐴 “ 𝑉 ) ∧ ∀ 𝑦 ∈ 𝑤 ( 𝑦 ⊆ ( ( int ‘ 𝑆 ) ‘ ( 𝑘 ‘ 𝑦 ) ) ∧ ( 𝑆 ↾t ( 𝑘 ‘ 𝑦 ) ) ∈ Comp ) ) ) ) → 〈 𝐴 , 𝐵 〉 ∈ ( { 𝑎 ∈ ( 𝑆 Cn 𝑇 ) ∣ ( 𝑎 “ ∪ ran 𝑘 ) ⊆ 𝑉 } × { 𝑏 ∈ ( 𝑅 Cn 𝑆 ) ∣ ( 𝑏 “ 𝐾 ) ⊆ ∪ 𝑦 ∈ 𝑤 ( ( int ‘ 𝑆 ) ‘ ( 𝑘 ‘ 𝑦 ) ) } ) ) |
179 |
|
imaeq1 |
⊢ ( 𝑎 = 𝑢 → ( 𝑎 “ ∪ ran 𝑘 ) = ( 𝑢 “ ∪ ran 𝑘 ) ) |
180 |
179
|
sseq1d |
⊢ ( 𝑎 = 𝑢 → ( ( 𝑎 “ ∪ ran 𝑘 ) ⊆ 𝑉 ↔ ( 𝑢 “ ∪ ran 𝑘 ) ⊆ 𝑉 ) ) |
181 |
180
|
elrab |
⊢ ( 𝑢 ∈ { 𝑎 ∈ ( 𝑆 Cn 𝑇 ) ∣ ( 𝑎 “ ∪ ran 𝑘 ) ⊆ 𝑉 } ↔ ( 𝑢 ∈ ( 𝑆 Cn 𝑇 ) ∧ ( 𝑢 “ ∪ ran 𝑘 ) ⊆ 𝑉 ) ) |
182 |
|
imaeq1 |
⊢ ( 𝑏 = 𝑣 → ( 𝑏 “ 𝐾 ) = ( 𝑣 “ 𝐾 ) ) |
183 |
182
|
sseq1d |
⊢ ( 𝑏 = 𝑣 → ( ( 𝑏 “ 𝐾 ) ⊆ ∪ 𝑦 ∈ 𝑤 ( ( int ‘ 𝑆 ) ‘ ( 𝑘 ‘ 𝑦 ) ) ↔ ( 𝑣 “ 𝐾 ) ⊆ ∪ 𝑦 ∈ 𝑤 ( ( int ‘ 𝑆 ) ‘ ( 𝑘 ‘ 𝑦 ) ) ) ) |
184 |
183
|
elrab |
⊢ ( 𝑣 ∈ { 𝑏 ∈ ( 𝑅 Cn 𝑆 ) ∣ ( 𝑏 “ 𝐾 ) ⊆ ∪ 𝑦 ∈ 𝑤 ( ( int ‘ 𝑆 ) ‘ ( 𝑘 ‘ 𝑦 ) ) } ↔ ( 𝑣 ∈ ( 𝑅 Cn 𝑆 ) ∧ ( 𝑣 “ 𝐾 ) ⊆ ∪ 𝑦 ∈ 𝑤 ( ( int ‘ 𝑆 ) ‘ ( 𝑘 ‘ 𝑦 ) ) ) ) |
185 |
181 184
|
anbi12i |
⊢ ( ( 𝑢 ∈ { 𝑎 ∈ ( 𝑆 Cn 𝑇 ) ∣ ( 𝑎 “ ∪ ran 𝑘 ) ⊆ 𝑉 } ∧ 𝑣 ∈ { 𝑏 ∈ ( 𝑅 Cn 𝑆 ) ∣ ( 𝑏 “ 𝐾 ) ⊆ ∪ 𝑦 ∈ 𝑤 ( ( int ‘ 𝑆 ) ‘ ( 𝑘 ‘ 𝑦 ) ) } ) ↔ ( ( 𝑢 ∈ ( 𝑆 Cn 𝑇 ) ∧ ( 𝑢 “ ∪ ran 𝑘 ) ⊆ 𝑉 ) ∧ ( 𝑣 ∈ ( 𝑅 Cn 𝑆 ) ∧ ( 𝑣 “ 𝐾 ) ⊆ ∪ 𝑦 ∈ 𝑤 ( ( int ‘ 𝑆 ) ‘ ( 𝑘 ‘ 𝑦 ) ) ) ) ) |
186 |
|
simprll |
⊢ ( ( ( ( 𝜑 ∧ 𝑤 ∈ ( 𝒫 ( 𝑆 ↾t ( 𝐵 “ 𝐾 ) ) ∩ Fin ) ) ∧ ( ( 𝐵 “ 𝐾 ) = ∪ 𝑤 ∧ ( 𝑘 : 𝑤 ⟶ 𝒫 ( ◡ 𝐴 “ 𝑉 ) ∧ ∀ 𝑦 ∈ 𝑤 ( 𝑦 ⊆ ( ( int ‘ 𝑆 ) ‘ ( 𝑘 ‘ 𝑦 ) ) ∧ ( 𝑆 ↾t ( 𝑘 ‘ 𝑦 ) ) ∈ Comp ) ) ) ) ∧ ( ( 𝑢 ∈ ( 𝑆 Cn 𝑇 ) ∧ ( 𝑢 “ ∪ ran 𝑘 ) ⊆ 𝑉 ) ∧ ( 𝑣 ∈ ( 𝑅 Cn 𝑆 ) ∧ ( 𝑣 “ 𝐾 ) ⊆ ∪ 𝑦 ∈ 𝑤 ( ( int ‘ 𝑆 ) ‘ ( 𝑘 ‘ 𝑦 ) ) ) ) ) → 𝑢 ∈ ( 𝑆 Cn 𝑇 ) ) |
187 |
|
simprrl |
⊢ ( ( ( ( 𝜑 ∧ 𝑤 ∈ ( 𝒫 ( 𝑆 ↾t ( 𝐵 “ 𝐾 ) ) ∩ Fin ) ) ∧ ( ( 𝐵 “ 𝐾 ) = ∪ 𝑤 ∧ ( 𝑘 : 𝑤 ⟶ 𝒫 ( ◡ 𝐴 “ 𝑉 ) ∧ ∀ 𝑦 ∈ 𝑤 ( 𝑦 ⊆ ( ( int ‘ 𝑆 ) ‘ ( 𝑘 ‘ 𝑦 ) ) ∧ ( 𝑆 ↾t ( 𝑘 ‘ 𝑦 ) ) ∈ Comp ) ) ) ) ∧ ( ( 𝑢 ∈ ( 𝑆 Cn 𝑇 ) ∧ ( 𝑢 “ ∪ ran 𝑘 ) ⊆ 𝑉 ) ∧ ( 𝑣 ∈ ( 𝑅 Cn 𝑆 ) ∧ ( 𝑣 “ 𝐾 ) ⊆ ∪ 𝑦 ∈ 𝑤 ( ( int ‘ 𝑆 ) ‘ ( 𝑘 ‘ 𝑦 ) ) ) ) ) → 𝑣 ∈ ( 𝑅 Cn 𝑆 ) ) |
188 |
|
coeq1 |
⊢ ( 𝑓 = 𝑢 → ( 𝑓 ∘ 𝑔 ) = ( 𝑢 ∘ 𝑔 ) ) |
189 |
|
coeq2 |
⊢ ( 𝑔 = 𝑣 → ( 𝑢 ∘ 𝑔 ) = ( 𝑢 ∘ 𝑣 ) ) |
190 |
|
vex |
⊢ 𝑢 ∈ V |
191 |
|
vex |
⊢ 𝑣 ∈ V |
192 |
190 191
|
coex |
⊢ ( 𝑢 ∘ 𝑣 ) ∈ V |
193 |
188 189 1 192
|
ovmpo |
⊢ ( ( 𝑢 ∈ ( 𝑆 Cn 𝑇 ) ∧ 𝑣 ∈ ( 𝑅 Cn 𝑆 ) ) → ( 𝑢 𝐹 𝑣 ) = ( 𝑢 ∘ 𝑣 ) ) |
194 |
186 187 193
|
syl2anc |
⊢ ( ( ( ( 𝜑 ∧ 𝑤 ∈ ( 𝒫 ( 𝑆 ↾t ( 𝐵 “ 𝐾 ) ) ∩ Fin ) ) ∧ ( ( 𝐵 “ 𝐾 ) = ∪ 𝑤 ∧ ( 𝑘 : 𝑤 ⟶ 𝒫 ( ◡ 𝐴 “ 𝑉 ) ∧ ∀ 𝑦 ∈ 𝑤 ( 𝑦 ⊆ ( ( int ‘ 𝑆 ) ‘ ( 𝑘 ‘ 𝑦 ) ) ∧ ( 𝑆 ↾t ( 𝑘 ‘ 𝑦 ) ) ∈ Comp ) ) ) ) ∧ ( ( 𝑢 ∈ ( 𝑆 Cn 𝑇 ) ∧ ( 𝑢 “ ∪ ran 𝑘 ) ⊆ 𝑉 ) ∧ ( 𝑣 ∈ ( 𝑅 Cn 𝑆 ) ∧ ( 𝑣 “ 𝐾 ) ⊆ ∪ 𝑦 ∈ 𝑤 ( ( int ‘ 𝑆 ) ‘ ( 𝑘 ‘ 𝑦 ) ) ) ) ) → ( 𝑢 𝐹 𝑣 ) = ( 𝑢 ∘ 𝑣 ) ) |
195 |
|
imaeq1 |
⊢ ( ℎ = ( 𝑢 ∘ 𝑣 ) → ( ℎ “ 𝐾 ) = ( ( 𝑢 ∘ 𝑣 ) “ 𝐾 ) ) |
196 |
195
|
sseq1d |
⊢ ( ℎ = ( 𝑢 ∘ 𝑣 ) → ( ( ℎ “ 𝐾 ) ⊆ 𝑉 ↔ ( ( 𝑢 ∘ 𝑣 ) “ 𝐾 ) ⊆ 𝑉 ) ) |
197 |
|
cnco |
⊢ ( ( 𝑣 ∈ ( 𝑅 Cn 𝑆 ) ∧ 𝑢 ∈ ( 𝑆 Cn 𝑇 ) ) → ( 𝑢 ∘ 𝑣 ) ∈ ( 𝑅 Cn 𝑇 ) ) |
198 |
187 186 197
|
syl2anc |
⊢ ( ( ( ( 𝜑 ∧ 𝑤 ∈ ( 𝒫 ( 𝑆 ↾t ( 𝐵 “ 𝐾 ) ) ∩ Fin ) ) ∧ ( ( 𝐵 “ 𝐾 ) = ∪ 𝑤 ∧ ( 𝑘 : 𝑤 ⟶ 𝒫 ( ◡ 𝐴 “ 𝑉 ) ∧ ∀ 𝑦 ∈ 𝑤 ( 𝑦 ⊆ ( ( int ‘ 𝑆 ) ‘ ( 𝑘 ‘ 𝑦 ) ) ∧ ( 𝑆 ↾t ( 𝑘 ‘ 𝑦 ) ) ∈ Comp ) ) ) ) ∧ ( ( 𝑢 ∈ ( 𝑆 Cn 𝑇 ) ∧ ( 𝑢 “ ∪ ran 𝑘 ) ⊆ 𝑉 ) ∧ ( 𝑣 ∈ ( 𝑅 Cn 𝑆 ) ∧ ( 𝑣 “ 𝐾 ) ⊆ ∪ 𝑦 ∈ 𝑤 ( ( int ‘ 𝑆 ) ‘ ( 𝑘 ‘ 𝑦 ) ) ) ) ) → ( 𝑢 ∘ 𝑣 ) ∈ ( 𝑅 Cn 𝑇 ) ) |
199 |
|
imaco |
⊢ ( ( 𝑢 ∘ 𝑣 ) “ 𝐾 ) = ( 𝑢 “ ( 𝑣 “ 𝐾 ) ) |
200 |
|
simprrr |
⊢ ( ( ( ( 𝜑 ∧ 𝑤 ∈ ( 𝒫 ( 𝑆 ↾t ( 𝐵 “ 𝐾 ) ) ∩ Fin ) ) ∧ ( ( 𝐵 “ 𝐾 ) = ∪ 𝑤 ∧ ( 𝑘 : 𝑤 ⟶ 𝒫 ( ◡ 𝐴 “ 𝑉 ) ∧ ∀ 𝑦 ∈ 𝑤 ( 𝑦 ⊆ ( ( int ‘ 𝑆 ) ‘ ( 𝑘 ‘ 𝑦 ) ) ∧ ( 𝑆 ↾t ( 𝑘 ‘ 𝑦 ) ) ∈ Comp ) ) ) ) ∧ ( ( 𝑢 ∈ ( 𝑆 Cn 𝑇 ) ∧ ( 𝑢 “ ∪ ran 𝑘 ) ⊆ 𝑉 ) ∧ ( 𝑣 ∈ ( 𝑅 Cn 𝑆 ) ∧ ( 𝑣 “ 𝐾 ) ⊆ ∪ 𝑦 ∈ 𝑤 ( ( int ‘ 𝑆 ) ‘ ( 𝑘 ‘ 𝑦 ) ) ) ) ) → ( 𝑣 “ 𝐾 ) ⊆ ∪ 𝑦 ∈ 𝑤 ( ( int ‘ 𝑆 ) ‘ ( 𝑘 ‘ 𝑦 ) ) ) |
201 |
17
|
ntrss2 |
⊢ ( ( 𝑆 ∈ Top ∧ ( 𝑘 ‘ 𝑦 ) ⊆ ∪ 𝑆 ) → ( ( int ‘ 𝑆 ) ‘ ( 𝑘 ‘ 𝑦 ) ) ⊆ ( 𝑘 ‘ 𝑦 ) ) |
202 |
201
|
ex |
⊢ ( 𝑆 ∈ Top → ( ( 𝑘 ‘ 𝑦 ) ⊆ ∪ 𝑆 → ( ( int ‘ 𝑆 ) ‘ ( 𝑘 ‘ 𝑦 ) ) ⊆ ( 𝑘 ‘ 𝑦 ) ) ) |
203 |
202
|
ralimdv |
⊢ ( 𝑆 ∈ Top → ( ∀ 𝑦 ∈ 𝑤 ( 𝑘 ‘ 𝑦 ) ⊆ ∪ 𝑆 → ∀ 𝑦 ∈ 𝑤 ( ( int ‘ 𝑆 ) ‘ ( 𝑘 ‘ 𝑦 ) ) ⊆ ( 𝑘 ‘ 𝑦 ) ) ) |
204 |
91 128 203
|
sylc |
⊢ ( ( ( 𝜑 ∧ 𝑤 ∈ ( 𝒫 ( 𝑆 ↾t ( 𝐵 “ 𝐾 ) ) ∩ Fin ) ) ∧ ( ( 𝐵 “ 𝐾 ) = ∪ 𝑤 ∧ ( 𝑘 : 𝑤 ⟶ 𝒫 ( ◡ 𝐴 “ 𝑉 ) ∧ ∀ 𝑦 ∈ 𝑤 ( 𝑦 ⊆ ( ( int ‘ 𝑆 ) ‘ ( 𝑘 ‘ 𝑦 ) ) ∧ ( 𝑆 ↾t ( 𝑘 ‘ 𝑦 ) ) ∈ Comp ) ) ) ) → ∀ 𝑦 ∈ 𝑤 ( ( int ‘ 𝑆 ) ‘ ( 𝑘 ‘ 𝑦 ) ) ⊆ ( 𝑘 ‘ 𝑦 ) ) |
205 |
|
ss2iun |
⊢ ( ∀ 𝑦 ∈ 𝑤 ( ( int ‘ 𝑆 ) ‘ ( 𝑘 ‘ 𝑦 ) ) ⊆ ( 𝑘 ‘ 𝑦 ) → ∪ 𝑦 ∈ 𝑤 ( ( int ‘ 𝑆 ) ‘ ( 𝑘 ‘ 𝑦 ) ) ⊆ ∪ 𝑦 ∈ 𝑤 ( 𝑘 ‘ 𝑦 ) ) |
206 |
204 205
|
syl |
⊢ ( ( ( 𝜑 ∧ 𝑤 ∈ ( 𝒫 ( 𝑆 ↾t ( 𝐵 “ 𝐾 ) ) ∩ Fin ) ) ∧ ( ( 𝐵 “ 𝐾 ) = ∪ 𝑤 ∧ ( 𝑘 : 𝑤 ⟶ 𝒫 ( ◡ 𝐴 “ 𝑉 ) ∧ ∀ 𝑦 ∈ 𝑤 ( 𝑦 ⊆ ( ( int ‘ 𝑆 ) ‘ ( 𝑘 ‘ 𝑦 ) ) ∧ ( 𝑆 ↾t ( 𝑘 ‘ 𝑦 ) ) ∈ Comp ) ) ) ) → ∪ 𝑦 ∈ 𝑤 ( ( int ‘ 𝑆 ) ‘ ( 𝑘 ‘ 𝑦 ) ) ⊆ ∪ 𝑦 ∈ 𝑤 ( 𝑘 ‘ 𝑦 ) ) |
207 |
206 111
|
sseqtrd |
⊢ ( ( ( 𝜑 ∧ 𝑤 ∈ ( 𝒫 ( 𝑆 ↾t ( 𝐵 “ 𝐾 ) ) ∩ Fin ) ) ∧ ( ( 𝐵 “ 𝐾 ) = ∪ 𝑤 ∧ ( 𝑘 : 𝑤 ⟶ 𝒫 ( ◡ 𝐴 “ 𝑉 ) ∧ ∀ 𝑦 ∈ 𝑤 ( 𝑦 ⊆ ( ( int ‘ 𝑆 ) ‘ ( 𝑘 ‘ 𝑦 ) ) ∧ ( 𝑆 ↾t ( 𝑘 ‘ 𝑦 ) ) ∈ Comp ) ) ) ) → ∪ 𝑦 ∈ 𝑤 ( ( int ‘ 𝑆 ) ‘ ( 𝑘 ‘ 𝑦 ) ) ⊆ ∪ ran 𝑘 ) |
208 |
207
|
adantr |
⊢ ( ( ( ( 𝜑 ∧ 𝑤 ∈ ( 𝒫 ( 𝑆 ↾t ( 𝐵 “ 𝐾 ) ) ∩ Fin ) ) ∧ ( ( 𝐵 “ 𝐾 ) = ∪ 𝑤 ∧ ( 𝑘 : 𝑤 ⟶ 𝒫 ( ◡ 𝐴 “ 𝑉 ) ∧ ∀ 𝑦 ∈ 𝑤 ( 𝑦 ⊆ ( ( int ‘ 𝑆 ) ‘ ( 𝑘 ‘ 𝑦 ) ) ∧ ( 𝑆 ↾t ( 𝑘 ‘ 𝑦 ) ) ∈ Comp ) ) ) ) ∧ ( ( 𝑢 ∈ ( 𝑆 Cn 𝑇 ) ∧ ( 𝑢 “ ∪ ran 𝑘 ) ⊆ 𝑉 ) ∧ ( 𝑣 ∈ ( 𝑅 Cn 𝑆 ) ∧ ( 𝑣 “ 𝐾 ) ⊆ ∪ 𝑦 ∈ 𝑤 ( ( int ‘ 𝑆 ) ‘ ( 𝑘 ‘ 𝑦 ) ) ) ) ) → ∪ 𝑦 ∈ 𝑤 ( ( int ‘ 𝑆 ) ‘ ( 𝑘 ‘ 𝑦 ) ) ⊆ ∪ ran 𝑘 ) |
209 |
200 208
|
sstrd |
⊢ ( ( ( ( 𝜑 ∧ 𝑤 ∈ ( 𝒫 ( 𝑆 ↾t ( 𝐵 “ 𝐾 ) ) ∩ Fin ) ) ∧ ( ( 𝐵 “ 𝐾 ) = ∪ 𝑤 ∧ ( 𝑘 : 𝑤 ⟶ 𝒫 ( ◡ 𝐴 “ 𝑉 ) ∧ ∀ 𝑦 ∈ 𝑤 ( 𝑦 ⊆ ( ( int ‘ 𝑆 ) ‘ ( 𝑘 ‘ 𝑦 ) ) ∧ ( 𝑆 ↾t ( 𝑘 ‘ 𝑦 ) ) ∈ Comp ) ) ) ) ∧ ( ( 𝑢 ∈ ( 𝑆 Cn 𝑇 ) ∧ ( 𝑢 “ ∪ ran 𝑘 ) ⊆ 𝑉 ) ∧ ( 𝑣 ∈ ( 𝑅 Cn 𝑆 ) ∧ ( 𝑣 “ 𝐾 ) ⊆ ∪ 𝑦 ∈ 𝑤 ( ( int ‘ 𝑆 ) ‘ ( 𝑘 ‘ 𝑦 ) ) ) ) ) → ( 𝑣 “ 𝐾 ) ⊆ ∪ ran 𝑘 ) |
210 |
|
imass2 |
⊢ ( ( 𝑣 “ 𝐾 ) ⊆ ∪ ran 𝑘 → ( 𝑢 “ ( 𝑣 “ 𝐾 ) ) ⊆ ( 𝑢 “ ∪ ran 𝑘 ) ) |
211 |
209 210
|
syl |
⊢ ( ( ( ( 𝜑 ∧ 𝑤 ∈ ( 𝒫 ( 𝑆 ↾t ( 𝐵 “ 𝐾 ) ) ∩ Fin ) ) ∧ ( ( 𝐵 “ 𝐾 ) = ∪ 𝑤 ∧ ( 𝑘 : 𝑤 ⟶ 𝒫 ( ◡ 𝐴 “ 𝑉 ) ∧ ∀ 𝑦 ∈ 𝑤 ( 𝑦 ⊆ ( ( int ‘ 𝑆 ) ‘ ( 𝑘 ‘ 𝑦 ) ) ∧ ( 𝑆 ↾t ( 𝑘 ‘ 𝑦 ) ) ∈ Comp ) ) ) ) ∧ ( ( 𝑢 ∈ ( 𝑆 Cn 𝑇 ) ∧ ( 𝑢 “ ∪ ran 𝑘 ) ⊆ 𝑉 ) ∧ ( 𝑣 ∈ ( 𝑅 Cn 𝑆 ) ∧ ( 𝑣 “ 𝐾 ) ⊆ ∪ 𝑦 ∈ 𝑤 ( ( int ‘ 𝑆 ) ‘ ( 𝑘 ‘ 𝑦 ) ) ) ) ) → ( 𝑢 “ ( 𝑣 “ 𝐾 ) ) ⊆ ( 𝑢 “ ∪ ran 𝑘 ) ) |
212 |
|
simprlr |
⊢ ( ( ( ( 𝜑 ∧ 𝑤 ∈ ( 𝒫 ( 𝑆 ↾t ( 𝐵 “ 𝐾 ) ) ∩ Fin ) ) ∧ ( ( 𝐵 “ 𝐾 ) = ∪ 𝑤 ∧ ( 𝑘 : 𝑤 ⟶ 𝒫 ( ◡ 𝐴 “ 𝑉 ) ∧ ∀ 𝑦 ∈ 𝑤 ( 𝑦 ⊆ ( ( int ‘ 𝑆 ) ‘ ( 𝑘 ‘ 𝑦 ) ) ∧ ( 𝑆 ↾t ( 𝑘 ‘ 𝑦 ) ) ∈ Comp ) ) ) ) ∧ ( ( 𝑢 ∈ ( 𝑆 Cn 𝑇 ) ∧ ( 𝑢 “ ∪ ran 𝑘 ) ⊆ 𝑉 ) ∧ ( 𝑣 ∈ ( 𝑅 Cn 𝑆 ) ∧ ( 𝑣 “ 𝐾 ) ⊆ ∪ 𝑦 ∈ 𝑤 ( ( int ‘ 𝑆 ) ‘ ( 𝑘 ‘ 𝑦 ) ) ) ) ) → ( 𝑢 “ ∪ ran 𝑘 ) ⊆ 𝑉 ) |
213 |
211 212
|
sstrd |
⊢ ( ( ( ( 𝜑 ∧ 𝑤 ∈ ( 𝒫 ( 𝑆 ↾t ( 𝐵 “ 𝐾 ) ) ∩ Fin ) ) ∧ ( ( 𝐵 “ 𝐾 ) = ∪ 𝑤 ∧ ( 𝑘 : 𝑤 ⟶ 𝒫 ( ◡ 𝐴 “ 𝑉 ) ∧ ∀ 𝑦 ∈ 𝑤 ( 𝑦 ⊆ ( ( int ‘ 𝑆 ) ‘ ( 𝑘 ‘ 𝑦 ) ) ∧ ( 𝑆 ↾t ( 𝑘 ‘ 𝑦 ) ) ∈ Comp ) ) ) ) ∧ ( ( 𝑢 ∈ ( 𝑆 Cn 𝑇 ) ∧ ( 𝑢 “ ∪ ran 𝑘 ) ⊆ 𝑉 ) ∧ ( 𝑣 ∈ ( 𝑅 Cn 𝑆 ) ∧ ( 𝑣 “ 𝐾 ) ⊆ ∪ 𝑦 ∈ 𝑤 ( ( int ‘ 𝑆 ) ‘ ( 𝑘 ‘ 𝑦 ) ) ) ) ) → ( 𝑢 “ ( 𝑣 “ 𝐾 ) ) ⊆ 𝑉 ) |
214 |
199 213
|
eqsstrid |
⊢ ( ( ( ( 𝜑 ∧ 𝑤 ∈ ( 𝒫 ( 𝑆 ↾t ( 𝐵 “ 𝐾 ) ) ∩ Fin ) ) ∧ ( ( 𝐵 “ 𝐾 ) = ∪ 𝑤 ∧ ( 𝑘 : 𝑤 ⟶ 𝒫 ( ◡ 𝐴 “ 𝑉 ) ∧ ∀ 𝑦 ∈ 𝑤 ( 𝑦 ⊆ ( ( int ‘ 𝑆 ) ‘ ( 𝑘 ‘ 𝑦 ) ) ∧ ( 𝑆 ↾t ( 𝑘 ‘ 𝑦 ) ) ∈ Comp ) ) ) ) ∧ ( ( 𝑢 ∈ ( 𝑆 Cn 𝑇 ) ∧ ( 𝑢 “ ∪ ran 𝑘 ) ⊆ 𝑉 ) ∧ ( 𝑣 ∈ ( 𝑅 Cn 𝑆 ) ∧ ( 𝑣 “ 𝐾 ) ⊆ ∪ 𝑦 ∈ 𝑤 ( ( int ‘ 𝑆 ) ‘ ( 𝑘 ‘ 𝑦 ) ) ) ) ) → ( ( 𝑢 ∘ 𝑣 ) “ 𝐾 ) ⊆ 𝑉 ) |
215 |
196 198 214
|
elrabd |
⊢ ( ( ( ( 𝜑 ∧ 𝑤 ∈ ( 𝒫 ( 𝑆 ↾t ( 𝐵 “ 𝐾 ) ) ∩ Fin ) ) ∧ ( ( 𝐵 “ 𝐾 ) = ∪ 𝑤 ∧ ( 𝑘 : 𝑤 ⟶ 𝒫 ( ◡ 𝐴 “ 𝑉 ) ∧ ∀ 𝑦 ∈ 𝑤 ( 𝑦 ⊆ ( ( int ‘ 𝑆 ) ‘ ( 𝑘 ‘ 𝑦 ) ) ∧ ( 𝑆 ↾t ( 𝑘 ‘ 𝑦 ) ) ∈ Comp ) ) ) ) ∧ ( ( 𝑢 ∈ ( 𝑆 Cn 𝑇 ) ∧ ( 𝑢 “ ∪ ran 𝑘 ) ⊆ 𝑉 ) ∧ ( 𝑣 ∈ ( 𝑅 Cn 𝑆 ) ∧ ( 𝑣 “ 𝐾 ) ⊆ ∪ 𝑦 ∈ 𝑤 ( ( int ‘ 𝑆 ) ‘ ( 𝑘 ‘ 𝑦 ) ) ) ) ) → ( 𝑢 ∘ 𝑣 ) ∈ { ℎ ∈ ( 𝑅 Cn 𝑇 ) ∣ ( ℎ “ 𝐾 ) ⊆ 𝑉 } ) |
216 |
194 215
|
eqeltrd |
⊢ ( ( ( ( 𝜑 ∧ 𝑤 ∈ ( 𝒫 ( 𝑆 ↾t ( 𝐵 “ 𝐾 ) ) ∩ Fin ) ) ∧ ( ( 𝐵 “ 𝐾 ) = ∪ 𝑤 ∧ ( 𝑘 : 𝑤 ⟶ 𝒫 ( ◡ 𝐴 “ 𝑉 ) ∧ ∀ 𝑦 ∈ 𝑤 ( 𝑦 ⊆ ( ( int ‘ 𝑆 ) ‘ ( 𝑘 ‘ 𝑦 ) ) ∧ ( 𝑆 ↾t ( 𝑘 ‘ 𝑦 ) ) ∈ Comp ) ) ) ) ∧ ( ( 𝑢 ∈ ( 𝑆 Cn 𝑇 ) ∧ ( 𝑢 “ ∪ ran 𝑘 ) ⊆ 𝑉 ) ∧ ( 𝑣 ∈ ( 𝑅 Cn 𝑆 ) ∧ ( 𝑣 “ 𝐾 ) ⊆ ∪ 𝑦 ∈ 𝑤 ( ( int ‘ 𝑆 ) ‘ ( 𝑘 ‘ 𝑦 ) ) ) ) ) → ( 𝑢 𝐹 𝑣 ) ∈ { ℎ ∈ ( 𝑅 Cn 𝑇 ) ∣ ( ℎ “ 𝐾 ) ⊆ 𝑉 } ) |
217 |
185 216
|
sylan2b |
⊢ ( ( ( ( 𝜑 ∧ 𝑤 ∈ ( 𝒫 ( 𝑆 ↾t ( 𝐵 “ 𝐾 ) ) ∩ Fin ) ) ∧ ( ( 𝐵 “ 𝐾 ) = ∪ 𝑤 ∧ ( 𝑘 : 𝑤 ⟶ 𝒫 ( ◡ 𝐴 “ 𝑉 ) ∧ ∀ 𝑦 ∈ 𝑤 ( 𝑦 ⊆ ( ( int ‘ 𝑆 ) ‘ ( 𝑘 ‘ 𝑦 ) ) ∧ ( 𝑆 ↾t ( 𝑘 ‘ 𝑦 ) ) ∈ Comp ) ) ) ) ∧ ( 𝑢 ∈ { 𝑎 ∈ ( 𝑆 Cn 𝑇 ) ∣ ( 𝑎 “ ∪ ran 𝑘 ) ⊆ 𝑉 } ∧ 𝑣 ∈ { 𝑏 ∈ ( 𝑅 Cn 𝑆 ) ∣ ( 𝑏 “ 𝐾 ) ⊆ ∪ 𝑦 ∈ 𝑤 ( ( int ‘ 𝑆 ) ‘ ( 𝑘 ‘ 𝑦 ) ) } ) ) → ( 𝑢 𝐹 𝑣 ) ∈ { ℎ ∈ ( 𝑅 Cn 𝑇 ) ∣ ( ℎ “ 𝐾 ) ⊆ 𝑉 } ) |
218 |
217
|
ralrimivva |
⊢ ( ( ( 𝜑 ∧ 𝑤 ∈ ( 𝒫 ( 𝑆 ↾t ( 𝐵 “ 𝐾 ) ) ∩ Fin ) ) ∧ ( ( 𝐵 “ 𝐾 ) = ∪ 𝑤 ∧ ( 𝑘 : 𝑤 ⟶ 𝒫 ( ◡ 𝐴 “ 𝑉 ) ∧ ∀ 𝑦 ∈ 𝑤 ( 𝑦 ⊆ ( ( int ‘ 𝑆 ) ‘ ( 𝑘 ‘ 𝑦 ) ) ∧ ( 𝑆 ↾t ( 𝑘 ‘ 𝑦 ) ) ∈ Comp ) ) ) ) → ∀ 𝑢 ∈ { 𝑎 ∈ ( 𝑆 Cn 𝑇 ) ∣ ( 𝑎 “ ∪ ran 𝑘 ) ⊆ 𝑉 } ∀ 𝑣 ∈ { 𝑏 ∈ ( 𝑅 Cn 𝑆 ) ∣ ( 𝑏 “ 𝐾 ) ⊆ ∪ 𝑦 ∈ 𝑤 ( ( int ‘ 𝑆 ) ‘ ( 𝑘 ‘ 𝑦 ) ) } ( 𝑢 𝐹 𝑣 ) ∈ { ℎ ∈ ( 𝑅 Cn 𝑇 ) ∣ ( ℎ “ 𝐾 ) ⊆ 𝑉 } ) |
219 |
1
|
mpofun |
⊢ Fun 𝐹 |
220 |
|
ssrab2 |
⊢ { 𝑎 ∈ ( 𝑆 Cn 𝑇 ) ∣ ( 𝑎 “ ∪ ran 𝑘 ) ⊆ 𝑉 } ⊆ ( 𝑆 Cn 𝑇 ) |
221 |
|
ssrab2 |
⊢ { 𝑏 ∈ ( 𝑅 Cn 𝑆 ) ∣ ( 𝑏 “ 𝐾 ) ⊆ ∪ 𝑦 ∈ 𝑤 ( ( int ‘ 𝑆 ) ‘ ( 𝑘 ‘ 𝑦 ) ) } ⊆ ( 𝑅 Cn 𝑆 ) |
222 |
|
xpss12 |
⊢ ( ( { 𝑎 ∈ ( 𝑆 Cn 𝑇 ) ∣ ( 𝑎 “ ∪ ran 𝑘 ) ⊆ 𝑉 } ⊆ ( 𝑆 Cn 𝑇 ) ∧ { 𝑏 ∈ ( 𝑅 Cn 𝑆 ) ∣ ( 𝑏 “ 𝐾 ) ⊆ ∪ 𝑦 ∈ 𝑤 ( ( int ‘ 𝑆 ) ‘ ( 𝑘 ‘ 𝑦 ) ) } ⊆ ( 𝑅 Cn 𝑆 ) ) → ( { 𝑎 ∈ ( 𝑆 Cn 𝑇 ) ∣ ( 𝑎 “ ∪ ran 𝑘 ) ⊆ 𝑉 } × { 𝑏 ∈ ( 𝑅 Cn 𝑆 ) ∣ ( 𝑏 “ 𝐾 ) ⊆ ∪ 𝑦 ∈ 𝑤 ( ( int ‘ 𝑆 ) ‘ ( 𝑘 ‘ 𝑦 ) ) } ) ⊆ ( ( 𝑆 Cn 𝑇 ) × ( 𝑅 Cn 𝑆 ) ) ) |
223 |
220 221 222
|
mp2an |
⊢ ( { 𝑎 ∈ ( 𝑆 Cn 𝑇 ) ∣ ( 𝑎 “ ∪ ran 𝑘 ) ⊆ 𝑉 } × { 𝑏 ∈ ( 𝑅 Cn 𝑆 ) ∣ ( 𝑏 “ 𝐾 ) ⊆ ∪ 𝑦 ∈ 𝑤 ( ( int ‘ 𝑆 ) ‘ ( 𝑘 ‘ 𝑦 ) ) } ) ⊆ ( ( 𝑆 Cn 𝑇 ) × ( 𝑅 Cn 𝑆 ) ) |
224 |
|
vex |
⊢ 𝑓 ∈ V |
225 |
|
vex |
⊢ 𝑔 ∈ V |
226 |
224 225
|
coex |
⊢ ( 𝑓 ∘ 𝑔 ) ∈ V |
227 |
1 226
|
dmmpo |
⊢ dom 𝐹 = ( ( 𝑆 Cn 𝑇 ) × ( 𝑅 Cn 𝑆 ) ) |
228 |
223 227
|
sseqtrri |
⊢ ( { 𝑎 ∈ ( 𝑆 Cn 𝑇 ) ∣ ( 𝑎 “ ∪ ran 𝑘 ) ⊆ 𝑉 } × { 𝑏 ∈ ( 𝑅 Cn 𝑆 ) ∣ ( 𝑏 “ 𝐾 ) ⊆ ∪ 𝑦 ∈ 𝑤 ( ( int ‘ 𝑆 ) ‘ ( 𝑘 ‘ 𝑦 ) ) } ) ⊆ dom 𝐹 |
229 |
|
funimassov |
⊢ ( ( Fun 𝐹 ∧ ( { 𝑎 ∈ ( 𝑆 Cn 𝑇 ) ∣ ( 𝑎 “ ∪ ran 𝑘 ) ⊆ 𝑉 } × { 𝑏 ∈ ( 𝑅 Cn 𝑆 ) ∣ ( 𝑏 “ 𝐾 ) ⊆ ∪ 𝑦 ∈ 𝑤 ( ( int ‘ 𝑆 ) ‘ ( 𝑘 ‘ 𝑦 ) ) } ) ⊆ dom 𝐹 ) → ( ( 𝐹 “ ( { 𝑎 ∈ ( 𝑆 Cn 𝑇 ) ∣ ( 𝑎 “ ∪ ran 𝑘 ) ⊆ 𝑉 } × { 𝑏 ∈ ( 𝑅 Cn 𝑆 ) ∣ ( 𝑏 “ 𝐾 ) ⊆ ∪ 𝑦 ∈ 𝑤 ( ( int ‘ 𝑆 ) ‘ ( 𝑘 ‘ 𝑦 ) ) } ) ) ⊆ { ℎ ∈ ( 𝑅 Cn 𝑇 ) ∣ ( ℎ “ 𝐾 ) ⊆ 𝑉 } ↔ ∀ 𝑢 ∈ { 𝑎 ∈ ( 𝑆 Cn 𝑇 ) ∣ ( 𝑎 “ ∪ ran 𝑘 ) ⊆ 𝑉 } ∀ 𝑣 ∈ { 𝑏 ∈ ( 𝑅 Cn 𝑆 ) ∣ ( 𝑏 “ 𝐾 ) ⊆ ∪ 𝑦 ∈ 𝑤 ( ( int ‘ 𝑆 ) ‘ ( 𝑘 ‘ 𝑦 ) ) } ( 𝑢 𝐹 𝑣 ) ∈ { ℎ ∈ ( 𝑅 Cn 𝑇 ) ∣ ( ℎ “ 𝐾 ) ⊆ 𝑉 } ) ) |
230 |
219 228 229
|
mp2an |
⊢ ( ( 𝐹 “ ( { 𝑎 ∈ ( 𝑆 Cn 𝑇 ) ∣ ( 𝑎 “ ∪ ran 𝑘 ) ⊆ 𝑉 } × { 𝑏 ∈ ( 𝑅 Cn 𝑆 ) ∣ ( 𝑏 “ 𝐾 ) ⊆ ∪ 𝑦 ∈ 𝑤 ( ( int ‘ 𝑆 ) ‘ ( 𝑘 ‘ 𝑦 ) ) } ) ) ⊆ { ℎ ∈ ( 𝑅 Cn 𝑇 ) ∣ ( ℎ “ 𝐾 ) ⊆ 𝑉 } ↔ ∀ 𝑢 ∈ { 𝑎 ∈ ( 𝑆 Cn 𝑇 ) ∣ ( 𝑎 “ ∪ ran 𝑘 ) ⊆ 𝑉 } ∀ 𝑣 ∈ { 𝑏 ∈ ( 𝑅 Cn 𝑆 ) ∣ ( 𝑏 “ 𝐾 ) ⊆ ∪ 𝑦 ∈ 𝑤 ( ( int ‘ 𝑆 ) ‘ ( 𝑘 ‘ 𝑦 ) ) } ( 𝑢 𝐹 𝑣 ) ∈ { ℎ ∈ ( 𝑅 Cn 𝑇 ) ∣ ( ℎ “ 𝐾 ) ⊆ 𝑉 } ) |
231 |
218 230
|
sylibr |
⊢ ( ( ( 𝜑 ∧ 𝑤 ∈ ( 𝒫 ( 𝑆 ↾t ( 𝐵 “ 𝐾 ) ) ∩ Fin ) ) ∧ ( ( 𝐵 “ 𝐾 ) = ∪ 𝑤 ∧ ( 𝑘 : 𝑤 ⟶ 𝒫 ( ◡ 𝐴 “ 𝑉 ) ∧ ∀ 𝑦 ∈ 𝑤 ( 𝑦 ⊆ ( ( int ‘ 𝑆 ) ‘ ( 𝑘 ‘ 𝑦 ) ) ∧ ( 𝑆 ↾t ( 𝑘 ‘ 𝑦 ) ) ∈ Comp ) ) ) ) → ( 𝐹 “ ( { 𝑎 ∈ ( 𝑆 Cn 𝑇 ) ∣ ( 𝑎 “ ∪ ran 𝑘 ) ⊆ 𝑉 } × { 𝑏 ∈ ( 𝑅 Cn 𝑆 ) ∣ ( 𝑏 “ 𝐾 ) ⊆ ∪ 𝑦 ∈ 𝑤 ( ( int ‘ 𝑆 ) ‘ ( 𝑘 ‘ 𝑦 ) ) } ) ) ⊆ { ℎ ∈ ( 𝑅 Cn 𝑇 ) ∣ ( ℎ “ 𝐾 ) ⊆ 𝑉 } ) |
232 |
|
funimass3 |
⊢ ( ( Fun 𝐹 ∧ ( { 𝑎 ∈ ( 𝑆 Cn 𝑇 ) ∣ ( 𝑎 “ ∪ ran 𝑘 ) ⊆ 𝑉 } × { 𝑏 ∈ ( 𝑅 Cn 𝑆 ) ∣ ( 𝑏 “ 𝐾 ) ⊆ ∪ 𝑦 ∈ 𝑤 ( ( int ‘ 𝑆 ) ‘ ( 𝑘 ‘ 𝑦 ) ) } ) ⊆ dom 𝐹 ) → ( ( 𝐹 “ ( { 𝑎 ∈ ( 𝑆 Cn 𝑇 ) ∣ ( 𝑎 “ ∪ ran 𝑘 ) ⊆ 𝑉 } × { 𝑏 ∈ ( 𝑅 Cn 𝑆 ) ∣ ( 𝑏 “ 𝐾 ) ⊆ ∪ 𝑦 ∈ 𝑤 ( ( int ‘ 𝑆 ) ‘ ( 𝑘 ‘ 𝑦 ) ) } ) ) ⊆ { ℎ ∈ ( 𝑅 Cn 𝑇 ) ∣ ( ℎ “ 𝐾 ) ⊆ 𝑉 } ↔ ( { 𝑎 ∈ ( 𝑆 Cn 𝑇 ) ∣ ( 𝑎 “ ∪ ran 𝑘 ) ⊆ 𝑉 } × { 𝑏 ∈ ( 𝑅 Cn 𝑆 ) ∣ ( 𝑏 “ 𝐾 ) ⊆ ∪ 𝑦 ∈ 𝑤 ( ( int ‘ 𝑆 ) ‘ ( 𝑘 ‘ 𝑦 ) ) } ) ⊆ ( ◡ 𝐹 “ { ℎ ∈ ( 𝑅 Cn 𝑇 ) ∣ ( ℎ “ 𝐾 ) ⊆ 𝑉 } ) ) ) |
233 |
219 228 232
|
mp2an |
⊢ ( ( 𝐹 “ ( { 𝑎 ∈ ( 𝑆 Cn 𝑇 ) ∣ ( 𝑎 “ ∪ ran 𝑘 ) ⊆ 𝑉 } × { 𝑏 ∈ ( 𝑅 Cn 𝑆 ) ∣ ( 𝑏 “ 𝐾 ) ⊆ ∪ 𝑦 ∈ 𝑤 ( ( int ‘ 𝑆 ) ‘ ( 𝑘 ‘ 𝑦 ) ) } ) ) ⊆ { ℎ ∈ ( 𝑅 Cn 𝑇 ) ∣ ( ℎ “ 𝐾 ) ⊆ 𝑉 } ↔ ( { 𝑎 ∈ ( 𝑆 Cn 𝑇 ) ∣ ( 𝑎 “ ∪ ran 𝑘 ) ⊆ 𝑉 } × { 𝑏 ∈ ( 𝑅 Cn 𝑆 ) ∣ ( 𝑏 “ 𝐾 ) ⊆ ∪ 𝑦 ∈ 𝑤 ( ( int ‘ 𝑆 ) ‘ ( 𝑘 ‘ 𝑦 ) ) } ) ⊆ ( ◡ 𝐹 “ { ℎ ∈ ( 𝑅 Cn 𝑇 ) ∣ ( ℎ “ 𝐾 ) ⊆ 𝑉 } ) ) |
234 |
231 233
|
sylib |
⊢ ( ( ( 𝜑 ∧ 𝑤 ∈ ( 𝒫 ( 𝑆 ↾t ( 𝐵 “ 𝐾 ) ) ∩ Fin ) ) ∧ ( ( 𝐵 “ 𝐾 ) = ∪ 𝑤 ∧ ( 𝑘 : 𝑤 ⟶ 𝒫 ( ◡ 𝐴 “ 𝑉 ) ∧ ∀ 𝑦 ∈ 𝑤 ( 𝑦 ⊆ ( ( int ‘ 𝑆 ) ‘ ( 𝑘 ‘ 𝑦 ) ) ∧ ( 𝑆 ↾t ( 𝑘 ‘ 𝑦 ) ) ∈ Comp ) ) ) ) → ( { 𝑎 ∈ ( 𝑆 Cn 𝑇 ) ∣ ( 𝑎 “ ∪ ran 𝑘 ) ⊆ 𝑉 } × { 𝑏 ∈ ( 𝑅 Cn 𝑆 ) ∣ ( 𝑏 “ 𝐾 ) ⊆ ∪ 𝑦 ∈ 𝑤 ( ( int ‘ 𝑆 ) ‘ ( 𝑘 ‘ 𝑦 ) ) } ) ⊆ ( ◡ 𝐹 “ { ℎ ∈ ( 𝑅 Cn 𝑇 ) ∣ ( ℎ “ 𝐾 ) ⊆ 𝑉 } ) ) |
235 |
|
eleq2 |
⊢ ( 𝑧 = ( { 𝑎 ∈ ( 𝑆 Cn 𝑇 ) ∣ ( 𝑎 “ ∪ ran 𝑘 ) ⊆ 𝑉 } × { 𝑏 ∈ ( 𝑅 Cn 𝑆 ) ∣ ( 𝑏 “ 𝐾 ) ⊆ ∪ 𝑦 ∈ 𝑤 ( ( int ‘ 𝑆 ) ‘ ( 𝑘 ‘ 𝑦 ) ) } ) → ( 〈 𝐴 , 𝐵 〉 ∈ 𝑧 ↔ 〈 𝐴 , 𝐵 〉 ∈ ( { 𝑎 ∈ ( 𝑆 Cn 𝑇 ) ∣ ( 𝑎 “ ∪ ran 𝑘 ) ⊆ 𝑉 } × { 𝑏 ∈ ( 𝑅 Cn 𝑆 ) ∣ ( 𝑏 “ 𝐾 ) ⊆ ∪ 𝑦 ∈ 𝑤 ( ( int ‘ 𝑆 ) ‘ ( 𝑘 ‘ 𝑦 ) ) } ) ) ) |
236 |
|
sseq1 |
⊢ ( 𝑧 = ( { 𝑎 ∈ ( 𝑆 Cn 𝑇 ) ∣ ( 𝑎 “ ∪ ran 𝑘 ) ⊆ 𝑉 } × { 𝑏 ∈ ( 𝑅 Cn 𝑆 ) ∣ ( 𝑏 “ 𝐾 ) ⊆ ∪ 𝑦 ∈ 𝑤 ( ( int ‘ 𝑆 ) ‘ ( 𝑘 ‘ 𝑦 ) ) } ) → ( 𝑧 ⊆ ( ◡ 𝐹 “ { ℎ ∈ ( 𝑅 Cn 𝑇 ) ∣ ( ℎ “ 𝐾 ) ⊆ 𝑉 } ) ↔ ( { 𝑎 ∈ ( 𝑆 Cn 𝑇 ) ∣ ( 𝑎 “ ∪ ran 𝑘 ) ⊆ 𝑉 } × { 𝑏 ∈ ( 𝑅 Cn 𝑆 ) ∣ ( 𝑏 “ 𝐾 ) ⊆ ∪ 𝑦 ∈ 𝑤 ( ( int ‘ 𝑆 ) ‘ ( 𝑘 ‘ 𝑦 ) ) } ) ⊆ ( ◡ 𝐹 “ { ℎ ∈ ( 𝑅 Cn 𝑇 ) ∣ ( ℎ “ 𝐾 ) ⊆ 𝑉 } ) ) ) |
237 |
235 236
|
anbi12d |
⊢ ( 𝑧 = ( { 𝑎 ∈ ( 𝑆 Cn 𝑇 ) ∣ ( 𝑎 “ ∪ ran 𝑘 ) ⊆ 𝑉 } × { 𝑏 ∈ ( 𝑅 Cn 𝑆 ) ∣ ( 𝑏 “ 𝐾 ) ⊆ ∪ 𝑦 ∈ 𝑤 ( ( int ‘ 𝑆 ) ‘ ( 𝑘 ‘ 𝑦 ) ) } ) → ( ( 〈 𝐴 , 𝐵 〉 ∈ 𝑧 ∧ 𝑧 ⊆ ( ◡ 𝐹 “ { ℎ ∈ ( 𝑅 Cn 𝑇 ) ∣ ( ℎ “ 𝐾 ) ⊆ 𝑉 } ) ) ↔ ( 〈 𝐴 , 𝐵 〉 ∈ ( { 𝑎 ∈ ( 𝑆 Cn 𝑇 ) ∣ ( 𝑎 “ ∪ ran 𝑘 ) ⊆ 𝑉 } × { 𝑏 ∈ ( 𝑅 Cn 𝑆 ) ∣ ( 𝑏 “ 𝐾 ) ⊆ ∪ 𝑦 ∈ 𝑤 ( ( int ‘ 𝑆 ) ‘ ( 𝑘 ‘ 𝑦 ) ) } ) ∧ ( { 𝑎 ∈ ( 𝑆 Cn 𝑇 ) ∣ ( 𝑎 “ ∪ ran 𝑘 ) ⊆ 𝑉 } × { 𝑏 ∈ ( 𝑅 Cn 𝑆 ) ∣ ( 𝑏 “ 𝐾 ) ⊆ ∪ 𝑦 ∈ 𝑤 ( ( int ‘ 𝑆 ) ‘ ( 𝑘 ‘ 𝑦 ) ) } ) ⊆ ( ◡ 𝐹 “ { ℎ ∈ ( 𝑅 Cn 𝑇 ) ∣ ( ℎ “ 𝐾 ) ⊆ 𝑉 } ) ) ) ) |
238 |
237
|
rspcev |
⊢ ( ( ( { 𝑎 ∈ ( 𝑆 Cn 𝑇 ) ∣ ( 𝑎 “ ∪ ran 𝑘 ) ⊆ 𝑉 } × { 𝑏 ∈ ( 𝑅 Cn 𝑆 ) ∣ ( 𝑏 “ 𝐾 ) ⊆ ∪ 𝑦 ∈ 𝑤 ( ( int ‘ 𝑆 ) ‘ ( 𝑘 ‘ 𝑦 ) ) } ) ∈ ( ( 𝑇 ↑ko 𝑆 ) ×t ( 𝑆 ↑ko 𝑅 ) ) ∧ ( 〈 𝐴 , 𝐵 〉 ∈ ( { 𝑎 ∈ ( 𝑆 Cn 𝑇 ) ∣ ( 𝑎 “ ∪ ran 𝑘 ) ⊆ 𝑉 } × { 𝑏 ∈ ( 𝑅 Cn 𝑆 ) ∣ ( 𝑏 “ 𝐾 ) ⊆ ∪ 𝑦 ∈ 𝑤 ( ( int ‘ 𝑆 ) ‘ ( 𝑘 ‘ 𝑦 ) ) } ) ∧ ( { 𝑎 ∈ ( 𝑆 Cn 𝑇 ) ∣ ( 𝑎 “ ∪ ran 𝑘 ) ⊆ 𝑉 } × { 𝑏 ∈ ( 𝑅 Cn 𝑆 ) ∣ ( 𝑏 “ 𝐾 ) ⊆ ∪ 𝑦 ∈ 𝑤 ( ( int ‘ 𝑆 ) ‘ ( 𝑘 ‘ 𝑦 ) ) } ) ⊆ ( ◡ 𝐹 “ { ℎ ∈ ( 𝑅 Cn 𝑇 ) ∣ ( ℎ “ 𝐾 ) ⊆ 𝑉 } ) ) ) → ∃ 𝑧 ∈ ( ( 𝑇 ↑ko 𝑆 ) ×t ( 𝑆 ↑ko 𝑅 ) ) ( 〈 𝐴 , 𝐵 〉 ∈ 𝑧 ∧ 𝑧 ⊆ ( ◡ 𝐹 “ { ℎ ∈ ( 𝑅 Cn 𝑇 ) ∣ ( ℎ “ 𝐾 ) ⊆ 𝑉 } ) ) ) |
239 |
137 178 234 238
|
syl12anc |
⊢ ( ( ( 𝜑 ∧ 𝑤 ∈ ( 𝒫 ( 𝑆 ↾t ( 𝐵 “ 𝐾 ) ) ∩ Fin ) ) ∧ ( ( 𝐵 “ 𝐾 ) = ∪ 𝑤 ∧ ( 𝑘 : 𝑤 ⟶ 𝒫 ( ◡ 𝐴 “ 𝑉 ) ∧ ∀ 𝑦 ∈ 𝑤 ( 𝑦 ⊆ ( ( int ‘ 𝑆 ) ‘ ( 𝑘 ‘ 𝑦 ) ) ∧ ( 𝑆 ↾t ( 𝑘 ‘ 𝑦 ) ) ∈ Comp ) ) ) ) → ∃ 𝑧 ∈ ( ( 𝑇 ↑ko 𝑆 ) ×t ( 𝑆 ↑ko 𝑅 ) ) ( 〈 𝐴 , 𝐵 〉 ∈ 𝑧 ∧ 𝑧 ⊆ ( ◡ 𝐹 “ { ℎ ∈ ( 𝑅 Cn 𝑇 ) ∣ ( ℎ “ 𝐾 ) ⊆ 𝑉 } ) ) ) |
240 |
239
|
expr |
⊢ ( ( ( 𝜑 ∧ 𝑤 ∈ ( 𝒫 ( 𝑆 ↾t ( 𝐵 “ 𝐾 ) ) ∩ Fin ) ) ∧ ( 𝐵 “ 𝐾 ) = ∪ 𝑤 ) → ( ( 𝑘 : 𝑤 ⟶ 𝒫 ( ◡ 𝐴 “ 𝑉 ) ∧ ∀ 𝑦 ∈ 𝑤 ( 𝑦 ⊆ ( ( int ‘ 𝑆 ) ‘ ( 𝑘 ‘ 𝑦 ) ) ∧ ( 𝑆 ↾t ( 𝑘 ‘ 𝑦 ) ) ∈ Comp ) ) → ∃ 𝑧 ∈ ( ( 𝑇 ↑ko 𝑆 ) ×t ( 𝑆 ↑ko 𝑅 ) ) ( 〈 𝐴 , 𝐵 〉 ∈ 𝑧 ∧ 𝑧 ⊆ ( ◡ 𝐹 “ { ℎ ∈ ( 𝑅 Cn 𝑇 ) ∣ ( ℎ “ 𝐾 ) ⊆ 𝑉 } ) ) ) ) |
241 |
240
|
exlimdv |
⊢ ( ( ( 𝜑 ∧ 𝑤 ∈ ( 𝒫 ( 𝑆 ↾t ( 𝐵 “ 𝐾 ) ) ∩ Fin ) ) ∧ ( 𝐵 “ 𝐾 ) = ∪ 𝑤 ) → ( ∃ 𝑘 ( 𝑘 : 𝑤 ⟶ 𝒫 ( ◡ 𝐴 “ 𝑉 ) ∧ ∀ 𝑦 ∈ 𝑤 ( 𝑦 ⊆ ( ( int ‘ 𝑆 ) ‘ ( 𝑘 ‘ 𝑦 ) ) ∧ ( 𝑆 ↾t ( 𝑘 ‘ 𝑦 ) ) ∈ Comp ) ) → ∃ 𝑧 ∈ ( ( 𝑇 ↑ko 𝑆 ) ×t ( 𝑆 ↑ko 𝑅 ) ) ( 〈 𝐴 , 𝐵 〉 ∈ 𝑧 ∧ 𝑧 ⊆ ( ◡ 𝐹 “ { ℎ ∈ ( 𝑅 Cn 𝑇 ) ∣ ( ℎ “ 𝐾 ) ⊆ 𝑉 } ) ) ) ) |
242 |
90 241
|
syldan |
⊢ ( ( ( 𝜑 ∧ 𝑤 ∈ ( 𝒫 ( 𝑆 ↾t ( 𝐵 “ 𝐾 ) ) ∩ Fin ) ) ∧ ∪ ( 𝑆 ↾t ( 𝐵 “ 𝐾 ) ) = ∪ 𝑤 ) → ( ∃ 𝑘 ( 𝑘 : 𝑤 ⟶ 𝒫 ( ◡ 𝐴 “ 𝑉 ) ∧ ∀ 𝑦 ∈ 𝑤 ( 𝑦 ⊆ ( ( int ‘ 𝑆 ) ‘ ( 𝑘 ‘ 𝑦 ) ) ∧ ( 𝑆 ↾t ( 𝑘 ‘ 𝑦 ) ) ∈ Comp ) ) → ∃ 𝑧 ∈ ( ( 𝑇 ↑ko 𝑆 ) ×t ( 𝑆 ↑ko 𝑅 ) ) ( 〈 𝐴 , 𝐵 〉 ∈ 𝑧 ∧ 𝑧 ⊆ ( ◡ 𝐹 “ { ℎ ∈ ( 𝑅 Cn 𝑇 ) ∣ ( ℎ “ 𝐾 ) ⊆ 𝑉 } ) ) ) ) |
243 |
242
|
expimpd |
⊢ ( ( 𝜑 ∧ 𝑤 ∈ ( 𝒫 ( 𝑆 ↾t ( 𝐵 “ 𝐾 ) ) ∩ Fin ) ) → ( ( ∪ ( 𝑆 ↾t ( 𝐵 “ 𝐾 ) ) = ∪ 𝑤 ∧ ∃ 𝑘 ( 𝑘 : 𝑤 ⟶ 𝒫 ( ◡ 𝐴 “ 𝑉 ) ∧ ∀ 𝑦 ∈ 𝑤 ( 𝑦 ⊆ ( ( int ‘ 𝑆 ) ‘ ( 𝑘 ‘ 𝑦 ) ) ∧ ( 𝑆 ↾t ( 𝑘 ‘ 𝑦 ) ) ∈ Comp ) ) ) → ∃ 𝑧 ∈ ( ( 𝑇 ↑ko 𝑆 ) ×t ( 𝑆 ↑ko 𝑅 ) ) ( 〈 𝐴 , 𝐵 〉 ∈ 𝑧 ∧ 𝑧 ⊆ ( ◡ 𝐹 “ { ℎ ∈ ( 𝑅 Cn 𝑇 ) ∣ ( ℎ “ 𝐾 ) ⊆ 𝑉 } ) ) ) ) |
244 |
243
|
rexlimdva |
⊢ ( 𝜑 → ( ∃ 𝑤 ∈ ( 𝒫 ( 𝑆 ↾t ( 𝐵 “ 𝐾 ) ) ∩ Fin ) ( ∪ ( 𝑆 ↾t ( 𝐵 “ 𝐾 ) ) = ∪ 𝑤 ∧ ∃ 𝑘 ( 𝑘 : 𝑤 ⟶ 𝒫 ( ◡ 𝐴 “ 𝑉 ) ∧ ∀ 𝑦 ∈ 𝑤 ( 𝑦 ⊆ ( ( int ‘ 𝑆 ) ‘ ( 𝑘 ‘ 𝑦 ) ) ∧ ( 𝑆 ↾t ( 𝑘 ‘ 𝑦 ) ) ∈ Comp ) ) ) → ∃ 𝑧 ∈ ( ( 𝑇 ↑ko 𝑆 ) ×t ( 𝑆 ↑ko 𝑅 ) ) ( 〈 𝐴 , 𝐵 〉 ∈ 𝑧 ∧ 𝑧 ⊆ ( ◡ 𝐹 “ { ℎ ∈ ( 𝑅 Cn 𝑇 ) ∣ ( ℎ “ 𝐾 ) ⊆ 𝑉 } ) ) ) ) |
245 |
87 244
|
mpd |
⊢ ( 𝜑 → ∃ 𝑧 ∈ ( ( 𝑇 ↑ko 𝑆 ) ×t ( 𝑆 ↑ko 𝑅 ) ) ( 〈 𝐴 , 𝐵 〉 ∈ 𝑧 ∧ 𝑧 ⊆ ( ◡ 𝐹 “ { ℎ ∈ ( 𝑅 Cn 𝑇 ) ∣ ( ℎ “ 𝐾 ) ⊆ 𝑉 } ) ) ) |