| Step | Hyp | Ref | Expression | 
						
							| 1 |  | xkococn.1 | ⊢ 𝐹  =  ( 𝑓  ∈  ( 𝑆  Cn  𝑇 ) ,  𝑔  ∈  ( 𝑅  Cn  𝑆 )  ↦  ( 𝑓  ∘  𝑔 ) ) | 
						
							| 2 |  | xkococn.s | ⊢ ( 𝜑  →  𝑆  ∈  𝑛-Locally  Comp ) | 
						
							| 3 |  | xkococn.k | ⊢ ( 𝜑  →  𝐾  ⊆  ∪  𝑅 ) | 
						
							| 4 |  | xkococn.c | ⊢ ( 𝜑  →  ( 𝑅  ↾t  𝐾 )  ∈  Comp ) | 
						
							| 5 |  | xkococn.v | ⊢ ( 𝜑  →  𝑉  ∈  𝑇 ) | 
						
							| 6 |  | xkococn.a | ⊢ ( 𝜑  →  𝐴  ∈  ( 𝑆  Cn  𝑇 ) ) | 
						
							| 7 |  | xkococn.b | ⊢ ( 𝜑  →  𝐵  ∈  ( 𝑅  Cn  𝑆 ) ) | 
						
							| 8 |  | xkococn.i | ⊢ ( 𝜑  →  ( ( 𝐴  ∘  𝐵 )  “  𝐾 )  ⊆  𝑉 ) | 
						
							| 9 |  | imacmp | ⊢ ( ( 𝐵  ∈  ( 𝑅  Cn  𝑆 )  ∧  ( 𝑅  ↾t  𝐾 )  ∈  Comp )  →  ( 𝑆  ↾t  ( 𝐵  “  𝐾 ) )  ∈  Comp ) | 
						
							| 10 | 7 4 9 | syl2anc | ⊢ ( 𝜑  →  ( 𝑆  ↾t  ( 𝐵  “  𝐾 ) )  ∈  Comp ) | 
						
							| 11 | 2 | adantr | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ( 𝐵  “  𝐾 ) )  →  𝑆  ∈  𝑛-Locally  Comp ) | 
						
							| 12 |  | cnima | ⊢ ( ( 𝐴  ∈  ( 𝑆  Cn  𝑇 )  ∧  𝑉  ∈  𝑇 )  →  ( ◡ 𝐴  “  𝑉 )  ∈  𝑆 ) | 
						
							| 13 | 6 5 12 | syl2anc | ⊢ ( 𝜑  →  ( ◡ 𝐴  “  𝑉 )  ∈  𝑆 ) | 
						
							| 14 | 13 | adantr | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ( 𝐵  “  𝐾 ) )  →  ( ◡ 𝐴  “  𝑉 )  ∈  𝑆 ) | 
						
							| 15 |  | imaco | ⊢ ( ( 𝐴  ∘  𝐵 )  “  𝐾 )  =  ( 𝐴  “  ( 𝐵  “  𝐾 ) ) | 
						
							| 16 | 15 8 | eqsstrrid | ⊢ ( 𝜑  →  ( 𝐴  “  ( 𝐵  “  𝐾 ) )  ⊆  𝑉 ) | 
						
							| 17 |  | eqid | ⊢ ∪  𝑆  =  ∪  𝑆 | 
						
							| 18 |  | eqid | ⊢ ∪  𝑇  =  ∪  𝑇 | 
						
							| 19 | 17 18 | cnf | ⊢ ( 𝐴  ∈  ( 𝑆  Cn  𝑇 )  →  𝐴 : ∪  𝑆 ⟶ ∪  𝑇 ) | 
						
							| 20 |  | ffun | ⊢ ( 𝐴 : ∪  𝑆 ⟶ ∪  𝑇  →  Fun  𝐴 ) | 
						
							| 21 | 6 19 20 | 3syl | ⊢ ( 𝜑  →  Fun  𝐴 ) | 
						
							| 22 |  | imassrn | ⊢ ( 𝐵  “  𝐾 )  ⊆  ran  𝐵 | 
						
							| 23 |  | eqid | ⊢ ∪  𝑅  =  ∪  𝑅 | 
						
							| 24 | 23 17 | cnf | ⊢ ( 𝐵  ∈  ( 𝑅  Cn  𝑆 )  →  𝐵 : ∪  𝑅 ⟶ ∪  𝑆 ) | 
						
							| 25 |  | frn | ⊢ ( 𝐵 : ∪  𝑅 ⟶ ∪  𝑆  →  ran  𝐵  ⊆  ∪  𝑆 ) | 
						
							| 26 | 7 24 25 | 3syl | ⊢ ( 𝜑  →  ran  𝐵  ⊆  ∪  𝑆 ) | 
						
							| 27 | 22 26 | sstrid | ⊢ ( 𝜑  →  ( 𝐵  “  𝐾 )  ⊆  ∪  𝑆 ) | 
						
							| 28 |  | fdm | ⊢ ( 𝐴 : ∪  𝑆 ⟶ ∪  𝑇  →  dom  𝐴  =  ∪  𝑆 ) | 
						
							| 29 | 6 19 28 | 3syl | ⊢ ( 𝜑  →  dom  𝐴  =  ∪  𝑆 ) | 
						
							| 30 | 27 29 | sseqtrrd | ⊢ ( 𝜑  →  ( 𝐵  “  𝐾 )  ⊆  dom  𝐴 ) | 
						
							| 31 |  | funimass3 | ⊢ ( ( Fun  𝐴  ∧  ( 𝐵  “  𝐾 )  ⊆  dom  𝐴 )  →  ( ( 𝐴  “  ( 𝐵  “  𝐾 ) )  ⊆  𝑉  ↔  ( 𝐵  “  𝐾 )  ⊆  ( ◡ 𝐴  “  𝑉 ) ) ) | 
						
							| 32 | 21 30 31 | syl2anc | ⊢ ( 𝜑  →  ( ( 𝐴  “  ( 𝐵  “  𝐾 ) )  ⊆  𝑉  ↔  ( 𝐵  “  𝐾 )  ⊆  ( ◡ 𝐴  “  𝑉 ) ) ) | 
						
							| 33 | 16 32 | mpbid | ⊢ ( 𝜑  →  ( 𝐵  “  𝐾 )  ⊆  ( ◡ 𝐴  “  𝑉 ) ) | 
						
							| 34 | 33 | sselda | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ( 𝐵  “  𝐾 ) )  →  𝑥  ∈  ( ◡ 𝐴  “  𝑉 ) ) | 
						
							| 35 |  | nlly2i | ⊢ ( ( 𝑆  ∈  𝑛-Locally  Comp  ∧  ( ◡ 𝐴  “  𝑉 )  ∈  𝑆  ∧  𝑥  ∈  ( ◡ 𝐴  “  𝑉 ) )  →  ∃ 𝑠  ∈  𝒫  ( ◡ 𝐴  “  𝑉 ) ∃ 𝑢  ∈  𝑆 ( 𝑥  ∈  𝑢  ∧  𝑢  ⊆  𝑠  ∧  ( 𝑆  ↾t  𝑠 )  ∈  Comp ) ) | 
						
							| 36 | 11 14 34 35 | syl3anc | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ( 𝐵  “  𝐾 ) )  →  ∃ 𝑠  ∈  𝒫  ( ◡ 𝐴  “  𝑉 ) ∃ 𝑢  ∈  𝑆 ( 𝑥  ∈  𝑢  ∧  𝑢  ⊆  𝑠  ∧  ( 𝑆  ↾t  𝑠 )  ∈  Comp ) ) | 
						
							| 37 |  | nllytop | ⊢ ( 𝑆  ∈  𝑛-Locally  Comp  →  𝑆  ∈  Top ) | 
						
							| 38 | 2 37 | syl | ⊢ ( 𝜑  →  𝑆  ∈  Top ) | 
						
							| 39 | 38 | ad3antrrr | ⊢ ( ( ( ( 𝜑  ∧  𝑥  ∈  ( 𝐵  “  𝐾 ) )  ∧  𝑠  ∈  𝒫  ( ◡ 𝐴  “  𝑉 ) )  ∧  ( 𝑢  ∈  𝑆  ∧  ( 𝑥  ∈  𝑢  ∧  𝑢  ⊆  𝑠  ∧  ( 𝑆  ↾t  𝑠 )  ∈  Comp ) ) )  →  𝑆  ∈  Top ) | 
						
							| 40 |  | imaexg | ⊢ ( 𝐵  ∈  ( 𝑅  Cn  𝑆 )  →  ( 𝐵  “  𝐾 )  ∈  V ) | 
						
							| 41 | 7 40 | syl | ⊢ ( 𝜑  →  ( 𝐵  “  𝐾 )  ∈  V ) | 
						
							| 42 | 41 | ad3antrrr | ⊢ ( ( ( ( 𝜑  ∧  𝑥  ∈  ( 𝐵  “  𝐾 ) )  ∧  𝑠  ∈  𝒫  ( ◡ 𝐴  “  𝑉 ) )  ∧  ( 𝑢  ∈  𝑆  ∧  ( 𝑥  ∈  𝑢  ∧  𝑢  ⊆  𝑠  ∧  ( 𝑆  ↾t  𝑠 )  ∈  Comp ) ) )  →  ( 𝐵  “  𝐾 )  ∈  V ) | 
						
							| 43 |  | simprl | ⊢ ( ( ( ( 𝜑  ∧  𝑥  ∈  ( 𝐵  “  𝐾 ) )  ∧  𝑠  ∈  𝒫  ( ◡ 𝐴  “  𝑉 ) )  ∧  ( 𝑢  ∈  𝑆  ∧  ( 𝑥  ∈  𝑢  ∧  𝑢  ⊆  𝑠  ∧  ( 𝑆  ↾t  𝑠 )  ∈  Comp ) ) )  →  𝑢  ∈  𝑆 ) | 
						
							| 44 |  | elrestr | ⊢ ( ( 𝑆  ∈  Top  ∧  ( 𝐵  “  𝐾 )  ∈  V  ∧  𝑢  ∈  𝑆 )  →  ( 𝑢  ∩  ( 𝐵  “  𝐾 ) )  ∈  ( 𝑆  ↾t  ( 𝐵  “  𝐾 ) ) ) | 
						
							| 45 | 39 42 43 44 | syl3anc | ⊢ ( ( ( ( 𝜑  ∧  𝑥  ∈  ( 𝐵  “  𝐾 ) )  ∧  𝑠  ∈  𝒫  ( ◡ 𝐴  “  𝑉 ) )  ∧  ( 𝑢  ∈  𝑆  ∧  ( 𝑥  ∈  𝑢  ∧  𝑢  ⊆  𝑠  ∧  ( 𝑆  ↾t  𝑠 )  ∈  Comp ) ) )  →  ( 𝑢  ∩  ( 𝐵  “  𝐾 ) )  ∈  ( 𝑆  ↾t  ( 𝐵  “  𝐾 ) ) ) | 
						
							| 46 |  | simprr1 | ⊢ ( ( ( ( 𝜑  ∧  𝑥  ∈  ( 𝐵  “  𝐾 ) )  ∧  𝑠  ∈  𝒫  ( ◡ 𝐴  “  𝑉 ) )  ∧  ( 𝑢  ∈  𝑆  ∧  ( 𝑥  ∈  𝑢  ∧  𝑢  ⊆  𝑠  ∧  ( 𝑆  ↾t  𝑠 )  ∈  Comp ) ) )  →  𝑥  ∈  𝑢 ) | 
						
							| 47 |  | simpllr | ⊢ ( ( ( ( 𝜑  ∧  𝑥  ∈  ( 𝐵  “  𝐾 ) )  ∧  𝑠  ∈  𝒫  ( ◡ 𝐴  “  𝑉 ) )  ∧  ( 𝑢  ∈  𝑆  ∧  ( 𝑥  ∈  𝑢  ∧  𝑢  ⊆  𝑠  ∧  ( 𝑆  ↾t  𝑠 )  ∈  Comp ) ) )  →  𝑥  ∈  ( 𝐵  “  𝐾 ) ) | 
						
							| 48 | 46 47 | elind | ⊢ ( ( ( ( 𝜑  ∧  𝑥  ∈  ( 𝐵  “  𝐾 ) )  ∧  𝑠  ∈  𝒫  ( ◡ 𝐴  “  𝑉 ) )  ∧  ( 𝑢  ∈  𝑆  ∧  ( 𝑥  ∈  𝑢  ∧  𝑢  ⊆  𝑠  ∧  ( 𝑆  ↾t  𝑠 )  ∈  Comp ) ) )  →  𝑥  ∈  ( 𝑢  ∩  ( 𝐵  “  𝐾 ) ) ) | 
						
							| 49 |  | inss1 | ⊢ ( 𝑢  ∩  ( 𝐵  “  𝐾 ) )  ⊆  𝑢 | 
						
							| 50 |  | elpwi | ⊢ ( 𝑠  ∈  𝒫  ( ◡ 𝐴  “  𝑉 )  →  𝑠  ⊆  ( ◡ 𝐴  “  𝑉 ) ) | 
						
							| 51 | 50 | ad2antlr | ⊢ ( ( ( ( 𝜑  ∧  𝑥  ∈  ( 𝐵  “  𝐾 ) )  ∧  𝑠  ∈  𝒫  ( ◡ 𝐴  “  𝑉 ) )  ∧  ( 𝑢  ∈  𝑆  ∧  ( 𝑥  ∈  𝑢  ∧  𝑢  ⊆  𝑠  ∧  ( 𝑆  ↾t  𝑠 )  ∈  Comp ) ) )  →  𝑠  ⊆  ( ◡ 𝐴  “  𝑉 ) ) | 
						
							| 52 |  | elssuni | ⊢ ( ( ◡ 𝐴  “  𝑉 )  ∈  𝑆  →  ( ◡ 𝐴  “  𝑉 )  ⊆  ∪  𝑆 ) | 
						
							| 53 | 13 52 | syl | ⊢ ( 𝜑  →  ( ◡ 𝐴  “  𝑉 )  ⊆  ∪  𝑆 ) | 
						
							| 54 | 53 | ad3antrrr | ⊢ ( ( ( ( 𝜑  ∧  𝑥  ∈  ( 𝐵  “  𝐾 ) )  ∧  𝑠  ∈  𝒫  ( ◡ 𝐴  “  𝑉 ) )  ∧  ( 𝑢  ∈  𝑆  ∧  ( 𝑥  ∈  𝑢  ∧  𝑢  ⊆  𝑠  ∧  ( 𝑆  ↾t  𝑠 )  ∈  Comp ) ) )  →  ( ◡ 𝐴  “  𝑉 )  ⊆  ∪  𝑆 ) | 
						
							| 55 | 51 54 | sstrd | ⊢ ( ( ( ( 𝜑  ∧  𝑥  ∈  ( 𝐵  “  𝐾 ) )  ∧  𝑠  ∈  𝒫  ( ◡ 𝐴  “  𝑉 ) )  ∧  ( 𝑢  ∈  𝑆  ∧  ( 𝑥  ∈  𝑢  ∧  𝑢  ⊆  𝑠  ∧  ( 𝑆  ↾t  𝑠 )  ∈  Comp ) ) )  →  𝑠  ⊆  ∪  𝑆 ) | 
						
							| 56 |  | simprr2 | ⊢ ( ( ( ( 𝜑  ∧  𝑥  ∈  ( 𝐵  “  𝐾 ) )  ∧  𝑠  ∈  𝒫  ( ◡ 𝐴  “  𝑉 ) )  ∧  ( 𝑢  ∈  𝑆  ∧  ( 𝑥  ∈  𝑢  ∧  𝑢  ⊆  𝑠  ∧  ( 𝑆  ↾t  𝑠 )  ∈  Comp ) ) )  →  𝑢  ⊆  𝑠 ) | 
						
							| 57 | 17 | ssntr | ⊢ ( ( ( 𝑆  ∈  Top  ∧  𝑠  ⊆  ∪  𝑆 )  ∧  ( 𝑢  ∈  𝑆  ∧  𝑢  ⊆  𝑠 ) )  →  𝑢  ⊆  ( ( int ‘ 𝑆 ) ‘ 𝑠 ) ) | 
						
							| 58 | 39 55 43 56 57 | syl22anc | ⊢ ( ( ( ( 𝜑  ∧  𝑥  ∈  ( 𝐵  “  𝐾 ) )  ∧  𝑠  ∈  𝒫  ( ◡ 𝐴  “  𝑉 ) )  ∧  ( 𝑢  ∈  𝑆  ∧  ( 𝑥  ∈  𝑢  ∧  𝑢  ⊆  𝑠  ∧  ( 𝑆  ↾t  𝑠 )  ∈  Comp ) ) )  →  𝑢  ⊆  ( ( int ‘ 𝑆 ) ‘ 𝑠 ) ) | 
						
							| 59 | 49 58 | sstrid | ⊢ ( ( ( ( 𝜑  ∧  𝑥  ∈  ( 𝐵  “  𝐾 ) )  ∧  𝑠  ∈  𝒫  ( ◡ 𝐴  “  𝑉 ) )  ∧  ( 𝑢  ∈  𝑆  ∧  ( 𝑥  ∈  𝑢  ∧  𝑢  ⊆  𝑠  ∧  ( 𝑆  ↾t  𝑠 )  ∈  Comp ) ) )  →  ( 𝑢  ∩  ( 𝐵  “  𝐾 ) )  ⊆  ( ( int ‘ 𝑆 ) ‘ 𝑠 ) ) | 
						
							| 60 |  | simprr3 | ⊢ ( ( ( ( 𝜑  ∧  𝑥  ∈  ( 𝐵  “  𝐾 ) )  ∧  𝑠  ∈  𝒫  ( ◡ 𝐴  “  𝑉 ) )  ∧  ( 𝑢  ∈  𝑆  ∧  ( 𝑥  ∈  𝑢  ∧  𝑢  ⊆  𝑠  ∧  ( 𝑆  ↾t  𝑠 )  ∈  Comp ) ) )  →  ( 𝑆  ↾t  𝑠 )  ∈  Comp ) | 
						
							| 61 | 59 60 | jca | ⊢ ( ( ( ( 𝜑  ∧  𝑥  ∈  ( 𝐵  “  𝐾 ) )  ∧  𝑠  ∈  𝒫  ( ◡ 𝐴  “  𝑉 ) )  ∧  ( 𝑢  ∈  𝑆  ∧  ( 𝑥  ∈  𝑢  ∧  𝑢  ⊆  𝑠  ∧  ( 𝑆  ↾t  𝑠 )  ∈  Comp ) ) )  →  ( ( 𝑢  ∩  ( 𝐵  “  𝐾 ) )  ⊆  ( ( int ‘ 𝑆 ) ‘ 𝑠 )  ∧  ( 𝑆  ↾t  𝑠 )  ∈  Comp ) ) | 
						
							| 62 |  | eleq2 | ⊢ ( 𝑦  =  ( 𝑢  ∩  ( 𝐵  “  𝐾 ) )  →  ( 𝑥  ∈  𝑦  ↔  𝑥  ∈  ( 𝑢  ∩  ( 𝐵  “  𝐾 ) ) ) ) | 
						
							| 63 |  | cleq1lem | ⊢ ( 𝑦  =  ( 𝑢  ∩  ( 𝐵  “  𝐾 ) )  →  ( ( 𝑦  ⊆  ( ( int ‘ 𝑆 ) ‘ 𝑠 )  ∧  ( 𝑆  ↾t  𝑠 )  ∈  Comp )  ↔  ( ( 𝑢  ∩  ( 𝐵  “  𝐾 ) )  ⊆  ( ( int ‘ 𝑆 ) ‘ 𝑠 )  ∧  ( 𝑆  ↾t  𝑠 )  ∈  Comp ) ) ) | 
						
							| 64 | 62 63 | anbi12d | ⊢ ( 𝑦  =  ( 𝑢  ∩  ( 𝐵  “  𝐾 ) )  →  ( ( 𝑥  ∈  𝑦  ∧  ( 𝑦  ⊆  ( ( int ‘ 𝑆 ) ‘ 𝑠 )  ∧  ( 𝑆  ↾t  𝑠 )  ∈  Comp ) )  ↔  ( 𝑥  ∈  ( 𝑢  ∩  ( 𝐵  “  𝐾 ) )  ∧  ( ( 𝑢  ∩  ( 𝐵  “  𝐾 ) )  ⊆  ( ( int ‘ 𝑆 ) ‘ 𝑠 )  ∧  ( 𝑆  ↾t  𝑠 )  ∈  Comp ) ) ) ) | 
						
							| 65 | 64 | rspcev | ⊢ ( ( ( 𝑢  ∩  ( 𝐵  “  𝐾 ) )  ∈  ( 𝑆  ↾t  ( 𝐵  “  𝐾 ) )  ∧  ( 𝑥  ∈  ( 𝑢  ∩  ( 𝐵  “  𝐾 ) )  ∧  ( ( 𝑢  ∩  ( 𝐵  “  𝐾 ) )  ⊆  ( ( int ‘ 𝑆 ) ‘ 𝑠 )  ∧  ( 𝑆  ↾t  𝑠 )  ∈  Comp ) ) )  →  ∃ 𝑦  ∈  ( 𝑆  ↾t  ( 𝐵  “  𝐾 ) ) ( 𝑥  ∈  𝑦  ∧  ( 𝑦  ⊆  ( ( int ‘ 𝑆 ) ‘ 𝑠 )  ∧  ( 𝑆  ↾t  𝑠 )  ∈  Comp ) ) ) | 
						
							| 66 | 45 48 61 65 | syl12anc | ⊢ ( ( ( ( 𝜑  ∧  𝑥  ∈  ( 𝐵  “  𝐾 ) )  ∧  𝑠  ∈  𝒫  ( ◡ 𝐴  “  𝑉 ) )  ∧  ( 𝑢  ∈  𝑆  ∧  ( 𝑥  ∈  𝑢  ∧  𝑢  ⊆  𝑠  ∧  ( 𝑆  ↾t  𝑠 )  ∈  Comp ) ) )  →  ∃ 𝑦  ∈  ( 𝑆  ↾t  ( 𝐵  “  𝐾 ) ) ( 𝑥  ∈  𝑦  ∧  ( 𝑦  ⊆  ( ( int ‘ 𝑆 ) ‘ 𝑠 )  ∧  ( 𝑆  ↾t  𝑠 )  ∈  Comp ) ) ) | 
						
							| 67 | 66 | rexlimdvaa | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  ( 𝐵  “  𝐾 ) )  ∧  𝑠  ∈  𝒫  ( ◡ 𝐴  “  𝑉 ) )  →  ( ∃ 𝑢  ∈  𝑆 ( 𝑥  ∈  𝑢  ∧  𝑢  ⊆  𝑠  ∧  ( 𝑆  ↾t  𝑠 )  ∈  Comp )  →  ∃ 𝑦  ∈  ( 𝑆  ↾t  ( 𝐵  “  𝐾 ) ) ( 𝑥  ∈  𝑦  ∧  ( 𝑦  ⊆  ( ( int ‘ 𝑆 ) ‘ 𝑠 )  ∧  ( 𝑆  ↾t  𝑠 )  ∈  Comp ) ) ) ) | 
						
							| 68 | 67 | reximdva | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ( 𝐵  “  𝐾 ) )  →  ( ∃ 𝑠  ∈  𝒫  ( ◡ 𝐴  “  𝑉 ) ∃ 𝑢  ∈  𝑆 ( 𝑥  ∈  𝑢  ∧  𝑢  ⊆  𝑠  ∧  ( 𝑆  ↾t  𝑠 )  ∈  Comp )  →  ∃ 𝑠  ∈  𝒫  ( ◡ 𝐴  “  𝑉 ) ∃ 𝑦  ∈  ( 𝑆  ↾t  ( 𝐵  “  𝐾 ) ) ( 𝑥  ∈  𝑦  ∧  ( 𝑦  ⊆  ( ( int ‘ 𝑆 ) ‘ 𝑠 )  ∧  ( 𝑆  ↾t  𝑠 )  ∈  Comp ) ) ) ) | 
						
							| 69 | 36 68 | mpd | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ( 𝐵  “  𝐾 ) )  →  ∃ 𝑠  ∈  𝒫  ( ◡ 𝐴  “  𝑉 ) ∃ 𝑦  ∈  ( 𝑆  ↾t  ( 𝐵  “  𝐾 ) ) ( 𝑥  ∈  𝑦  ∧  ( 𝑦  ⊆  ( ( int ‘ 𝑆 ) ‘ 𝑠 )  ∧  ( 𝑆  ↾t  𝑠 )  ∈  Comp ) ) ) | 
						
							| 70 |  | rexcom | ⊢ ( ∃ 𝑠  ∈  𝒫  ( ◡ 𝐴  “  𝑉 ) ∃ 𝑦  ∈  ( 𝑆  ↾t  ( 𝐵  “  𝐾 ) ) ( 𝑥  ∈  𝑦  ∧  ( 𝑦  ⊆  ( ( int ‘ 𝑆 ) ‘ 𝑠 )  ∧  ( 𝑆  ↾t  𝑠 )  ∈  Comp ) )  ↔  ∃ 𝑦  ∈  ( 𝑆  ↾t  ( 𝐵  “  𝐾 ) ) ∃ 𝑠  ∈  𝒫  ( ◡ 𝐴  “  𝑉 ) ( 𝑥  ∈  𝑦  ∧  ( 𝑦  ⊆  ( ( int ‘ 𝑆 ) ‘ 𝑠 )  ∧  ( 𝑆  ↾t  𝑠 )  ∈  Comp ) ) ) | 
						
							| 71 |  | r19.42v | ⊢ ( ∃ 𝑠  ∈  𝒫  ( ◡ 𝐴  “  𝑉 ) ( 𝑥  ∈  𝑦  ∧  ( 𝑦  ⊆  ( ( int ‘ 𝑆 ) ‘ 𝑠 )  ∧  ( 𝑆  ↾t  𝑠 )  ∈  Comp ) )  ↔  ( 𝑥  ∈  𝑦  ∧  ∃ 𝑠  ∈  𝒫  ( ◡ 𝐴  “  𝑉 ) ( 𝑦  ⊆  ( ( int ‘ 𝑆 ) ‘ 𝑠 )  ∧  ( 𝑆  ↾t  𝑠 )  ∈  Comp ) ) ) | 
						
							| 72 | 71 | rexbii | ⊢ ( ∃ 𝑦  ∈  ( 𝑆  ↾t  ( 𝐵  “  𝐾 ) ) ∃ 𝑠  ∈  𝒫  ( ◡ 𝐴  “  𝑉 ) ( 𝑥  ∈  𝑦  ∧  ( 𝑦  ⊆  ( ( int ‘ 𝑆 ) ‘ 𝑠 )  ∧  ( 𝑆  ↾t  𝑠 )  ∈  Comp ) )  ↔  ∃ 𝑦  ∈  ( 𝑆  ↾t  ( 𝐵  “  𝐾 ) ) ( 𝑥  ∈  𝑦  ∧  ∃ 𝑠  ∈  𝒫  ( ◡ 𝐴  “  𝑉 ) ( 𝑦  ⊆  ( ( int ‘ 𝑆 ) ‘ 𝑠 )  ∧  ( 𝑆  ↾t  𝑠 )  ∈  Comp ) ) ) | 
						
							| 73 | 70 72 | bitri | ⊢ ( ∃ 𝑠  ∈  𝒫  ( ◡ 𝐴  “  𝑉 ) ∃ 𝑦  ∈  ( 𝑆  ↾t  ( 𝐵  “  𝐾 ) ) ( 𝑥  ∈  𝑦  ∧  ( 𝑦  ⊆  ( ( int ‘ 𝑆 ) ‘ 𝑠 )  ∧  ( 𝑆  ↾t  𝑠 )  ∈  Comp ) )  ↔  ∃ 𝑦  ∈  ( 𝑆  ↾t  ( 𝐵  “  𝐾 ) ) ( 𝑥  ∈  𝑦  ∧  ∃ 𝑠  ∈  𝒫  ( ◡ 𝐴  “  𝑉 ) ( 𝑦  ⊆  ( ( int ‘ 𝑆 ) ‘ 𝑠 )  ∧  ( 𝑆  ↾t  𝑠 )  ∈  Comp ) ) ) | 
						
							| 74 | 69 73 | sylib | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ( 𝐵  “  𝐾 ) )  →  ∃ 𝑦  ∈  ( 𝑆  ↾t  ( 𝐵  “  𝐾 ) ) ( 𝑥  ∈  𝑦  ∧  ∃ 𝑠  ∈  𝒫  ( ◡ 𝐴  “  𝑉 ) ( 𝑦  ⊆  ( ( int ‘ 𝑆 ) ‘ 𝑠 )  ∧  ( 𝑆  ↾t  𝑠 )  ∈  Comp ) ) ) | 
						
							| 75 | 74 | ralrimiva | ⊢ ( 𝜑  →  ∀ 𝑥  ∈  ( 𝐵  “  𝐾 ) ∃ 𝑦  ∈  ( 𝑆  ↾t  ( 𝐵  “  𝐾 ) ) ( 𝑥  ∈  𝑦  ∧  ∃ 𝑠  ∈  𝒫  ( ◡ 𝐴  “  𝑉 ) ( 𝑦  ⊆  ( ( int ‘ 𝑆 ) ‘ 𝑠 )  ∧  ( 𝑆  ↾t  𝑠 )  ∈  Comp ) ) ) | 
						
							| 76 | 17 | restuni | ⊢ ( ( 𝑆  ∈  Top  ∧  ( 𝐵  “  𝐾 )  ⊆  ∪  𝑆 )  →  ( 𝐵  “  𝐾 )  =  ∪  ( 𝑆  ↾t  ( 𝐵  “  𝐾 ) ) ) | 
						
							| 77 | 38 27 76 | syl2anc | ⊢ ( 𝜑  →  ( 𝐵  “  𝐾 )  =  ∪  ( 𝑆  ↾t  ( 𝐵  “  𝐾 ) ) ) | 
						
							| 78 | 75 77 | raleqtrdv | ⊢ ( 𝜑  →  ∀ 𝑥  ∈  ∪  ( 𝑆  ↾t  ( 𝐵  “  𝐾 ) ) ∃ 𝑦  ∈  ( 𝑆  ↾t  ( 𝐵  “  𝐾 ) ) ( 𝑥  ∈  𝑦  ∧  ∃ 𝑠  ∈  𝒫  ( ◡ 𝐴  “  𝑉 ) ( 𝑦  ⊆  ( ( int ‘ 𝑆 ) ‘ 𝑠 )  ∧  ( 𝑆  ↾t  𝑠 )  ∈  Comp ) ) ) | 
						
							| 79 |  | eqid | ⊢ ∪  ( 𝑆  ↾t  ( 𝐵  “  𝐾 ) )  =  ∪  ( 𝑆  ↾t  ( 𝐵  “  𝐾 ) ) | 
						
							| 80 |  | fveq2 | ⊢ ( 𝑠  =  ( 𝑘 ‘ 𝑦 )  →  ( ( int ‘ 𝑆 ) ‘ 𝑠 )  =  ( ( int ‘ 𝑆 ) ‘ ( 𝑘 ‘ 𝑦 ) ) ) | 
						
							| 81 | 80 | sseq2d | ⊢ ( 𝑠  =  ( 𝑘 ‘ 𝑦 )  →  ( 𝑦  ⊆  ( ( int ‘ 𝑆 ) ‘ 𝑠 )  ↔  𝑦  ⊆  ( ( int ‘ 𝑆 ) ‘ ( 𝑘 ‘ 𝑦 ) ) ) ) | 
						
							| 82 |  | oveq2 | ⊢ ( 𝑠  =  ( 𝑘 ‘ 𝑦 )  →  ( 𝑆  ↾t  𝑠 )  =  ( 𝑆  ↾t  ( 𝑘 ‘ 𝑦 ) ) ) | 
						
							| 83 | 82 | eleq1d | ⊢ ( 𝑠  =  ( 𝑘 ‘ 𝑦 )  →  ( ( 𝑆  ↾t  𝑠 )  ∈  Comp  ↔  ( 𝑆  ↾t  ( 𝑘 ‘ 𝑦 ) )  ∈  Comp ) ) | 
						
							| 84 | 81 83 | anbi12d | ⊢ ( 𝑠  =  ( 𝑘 ‘ 𝑦 )  →  ( ( 𝑦  ⊆  ( ( int ‘ 𝑆 ) ‘ 𝑠 )  ∧  ( 𝑆  ↾t  𝑠 )  ∈  Comp )  ↔  ( 𝑦  ⊆  ( ( int ‘ 𝑆 ) ‘ ( 𝑘 ‘ 𝑦 ) )  ∧  ( 𝑆  ↾t  ( 𝑘 ‘ 𝑦 ) )  ∈  Comp ) ) ) | 
						
							| 85 | 79 84 | cmpcovf | ⊢ ( ( ( 𝑆  ↾t  ( 𝐵  “  𝐾 ) )  ∈  Comp  ∧  ∀ 𝑥  ∈  ∪  ( 𝑆  ↾t  ( 𝐵  “  𝐾 ) ) ∃ 𝑦  ∈  ( 𝑆  ↾t  ( 𝐵  “  𝐾 ) ) ( 𝑥  ∈  𝑦  ∧  ∃ 𝑠  ∈  𝒫  ( ◡ 𝐴  “  𝑉 ) ( 𝑦  ⊆  ( ( int ‘ 𝑆 ) ‘ 𝑠 )  ∧  ( 𝑆  ↾t  𝑠 )  ∈  Comp ) ) )  →  ∃ 𝑤  ∈  ( 𝒫  ( 𝑆  ↾t  ( 𝐵  “  𝐾 ) )  ∩  Fin ) ( ∪  ( 𝑆  ↾t  ( 𝐵  “  𝐾 ) )  =  ∪  𝑤  ∧  ∃ 𝑘 ( 𝑘 : 𝑤 ⟶ 𝒫  ( ◡ 𝐴  “  𝑉 )  ∧  ∀ 𝑦  ∈  𝑤 ( 𝑦  ⊆  ( ( int ‘ 𝑆 ) ‘ ( 𝑘 ‘ 𝑦 ) )  ∧  ( 𝑆  ↾t  ( 𝑘 ‘ 𝑦 ) )  ∈  Comp ) ) ) ) | 
						
							| 86 | 10 78 85 | syl2anc | ⊢ ( 𝜑  →  ∃ 𝑤  ∈  ( 𝒫  ( 𝑆  ↾t  ( 𝐵  “  𝐾 ) )  ∩  Fin ) ( ∪  ( 𝑆  ↾t  ( 𝐵  “  𝐾 ) )  =  ∪  𝑤  ∧  ∃ 𝑘 ( 𝑘 : 𝑤 ⟶ 𝒫  ( ◡ 𝐴  “  𝑉 )  ∧  ∀ 𝑦  ∈  𝑤 ( 𝑦  ⊆  ( ( int ‘ 𝑆 ) ‘ ( 𝑘 ‘ 𝑦 ) )  ∧  ( 𝑆  ↾t  ( 𝑘 ‘ 𝑦 ) )  ∈  Comp ) ) ) ) | 
						
							| 87 | 77 | adantr | ⊢ ( ( 𝜑  ∧  𝑤  ∈  ( 𝒫  ( 𝑆  ↾t  ( 𝐵  “  𝐾 ) )  ∩  Fin ) )  →  ( 𝐵  “  𝐾 )  =  ∪  ( 𝑆  ↾t  ( 𝐵  “  𝐾 ) ) ) | 
						
							| 88 | 87 | eqeq1d | ⊢ ( ( 𝜑  ∧  𝑤  ∈  ( 𝒫  ( 𝑆  ↾t  ( 𝐵  “  𝐾 ) )  ∩  Fin ) )  →  ( ( 𝐵  “  𝐾 )  =  ∪  𝑤  ↔  ∪  ( 𝑆  ↾t  ( 𝐵  “  𝐾 ) )  =  ∪  𝑤 ) ) | 
						
							| 89 | 88 | biimpar | ⊢ ( ( ( 𝜑  ∧  𝑤  ∈  ( 𝒫  ( 𝑆  ↾t  ( 𝐵  “  𝐾 ) )  ∩  Fin ) )  ∧  ∪  ( 𝑆  ↾t  ( 𝐵  “  𝐾 ) )  =  ∪  𝑤 )  →  ( 𝐵  “  𝐾 )  =  ∪  𝑤 ) | 
						
							| 90 | 38 | ad2antrr | ⊢ ( ( ( 𝜑  ∧  𝑤  ∈  ( 𝒫  ( 𝑆  ↾t  ( 𝐵  “  𝐾 ) )  ∩  Fin ) )  ∧  ( ( 𝐵  “  𝐾 )  =  ∪  𝑤  ∧  ( 𝑘 : 𝑤 ⟶ 𝒫  ( ◡ 𝐴  “  𝑉 )  ∧  ∀ 𝑦  ∈  𝑤 ( 𝑦  ⊆  ( ( int ‘ 𝑆 ) ‘ ( 𝑘 ‘ 𝑦 ) )  ∧  ( 𝑆  ↾t  ( 𝑘 ‘ 𝑦 ) )  ∈  Comp ) ) ) )  →  𝑆  ∈  Top ) | 
						
							| 91 |  | cntop2 | ⊢ ( 𝐴  ∈  ( 𝑆  Cn  𝑇 )  →  𝑇  ∈  Top ) | 
						
							| 92 | 6 91 | syl | ⊢ ( 𝜑  →  𝑇  ∈  Top ) | 
						
							| 93 | 92 | ad2antrr | ⊢ ( ( ( 𝜑  ∧  𝑤  ∈  ( 𝒫  ( 𝑆  ↾t  ( 𝐵  “  𝐾 ) )  ∩  Fin ) )  ∧  ( ( 𝐵  “  𝐾 )  =  ∪  𝑤  ∧  ( 𝑘 : 𝑤 ⟶ 𝒫  ( ◡ 𝐴  “  𝑉 )  ∧  ∀ 𝑦  ∈  𝑤 ( 𝑦  ⊆  ( ( int ‘ 𝑆 ) ‘ ( 𝑘 ‘ 𝑦 ) )  ∧  ( 𝑆  ↾t  ( 𝑘 ‘ 𝑦 ) )  ∈  Comp ) ) ) )  →  𝑇  ∈  Top ) | 
						
							| 94 |  | xkotop | ⊢ ( ( 𝑆  ∈  Top  ∧  𝑇  ∈  Top )  →  ( 𝑇  ↑ko  𝑆 )  ∈  Top ) | 
						
							| 95 | 90 93 94 | syl2anc | ⊢ ( ( ( 𝜑  ∧  𝑤  ∈  ( 𝒫  ( 𝑆  ↾t  ( 𝐵  “  𝐾 ) )  ∩  Fin ) )  ∧  ( ( 𝐵  “  𝐾 )  =  ∪  𝑤  ∧  ( 𝑘 : 𝑤 ⟶ 𝒫  ( ◡ 𝐴  “  𝑉 )  ∧  ∀ 𝑦  ∈  𝑤 ( 𝑦  ⊆  ( ( int ‘ 𝑆 ) ‘ ( 𝑘 ‘ 𝑦 ) )  ∧  ( 𝑆  ↾t  ( 𝑘 ‘ 𝑦 ) )  ∈  Comp ) ) ) )  →  ( 𝑇  ↑ko  𝑆 )  ∈  Top ) | 
						
							| 96 |  | cntop1 | ⊢ ( 𝐵  ∈  ( 𝑅  Cn  𝑆 )  →  𝑅  ∈  Top ) | 
						
							| 97 | 7 96 | syl | ⊢ ( 𝜑  →  𝑅  ∈  Top ) | 
						
							| 98 | 97 | ad2antrr | ⊢ ( ( ( 𝜑  ∧  𝑤  ∈  ( 𝒫  ( 𝑆  ↾t  ( 𝐵  “  𝐾 ) )  ∩  Fin ) )  ∧  ( ( 𝐵  “  𝐾 )  =  ∪  𝑤  ∧  ( 𝑘 : 𝑤 ⟶ 𝒫  ( ◡ 𝐴  “  𝑉 )  ∧  ∀ 𝑦  ∈  𝑤 ( 𝑦  ⊆  ( ( int ‘ 𝑆 ) ‘ ( 𝑘 ‘ 𝑦 ) )  ∧  ( 𝑆  ↾t  ( 𝑘 ‘ 𝑦 ) )  ∈  Comp ) ) ) )  →  𝑅  ∈  Top ) | 
						
							| 99 |  | xkotop | ⊢ ( ( 𝑅  ∈  Top  ∧  𝑆  ∈  Top )  →  ( 𝑆  ↑ko  𝑅 )  ∈  Top ) | 
						
							| 100 | 98 90 99 | syl2anc | ⊢ ( ( ( 𝜑  ∧  𝑤  ∈  ( 𝒫  ( 𝑆  ↾t  ( 𝐵  “  𝐾 ) )  ∩  Fin ) )  ∧  ( ( 𝐵  “  𝐾 )  =  ∪  𝑤  ∧  ( 𝑘 : 𝑤 ⟶ 𝒫  ( ◡ 𝐴  “  𝑉 )  ∧  ∀ 𝑦  ∈  𝑤 ( 𝑦  ⊆  ( ( int ‘ 𝑆 ) ‘ ( 𝑘 ‘ 𝑦 ) )  ∧  ( 𝑆  ↾t  ( 𝑘 ‘ 𝑦 ) )  ∈  Comp ) ) ) )  →  ( 𝑆  ↑ko  𝑅 )  ∈  Top ) | 
						
							| 101 |  | simprrl | ⊢ ( ( ( 𝜑  ∧  𝑤  ∈  ( 𝒫  ( 𝑆  ↾t  ( 𝐵  “  𝐾 ) )  ∩  Fin ) )  ∧  ( ( 𝐵  “  𝐾 )  =  ∪  𝑤  ∧  ( 𝑘 : 𝑤 ⟶ 𝒫  ( ◡ 𝐴  “  𝑉 )  ∧  ∀ 𝑦  ∈  𝑤 ( 𝑦  ⊆  ( ( int ‘ 𝑆 ) ‘ ( 𝑘 ‘ 𝑦 ) )  ∧  ( 𝑆  ↾t  ( 𝑘 ‘ 𝑦 ) )  ∈  Comp ) ) ) )  →  𝑘 : 𝑤 ⟶ 𝒫  ( ◡ 𝐴  “  𝑉 ) ) | 
						
							| 102 | 101 | frnd | ⊢ ( ( ( 𝜑  ∧  𝑤  ∈  ( 𝒫  ( 𝑆  ↾t  ( 𝐵  “  𝐾 ) )  ∩  Fin ) )  ∧  ( ( 𝐵  “  𝐾 )  =  ∪  𝑤  ∧  ( 𝑘 : 𝑤 ⟶ 𝒫  ( ◡ 𝐴  “  𝑉 )  ∧  ∀ 𝑦  ∈  𝑤 ( 𝑦  ⊆  ( ( int ‘ 𝑆 ) ‘ ( 𝑘 ‘ 𝑦 ) )  ∧  ( 𝑆  ↾t  ( 𝑘 ‘ 𝑦 ) )  ∈  Comp ) ) ) )  →  ran  𝑘  ⊆  𝒫  ( ◡ 𝐴  “  𝑉 ) ) | 
						
							| 103 |  | sspwuni | ⊢ ( ran  𝑘  ⊆  𝒫  ( ◡ 𝐴  “  𝑉 )  ↔  ∪  ran  𝑘  ⊆  ( ◡ 𝐴  “  𝑉 ) ) | 
						
							| 104 | 102 103 | sylib | ⊢ ( ( ( 𝜑  ∧  𝑤  ∈  ( 𝒫  ( 𝑆  ↾t  ( 𝐵  “  𝐾 ) )  ∩  Fin ) )  ∧  ( ( 𝐵  “  𝐾 )  =  ∪  𝑤  ∧  ( 𝑘 : 𝑤 ⟶ 𝒫  ( ◡ 𝐴  “  𝑉 )  ∧  ∀ 𝑦  ∈  𝑤 ( 𝑦  ⊆  ( ( int ‘ 𝑆 ) ‘ ( 𝑘 ‘ 𝑦 ) )  ∧  ( 𝑆  ↾t  ( 𝑘 ‘ 𝑦 ) )  ∈  Comp ) ) ) )  →  ∪  ran  𝑘  ⊆  ( ◡ 𝐴  “  𝑉 ) ) | 
						
							| 105 | 13 | ad2antrr | ⊢ ( ( ( 𝜑  ∧  𝑤  ∈  ( 𝒫  ( 𝑆  ↾t  ( 𝐵  “  𝐾 ) )  ∩  Fin ) )  ∧  ( ( 𝐵  “  𝐾 )  =  ∪  𝑤  ∧  ( 𝑘 : 𝑤 ⟶ 𝒫  ( ◡ 𝐴  “  𝑉 )  ∧  ∀ 𝑦  ∈  𝑤 ( 𝑦  ⊆  ( ( int ‘ 𝑆 ) ‘ ( 𝑘 ‘ 𝑦 ) )  ∧  ( 𝑆  ↾t  ( 𝑘 ‘ 𝑦 ) )  ∈  Comp ) ) ) )  →  ( ◡ 𝐴  “  𝑉 )  ∈  𝑆 ) | 
						
							| 106 | 105 52 | syl | ⊢ ( ( ( 𝜑  ∧  𝑤  ∈  ( 𝒫  ( 𝑆  ↾t  ( 𝐵  “  𝐾 ) )  ∩  Fin ) )  ∧  ( ( 𝐵  “  𝐾 )  =  ∪  𝑤  ∧  ( 𝑘 : 𝑤 ⟶ 𝒫  ( ◡ 𝐴  “  𝑉 )  ∧  ∀ 𝑦  ∈  𝑤 ( 𝑦  ⊆  ( ( int ‘ 𝑆 ) ‘ ( 𝑘 ‘ 𝑦 ) )  ∧  ( 𝑆  ↾t  ( 𝑘 ‘ 𝑦 ) )  ∈  Comp ) ) ) )  →  ( ◡ 𝐴  “  𝑉 )  ⊆  ∪  𝑆 ) | 
						
							| 107 | 104 106 | sstrd | ⊢ ( ( ( 𝜑  ∧  𝑤  ∈  ( 𝒫  ( 𝑆  ↾t  ( 𝐵  “  𝐾 ) )  ∩  Fin ) )  ∧  ( ( 𝐵  “  𝐾 )  =  ∪  𝑤  ∧  ( 𝑘 : 𝑤 ⟶ 𝒫  ( ◡ 𝐴  “  𝑉 )  ∧  ∀ 𝑦  ∈  𝑤 ( 𝑦  ⊆  ( ( int ‘ 𝑆 ) ‘ ( 𝑘 ‘ 𝑦 ) )  ∧  ( 𝑆  ↾t  ( 𝑘 ‘ 𝑦 ) )  ∈  Comp ) ) ) )  →  ∪  ran  𝑘  ⊆  ∪  𝑆 ) | 
						
							| 108 |  | ffn | ⊢ ( 𝑘 : 𝑤 ⟶ 𝒫  ( ◡ 𝐴  “  𝑉 )  →  𝑘  Fn  𝑤 ) | 
						
							| 109 |  | fniunfv | ⊢ ( 𝑘  Fn  𝑤  →  ∪  𝑦  ∈  𝑤 ( 𝑘 ‘ 𝑦 )  =  ∪  ran  𝑘 ) | 
						
							| 110 | 101 108 109 | 3syl | ⊢ ( ( ( 𝜑  ∧  𝑤  ∈  ( 𝒫  ( 𝑆  ↾t  ( 𝐵  “  𝐾 ) )  ∩  Fin ) )  ∧  ( ( 𝐵  “  𝐾 )  =  ∪  𝑤  ∧  ( 𝑘 : 𝑤 ⟶ 𝒫  ( ◡ 𝐴  “  𝑉 )  ∧  ∀ 𝑦  ∈  𝑤 ( 𝑦  ⊆  ( ( int ‘ 𝑆 ) ‘ ( 𝑘 ‘ 𝑦 ) )  ∧  ( 𝑆  ↾t  ( 𝑘 ‘ 𝑦 ) )  ∈  Comp ) ) ) )  →  ∪  𝑦  ∈  𝑤 ( 𝑘 ‘ 𝑦 )  =  ∪  ran  𝑘 ) | 
						
							| 111 | 110 | oveq2d | ⊢ ( ( ( 𝜑  ∧  𝑤  ∈  ( 𝒫  ( 𝑆  ↾t  ( 𝐵  “  𝐾 ) )  ∩  Fin ) )  ∧  ( ( 𝐵  “  𝐾 )  =  ∪  𝑤  ∧  ( 𝑘 : 𝑤 ⟶ 𝒫  ( ◡ 𝐴  “  𝑉 )  ∧  ∀ 𝑦  ∈  𝑤 ( 𝑦  ⊆  ( ( int ‘ 𝑆 ) ‘ ( 𝑘 ‘ 𝑦 ) )  ∧  ( 𝑆  ↾t  ( 𝑘 ‘ 𝑦 ) )  ∈  Comp ) ) ) )  →  ( 𝑆  ↾t  ∪  𝑦  ∈  𝑤 ( 𝑘 ‘ 𝑦 ) )  =  ( 𝑆  ↾t  ∪  ran  𝑘 ) ) | 
						
							| 112 |  | simplr | ⊢ ( ( ( 𝜑  ∧  𝑤  ∈  ( 𝒫  ( 𝑆  ↾t  ( 𝐵  “  𝐾 ) )  ∩  Fin ) )  ∧  ( ( 𝐵  “  𝐾 )  =  ∪  𝑤  ∧  ( 𝑘 : 𝑤 ⟶ 𝒫  ( ◡ 𝐴  “  𝑉 )  ∧  ∀ 𝑦  ∈  𝑤 ( 𝑦  ⊆  ( ( int ‘ 𝑆 ) ‘ ( 𝑘 ‘ 𝑦 ) )  ∧  ( 𝑆  ↾t  ( 𝑘 ‘ 𝑦 ) )  ∈  Comp ) ) ) )  →  𝑤  ∈  ( 𝒫  ( 𝑆  ↾t  ( 𝐵  “  𝐾 ) )  ∩  Fin ) ) | 
						
							| 113 | 112 | elin2d | ⊢ ( ( ( 𝜑  ∧  𝑤  ∈  ( 𝒫  ( 𝑆  ↾t  ( 𝐵  “  𝐾 ) )  ∩  Fin ) )  ∧  ( ( 𝐵  “  𝐾 )  =  ∪  𝑤  ∧  ( 𝑘 : 𝑤 ⟶ 𝒫  ( ◡ 𝐴  “  𝑉 )  ∧  ∀ 𝑦  ∈  𝑤 ( 𝑦  ⊆  ( ( int ‘ 𝑆 ) ‘ ( 𝑘 ‘ 𝑦 ) )  ∧  ( 𝑆  ↾t  ( 𝑘 ‘ 𝑦 ) )  ∈  Comp ) ) ) )  →  𝑤  ∈  Fin ) | 
						
							| 114 |  | simprrr | ⊢ ( ( ( 𝜑  ∧  𝑤  ∈  ( 𝒫  ( 𝑆  ↾t  ( 𝐵  “  𝐾 ) )  ∩  Fin ) )  ∧  ( ( 𝐵  “  𝐾 )  =  ∪  𝑤  ∧  ( 𝑘 : 𝑤 ⟶ 𝒫  ( ◡ 𝐴  “  𝑉 )  ∧  ∀ 𝑦  ∈  𝑤 ( 𝑦  ⊆  ( ( int ‘ 𝑆 ) ‘ ( 𝑘 ‘ 𝑦 ) )  ∧  ( 𝑆  ↾t  ( 𝑘 ‘ 𝑦 ) )  ∈  Comp ) ) ) )  →  ∀ 𝑦  ∈  𝑤 ( 𝑦  ⊆  ( ( int ‘ 𝑆 ) ‘ ( 𝑘 ‘ 𝑦 ) )  ∧  ( 𝑆  ↾t  ( 𝑘 ‘ 𝑦 ) )  ∈  Comp ) ) | 
						
							| 115 |  | simpr | ⊢ ( ( 𝑦  ⊆  ( ( int ‘ 𝑆 ) ‘ ( 𝑘 ‘ 𝑦 ) )  ∧  ( 𝑆  ↾t  ( 𝑘 ‘ 𝑦 ) )  ∈  Comp )  →  ( 𝑆  ↾t  ( 𝑘 ‘ 𝑦 ) )  ∈  Comp ) | 
						
							| 116 | 115 | ralimi | ⊢ ( ∀ 𝑦  ∈  𝑤 ( 𝑦  ⊆  ( ( int ‘ 𝑆 ) ‘ ( 𝑘 ‘ 𝑦 ) )  ∧  ( 𝑆  ↾t  ( 𝑘 ‘ 𝑦 ) )  ∈  Comp )  →  ∀ 𝑦  ∈  𝑤 ( 𝑆  ↾t  ( 𝑘 ‘ 𝑦 ) )  ∈  Comp ) | 
						
							| 117 | 114 116 | syl | ⊢ ( ( ( 𝜑  ∧  𝑤  ∈  ( 𝒫  ( 𝑆  ↾t  ( 𝐵  “  𝐾 ) )  ∩  Fin ) )  ∧  ( ( 𝐵  “  𝐾 )  =  ∪  𝑤  ∧  ( 𝑘 : 𝑤 ⟶ 𝒫  ( ◡ 𝐴  “  𝑉 )  ∧  ∀ 𝑦  ∈  𝑤 ( 𝑦  ⊆  ( ( int ‘ 𝑆 ) ‘ ( 𝑘 ‘ 𝑦 ) )  ∧  ( 𝑆  ↾t  ( 𝑘 ‘ 𝑦 ) )  ∈  Comp ) ) ) )  →  ∀ 𝑦  ∈  𝑤 ( 𝑆  ↾t  ( 𝑘 ‘ 𝑦 ) )  ∈  Comp ) | 
						
							| 118 | 17 | fiuncmp | ⊢ ( ( 𝑆  ∈  Top  ∧  𝑤  ∈  Fin  ∧  ∀ 𝑦  ∈  𝑤 ( 𝑆  ↾t  ( 𝑘 ‘ 𝑦 ) )  ∈  Comp )  →  ( 𝑆  ↾t  ∪  𝑦  ∈  𝑤 ( 𝑘 ‘ 𝑦 ) )  ∈  Comp ) | 
						
							| 119 | 90 113 117 118 | syl3anc | ⊢ ( ( ( 𝜑  ∧  𝑤  ∈  ( 𝒫  ( 𝑆  ↾t  ( 𝐵  “  𝐾 ) )  ∩  Fin ) )  ∧  ( ( 𝐵  “  𝐾 )  =  ∪  𝑤  ∧  ( 𝑘 : 𝑤 ⟶ 𝒫  ( ◡ 𝐴  “  𝑉 )  ∧  ∀ 𝑦  ∈  𝑤 ( 𝑦  ⊆  ( ( int ‘ 𝑆 ) ‘ ( 𝑘 ‘ 𝑦 ) )  ∧  ( 𝑆  ↾t  ( 𝑘 ‘ 𝑦 ) )  ∈  Comp ) ) ) )  →  ( 𝑆  ↾t  ∪  𝑦  ∈  𝑤 ( 𝑘 ‘ 𝑦 ) )  ∈  Comp ) | 
						
							| 120 | 111 119 | eqeltrrd | ⊢ ( ( ( 𝜑  ∧  𝑤  ∈  ( 𝒫  ( 𝑆  ↾t  ( 𝐵  “  𝐾 ) )  ∩  Fin ) )  ∧  ( ( 𝐵  “  𝐾 )  =  ∪  𝑤  ∧  ( 𝑘 : 𝑤 ⟶ 𝒫  ( ◡ 𝐴  “  𝑉 )  ∧  ∀ 𝑦  ∈  𝑤 ( 𝑦  ⊆  ( ( int ‘ 𝑆 ) ‘ ( 𝑘 ‘ 𝑦 ) )  ∧  ( 𝑆  ↾t  ( 𝑘 ‘ 𝑦 ) )  ∈  Comp ) ) ) )  →  ( 𝑆  ↾t  ∪  ran  𝑘 )  ∈  Comp ) | 
						
							| 121 | 5 | ad2antrr | ⊢ ( ( ( 𝜑  ∧  𝑤  ∈  ( 𝒫  ( 𝑆  ↾t  ( 𝐵  “  𝐾 ) )  ∩  Fin ) )  ∧  ( ( 𝐵  “  𝐾 )  =  ∪  𝑤  ∧  ( 𝑘 : 𝑤 ⟶ 𝒫  ( ◡ 𝐴  “  𝑉 )  ∧  ∀ 𝑦  ∈  𝑤 ( 𝑦  ⊆  ( ( int ‘ 𝑆 ) ‘ ( 𝑘 ‘ 𝑦 ) )  ∧  ( 𝑆  ↾t  ( 𝑘 ‘ 𝑦 ) )  ∈  Comp ) ) ) )  →  𝑉  ∈  𝑇 ) | 
						
							| 122 | 17 90 93 107 120 121 | xkoopn | ⊢ ( ( ( 𝜑  ∧  𝑤  ∈  ( 𝒫  ( 𝑆  ↾t  ( 𝐵  “  𝐾 ) )  ∩  Fin ) )  ∧  ( ( 𝐵  “  𝐾 )  =  ∪  𝑤  ∧  ( 𝑘 : 𝑤 ⟶ 𝒫  ( ◡ 𝐴  “  𝑉 )  ∧  ∀ 𝑦  ∈  𝑤 ( 𝑦  ⊆  ( ( int ‘ 𝑆 ) ‘ ( 𝑘 ‘ 𝑦 ) )  ∧  ( 𝑆  ↾t  ( 𝑘 ‘ 𝑦 ) )  ∈  Comp ) ) ) )  →  { 𝑎  ∈  ( 𝑆  Cn  𝑇 )  ∣  ( 𝑎  “  ∪  ran  𝑘 )  ⊆  𝑉 }  ∈  ( 𝑇  ↑ko  𝑆 ) ) | 
						
							| 123 | 3 | ad2antrr | ⊢ ( ( ( 𝜑  ∧  𝑤  ∈  ( 𝒫  ( 𝑆  ↾t  ( 𝐵  “  𝐾 ) )  ∩  Fin ) )  ∧  ( ( 𝐵  “  𝐾 )  =  ∪  𝑤  ∧  ( 𝑘 : 𝑤 ⟶ 𝒫  ( ◡ 𝐴  “  𝑉 )  ∧  ∀ 𝑦  ∈  𝑤 ( 𝑦  ⊆  ( ( int ‘ 𝑆 ) ‘ ( 𝑘 ‘ 𝑦 ) )  ∧  ( 𝑆  ↾t  ( 𝑘 ‘ 𝑦 ) )  ∈  Comp ) ) ) )  →  𝐾  ⊆  ∪  𝑅 ) | 
						
							| 124 | 4 | ad2antrr | ⊢ ( ( ( 𝜑  ∧  𝑤  ∈  ( 𝒫  ( 𝑆  ↾t  ( 𝐵  “  𝐾 ) )  ∩  Fin ) )  ∧  ( ( 𝐵  “  𝐾 )  =  ∪  𝑤  ∧  ( 𝑘 : 𝑤 ⟶ 𝒫  ( ◡ 𝐴  “  𝑉 )  ∧  ∀ 𝑦  ∈  𝑤 ( 𝑦  ⊆  ( ( int ‘ 𝑆 ) ‘ ( 𝑘 ‘ 𝑦 ) )  ∧  ( 𝑆  ↾t  ( 𝑘 ‘ 𝑦 ) )  ∈  Comp ) ) ) )  →  ( 𝑅  ↾t  𝐾 )  ∈  Comp ) | 
						
							| 125 | 110 107 | eqsstrd | ⊢ ( ( ( 𝜑  ∧  𝑤  ∈  ( 𝒫  ( 𝑆  ↾t  ( 𝐵  “  𝐾 ) )  ∩  Fin ) )  ∧  ( ( 𝐵  “  𝐾 )  =  ∪  𝑤  ∧  ( 𝑘 : 𝑤 ⟶ 𝒫  ( ◡ 𝐴  “  𝑉 )  ∧  ∀ 𝑦  ∈  𝑤 ( 𝑦  ⊆  ( ( int ‘ 𝑆 ) ‘ ( 𝑘 ‘ 𝑦 ) )  ∧  ( 𝑆  ↾t  ( 𝑘 ‘ 𝑦 ) )  ∈  Comp ) ) ) )  →  ∪  𝑦  ∈  𝑤 ( 𝑘 ‘ 𝑦 )  ⊆  ∪  𝑆 ) | 
						
							| 126 |  | iunss | ⊢ ( ∪  𝑦  ∈  𝑤 ( 𝑘 ‘ 𝑦 )  ⊆  ∪  𝑆  ↔  ∀ 𝑦  ∈  𝑤 ( 𝑘 ‘ 𝑦 )  ⊆  ∪  𝑆 ) | 
						
							| 127 | 125 126 | sylib | ⊢ ( ( ( 𝜑  ∧  𝑤  ∈  ( 𝒫  ( 𝑆  ↾t  ( 𝐵  “  𝐾 ) )  ∩  Fin ) )  ∧  ( ( 𝐵  “  𝐾 )  =  ∪  𝑤  ∧  ( 𝑘 : 𝑤 ⟶ 𝒫  ( ◡ 𝐴  “  𝑉 )  ∧  ∀ 𝑦  ∈  𝑤 ( 𝑦  ⊆  ( ( int ‘ 𝑆 ) ‘ ( 𝑘 ‘ 𝑦 ) )  ∧  ( 𝑆  ↾t  ( 𝑘 ‘ 𝑦 ) )  ∈  Comp ) ) ) )  →  ∀ 𝑦  ∈  𝑤 ( 𝑘 ‘ 𝑦 )  ⊆  ∪  𝑆 ) | 
						
							| 128 | 17 | ntropn | ⊢ ( ( 𝑆  ∈  Top  ∧  ( 𝑘 ‘ 𝑦 )  ⊆  ∪  𝑆 )  →  ( ( int ‘ 𝑆 ) ‘ ( 𝑘 ‘ 𝑦 ) )  ∈  𝑆 ) | 
						
							| 129 | 128 | ex | ⊢ ( 𝑆  ∈  Top  →  ( ( 𝑘 ‘ 𝑦 )  ⊆  ∪  𝑆  →  ( ( int ‘ 𝑆 ) ‘ ( 𝑘 ‘ 𝑦 ) )  ∈  𝑆 ) ) | 
						
							| 130 | 129 | ralimdv | ⊢ ( 𝑆  ∈  Top  →  ( ∀ 𝑦  ∈  𝑤 ( 𝑘 ‘ 𝑦 )  ⊆  ∪  𝑆  →  ∀ 𝑦  ∈  𝑤 ( ( int ‘ 𝑆 ) ‘ ( 𝑘 ‘ 𝑦 ) )  ∈  𝑆 ) ) | 
						
							| 131 | 90 127 130 | sylc | ⊢ ( ( ( 𝜑  ∧  𝑤  ∈  ( 𝒫  ( 𝑆  ↾t  ( 𝐵  “  𝐾 ) )  ∩  Fin ) )  ∧  ( ( 𝐵  “  𝐾 )  =  ∪  𝑤  ∧  ( 𝑘 : 𝑤 ⟶ 𝒫  ( ◡ 𝐴  “  𝑉 )  ∧  ∀ 𝑦  ∈  𝑤 ( 𝑦  ⊆  ( ( int ‘ 𝑆 ) ‘ ( 𝑘 ‘ 𝑦 ) )  ∧  ( 𝑆  ↾t  ( 𝑘 ‘ 𝑦 ) )  ∈  Comp ) ) ) )  →  ∀ 𝑦  ∈  𝑤 ( ( int ‘ 𝑆 ) ‘ ( 𝑘 ‘ 𝑦 ) )  ∈  𝑆 ) | 
						
							| 132 |  | iunopn | ⊢ ( ( 𝑆  ∈  Top  ∧  ∀ 𝑦  ∈  𝑤 ( ( int ‘ 𝑆 ) ‘ ( 𝑘 ‘ 𝑦 ) )  ∈  𝑆 )  →  ∪  𝑦  ∈  𝑤 ( ( int ‘ 𝑆 ) ‘ ( 𝑘 ‘ 𝑦 ) )  ∈  𝑆 ) | 
						
							| 133 | 90 131 132 | syl2anc | ⊢ ( ( ( 𝜑  ∧  𝑤  ∈  ( 𝒫  ( 𝑆  ↾t  ( 𝐵  “  𝐾 ) )  ∩  Fin ) )  ∧  ( ( 𝐵  “  𝐾 )  =  ∪  𝑤  ∧  ( 𝑘 : 𝑤 ⟶ 𝒫  ( ◡ 𝐴  “  𝑉 )  ∧  ∀ 𝑦  ∈  𝑤 ( 𝑦  ⊆  ( ( int ‘ 𝑆 ) ‘ ( 𝑘 ‘ 𝑦 ) )  ∧  ( 𝑆  ↾t  ( 𝑘 ‘ 𝑦 ) )  ∈  Comp ) ) ) )  →  ∪  𝑦  ∈  𝑤 ( ( int ‘ 𝑆 ) ‘ ( 𝑘 ‘ 𝑦 ) )  ∈  𝑆 ) | 
						
							| 134 | 23 98 90 123 124 133 | xkoopn | ⊢ ( ( ( 𝜑  ∧  𝑤  ∈  ( 𝒫  ( 𝑆  ↾t  ( 𝐵  “  𝐾 ) )  ∩  Fin ) )  ∧  ( ( 𝐵  “  𝐾 )  =  ∪  𝑤  ∧  ( 𝑘 : 𝑤 ⟶ 𝒫  ( ◡ 𝐴  “  𝑉 )  ∧  ∀ 𝑦  ∈  𝑤 ( 𝑦  ⊆  ( ( int ‘ 𝑆 ) ‘ ( 𝑘 ‘ 𝑦 ) )  ∧  ( 𝑆  ↾t  ( 𝑘 ‘ 𝑦 ) )  ∈  Comp ) ) ) )  →  { 𝑏  ∈  ( 𝑅  Cn  𝑆 )  ∣  ( 𝑏  “  𝐾 )  ⊆  ∪  𝑦  ∈  𝑤 ( ( int ‘ 𝑆 ) ‘ ( 𝑘 ‘ 𝑦 ) ) }  ∈  ( 𝑆  ↑ko  𝑅 ) ) | 
						
							| 135 |  | txopn | ⊢ ( ( ( ( 𝑇  ↑ko  𝑆 )  ∈  Top  ∧  ( 𝑆  ↑ko  𝑅 )  ∈  Top )  ∧  ( { 𝑎  ∈  ( 𝑆  Cn  𝑇 )  ∣  ( 𝑎  “  ∪  ran  𝑘 )  ⊆  𝑉 }  ∈  ( 𝑇  ↑ko  𝑆 )  ∧  { 𝑏  ∈  ( 𝑅  Cn  𝑆 )  ∣  ( 𝑏  “  𝐾 )  ⊆  ∪  𝑦  ∈  𝑤 ( ( int ‘ 𝑆 ) ‘ ( 𝑘 ‘ 𝑦 ) ) }  ∈  ( 𝑆  ↑ko  𝑅 ) ) )  →  ( { 𝑎  ∈  ( 𝑆  Cn  𝑇 )  ∣  ( 𝑎  “  ∪  ran  𝑘 )  ⊆  𝑉 }  ×  { 𝑏  ∈  ( 𝑅  Cn  𝑆 )  ∣  ( 𝑏  “  𝐾 )  ⊆  ∪  𝑦  ∈  𝑤 ( ( int ‘ 𝑆 ) ‘ ( 𝑘 ‘ 𝑦 ) ) } )  ∈  ( ( 𝑇  ↑ko  𝑆 )  ×t  ( 𝑆  ↑ko  𝑅 ) ) ) | 
						
							| 136 | 95 100 122 134 135 | syl22anc | ⊢ ( ( ( 𝜑  ∧  𝑤  ∈  ( 𝒫  ( 𝑆  ↾t  ( 𝐵  “  𝐾 ) )  ∩  Fin ) )  ∧  ( ( 𝐵  “  𝐾 )  =  ∪  𝑤  ∧  ( 𝑘 : 𝑤 ⟶ 𝒫  ( ◡ 𝐴  “  𝑉 )  ∧  ∀ 𝑦  ∈  𝑤 ( 𝑦  ⊆  ( ( int ‘ 𝑆 ) ‘ ( 𝑘 ‘ 𝑦 ) )  ∧  ( 𝑆  ↾t  ( 𝑘 ‘ 𝑦 ) )  ∈  Comp ) ) ) )  →  ( { 𝑎  ∈  ( 𝑆  Cn  𝑇 )  ∣  ( 𝑎  “  ∪  ran  𝑘 )  ⊆  𝑉 }  ×  { 𝑏  ∈  ( 𝑅  Cn  𝑆 )  ∣  ( 𝑏  “  𝐾 )  ⊆  ∪  𝑦  ∈  𝑤 ( ( int ‘ 𝑆 ) ‘ ( 𝑘 ‘ 𝑦 ) ) } )  ∈  ( ( 𝑇  ↑ko  𝑆 )  ×t  ( 𝑆  ↑ko  𝑅 ) ) ) | 
						
							| 137 |  | imaeq1 | ⊢ ( 𝑎  =  𝐴  →  ( 𝑎  “  ∪  ran  𝑘 )  =  ( 𝐴  “  ∪  ran  𝑘 ) ) | 
						
							| 138 | 137 | sseq1d | ⊢ ( 𝑎  =  𝐴  →  ( ( 𝑎  “  ∪  ran  𝑘 )  ⊆  𝑉  ↔  ( 𝐴  “  ∪  ran  𝑘 )  ⊆  𝑉 ) ) | 
						
							| 139 | 6 | ad2antrr | ⊢ ( ( ( 𝜑  ∧  𝑤  ∈  ( 𝒫  ( 𝑆  ↾t  ( 𝐵  “  𝐾 ) )  ∩  Fin ) )  ∧  ( ( 𝐵  “  𝐾 )  =  ∪  𝑤  ∧  ( 𝑘 : 𝑤 ⟶ 𝒫  ( ◡ 𝐴  “  𝑉 )  ∧  ∀ 𝑦  ∈  𝑤 ( 𝑦  ⊆  ( ( int ‘ 𝑆 ) ‘ ( 𝑘 ‘ 𝑦 ) )  ∧  ( 𝑆  ↾t  ( 𝑘 ‘ 𝑦 ) )  ∈  Comp ) ) ) )  →  𝐴  ∈  ( 𝑆  Cn  𝑇 ) ) | 
						
							| 140 |  | imaiun | ⊢ ( 𝐴  “  ∪  𝑦  ∈  𝑤 ( 𝑘 ‘ 𝑦 ) )  =  ∪  𝑦  ∈  𝑤 ( 𝐴  “  ( 𝑘 ‘ 𝑦 ) ) | 
						
							| 141 | 110 | imaeq2d | ⊢ ( ( ( 𝜑  ∧  𝑤  ∈  ( 𝒫  ( 𝑆  ↾t  ( 𝐵  “  𝐾 ) )  ∩  Fin ) )  ∧  ( ( 𝐵  “  𝐾 )  =  ∪  𝑤  ∧  ( 𝑘 : 𝑤 ⟶ 𝒫  ( ◡ 𝐴  “  𝑉 )  ∧  ∀ 𝑦  ∈  𝑤 ( 𝑦  ⊆  ( ( int ‘ 𝑆 ) ‘ ( 𝑘 ‘ 𝑦 ) )  ∧  ( 𝑆  ↾t  ( 𝑘 ‘ 𝑦 ) )  ∈  Comp ) ) ) )  →  ( 𝐴  “  ∪  𝑦  ∈  𝑤 ( 𝑘 ‘ 𝑦 ) )  =  ( 𝐴  “  ∪  ran  𝑘 ) ) | 
						
							| 142 | 140 141 | eqtr3id | ⊢ ( ( ( 𝜑  ∧  𝑤  ∈  ( 𝒫  ( 𝑆  ↾t  ( 𝐵  “  𝐾 ) )  ∩  Fin ) )  ∧  ( ( 𝐵  “  𝐾 )  =  ∪  𝑤  ∧  ( 𝑘 : 𝑤 ⟶ 𝒫  ( ◡ 𝐴  “  𝑉 )  ∧  ∀ 𝑦  ∈  𝑤 ( 𝑦  ⊆  ( ( int ‘ 𝑆 ) ‘ ( 𝑘 ‘ 𝑦 ) )  ∧  ( 𝑆  ↾t  ( 𝑘 ‘ 𝑦 ) )  ∈  Comp ) ) ) )  →  ∪  𝑦  ∈  𝑤 ( 𝐴  “  ( 𝑘 ‘ 𝑦 ) )  =  ( 𝐴  “  ∪  ran  𝑘 ) ) | 
						
							| 143 | 110 104 | eqsstrd | ⊢ ( ( ( 𝜑  ∧  𝑤  ∈  ( 𝒫  ( 𝑆  ↾t  ( 𝐵  “  𝐾 ) )  ∩  Fin ) )  ∧  ( ( 𝐵  “  𝐾 )  =  ∪  𝑤  ∧  ( 𝑘 : 𝑤 ⟶ 𝒫  ( ◡ 𝐴  “  𝑉 )  ∧  ∀ 𝑦  ∈  𝑤 ( 𝑦  ⊆  ( ( int ‘ 𝑆 ) ‘ ( 𝑘 ‘ 𝑦 ) )  ∧  ( 𝑆  ↾t  ( 𝑘 ‘ 𝑦 ) )  ∈  Comp ) ) ) )  →  ∪  𝑦  ∈  𝑤 ( 𝑘 ‘ 𝑦 )  ⊆  ( ◡ 𝐴  “  𝑉 ) ) | 
						
							| 144 | 21 | ad2antrr | ⊢ ( ( ( 𝜑  ∧  𝑤  ∈  ( 𝒫  ( 𝑆  ↾t  ( 𝐵  “  𝐾 ) )  ∩  Fin ) )  ∧  ( ( 𝐵  “  𝐾 )  =  ∪  𝑤  ∧  ( 𝑘 : 𝑤 ⟶ 𝒫  ( ◡ 𝐴  “  𝑉 )  ∧  ∀ 𝑦  ∈  𝑤 ( 𝑦  ⊆  ( ( int ‘ 𝑆 ) ‘ ( 𝑘 ‘ 𝑦 ) )  ∧  ( 𝑆  ↾t  ( 𝑘 ‘ 𝑦 ) )  ∈  Comp ) ) ) )  →  Fun  𝐴 ) | 
						
							| 145 | 101 108 | syl | ⊢ ( ( ( 𝜑  ∧  𝑤  ∈  ( 𝒫  ( 𝑆  ↾t  ( 𝐵  “  𝐾 ) )  ∩  Fin ) )  ∧  ( ( 𝐵  “  𝐾 )  =  ∪  𝑤  ∧  ( 𝑘 : 𝑤 ⟶ 𝒫  ( ◡ 𝐴  “  𝑉 )  ∧  ∀ 𝑦  ∈  𝑤 ( 𝑦  ⊆  ( ( int ‘ 𝑆 ) ‘ ( 𝑘 ‘ 𝑦 ) )  ∧  ( 𝑆  ↾t  ( 𝑘 ‘ 𝑦 ) )  ∈  Comp ) ) ) )  →  𝑘  Fn  𝑤 ) | 
						
							| 146 | 29 | ad2antrr | ⊢ ( ( ( 𝜑  ∧  𝑤  ∈  ( 𝒫  ( 𝑆  ↾t  ( 𝐵  “  𝐾 ) )  ∩  Fin ) )  ∧  ( ( 𝐵  “  𝐾 )  =  ∪  𝑤  ∧  ( 𝑘 : 𝑤 ⟶ 𝒫  ( ◡ 𝐴  “  𝑉 )  ∧  ∀ 𝑦  ∈  𝑤 ( 𝑦  ⊆  ( ( int ‘ 𝑆 ) ‘ ( 𝑘 ‘ 𝑦 ) )  ∧  ( 𝑆  ↾t  ( 𝑘 ‘ 𝑦 ) )  ∈  Comp ) ) ) )  →  dom  𝐴  =  ∪  𝑆 ) | 
						
							| 147 | 107 146 | sseqtrrd | ⊢ ( ( ( 𝜑  ∧  𝑤  ∈  ( 𝒫  ( 𝑆  ↾t  ( 𝐵  “  𝐾 ) )  ∩  Fin ) )  ∧  ( ( 𝐵  “  𝐾 )  =  ∪  𝑤  ∧  ( 𝑘 : 𝑤 ⟶ 𝒫  ( ◡ 𝐴  “  𝑉 )  ∧  ∀ 𝑦  ∈  𝑤 ( 𝑦  ⊆  ( ( int ‘ 𝑆 ) ‘ ( 𝑘 ‘ 𝑦 ) )  ∧  ( 𝑆  ↾t  ( 𝑘 ‘ 𝑦 ) )  ∈  Comp ) ) ) )  →  ∪  ran  𝑘  ⊆  dom  𝐴 ) | 
						
							| 148 |  | simpl1 | ⊢ ( ( ( Fun  𝐴  ∧  𝑘  Fn  𝑤  ∧  ∪  ran  𝑘  ⊆  dom  𝐴 )  ∧  𝑦  ∈  𝑤 )  →  Fun  𝐴 ) | 
						
							| 149 | 109 | 3ad2ant2 | ⊢ ( ( Fun  𝐴  ∧  𝑘  Fn  𝑤  ∧  ∪  ran  𝑘  ⊆  dom  𝐴 )  →  ∪  𝑦  ∈  𝑤 ( 𝑘 ‘ 𝑦 )  =  ∪  ran  𝑘 ) | 
						
							| 150 |  | simp3 | ⊢ ( ( Fun  𝐴  ∧  𝑘  Fn  𝑤  ∧  ∪  ran  𝑘  ⊆  dom  𝐴 )  →  ∪  ran  𝑘  ⊆  dom  𝐴 ) | 
						
							| 151 | 149 150 | eqsstrd | ⊢ ( ( Fun  𝐴  ∧  𝑘  Fn  𝑤  ∧  ∪  ran  𝑘  ⊆  dom  𝐴 )  →  ∪  𝑦  ∈  𝑤 ( 𝑘 ‘ 𝑦 )  ⊆  dom  𝐴 ) | 
						
							| 152 |  | iunss | ⊢ ( ∪  𝑦  ∈  𝑤 ( 𝑘 ‘ 𝑦 )  ⊆  dom  𝐴  ↔  ∀ 𝑦  ∈  𝑤 ( 𝑘 ‘ 𝑦 )  ⊆  dom  𝐴 ) | 
						
							| 153 | 151 152 | sylib | ⊢ ( ( Fun  𝐴  ∧  𝑘  Fn  𝑤  ∧  ∪  ran  𝑘  ⊆  dom  𝐴 )  →  ∀ 𝑦  ∈  𝑤 ( 𝑘 ‘ 𝑦 )  ⊆  dom  𝐴 ) | 
						
							| 154 | 153 | r19.21bi | ⊢ ( ( ( Fun  𝐴  ∧  𝑘  Fn  𝑤  ∧  ∪  ran  𝑘  ⊆  dom  𝐴 )  ∧  𝑦  ∈  𝑤 )  →  ( 𝑘 ‘ 𝑦 )  ⊆  dom  𝐴 ) | 
						
							| 155 |  | funimass3 | ⊢ ( ( Fun  𝐴  ∧  ( 𝑘 ‘ 𝑦 )  ⊆  dom  𝐴 )  →  ( ( 𝐴  “  ( 𝑘 ‘ 𝑦 ) )  ⊆  𝑉  ↔  ( 𝑘 ‘ 𝑦 )  ⊆  ( ◡ 𝐴  “  𝑉 ) ) ) | 
						
							| 156 | 148 154 155 | syl2anc | ⊢ ( ( ( Fun  𝐴  ∧  𝑘  Fn  𝑤  ∧  ∪  ran  𝑘  ⊆  dom  𝐴 )  ∧  𝑦  ∈  𝑤 )  →  ( ( 𝐴  “  ( 𝑘 ‘ 𝑦 ) )  ⊆  𝑉  ↔  ( 𝑘 ‘ 𝑦 )  ⊆  ( ◡ 𝐴  “  𝑉 ) ) ) | 
						
							| 157 | 156 | ralbidva | ⊢ ( ( Fun  𝐴  ∧  𝑘  Fn  𝑤  ∧  ∪  ran  𝑘  ⊆  dom  𝐴 )  →  ( ∀ 𝑦  ∈  𝑤 ( 𝐴  “  ( 𝑘 ‘ 𝑦 ) )  ⊆  𝑉  ↔  ∀ 𝑦  ∈  𝑤 ( 𝑘 ‘ 𝑦 )  ⊆  ( ◡ 𝐴  “  𝑉 ) ) ) | 
						
							| 158 |  | iunss | ⊢ ( ∪  𝑦  ∈  𝑤 ( 𝐴  “  ( 𝑘 ‘ 𝑦 ) )  ⊆  𝑉  ↔  ∀ 𝑦  ∈  𝑤 ( 𝐴  “  ( 𝑘 ‘ 𝑦 ) )  ⊆  𝑉 ) | 
						
							| 159 |  | iunss | ⊢ ( ∪  𝑦  ∈  𝑤 ( 𝑘 ‘ 𝑦 )  ⊆  ( ◡ 𝐴  “  𝑉 )  ↔  ∀ 𝑦  ∈  𝑤 ( 𝑘 ‘ 𝑦 )  ⊆  ( ◡ 𝐴  “  𝑉 ) ) | 
						
							| 160 | 157 158 159 | 3bitr4g | ⊢ ( ( Fun  𝐴  ∧  𝑘  Fn  𝑤  ∧  ∪  ran  𝑘  ⊆  dom  𝐴 )  →  ( ∪  𝑦  ∈  𝑤 ( 𝐴  “  ( 𝑘 ‘ 𝑦 ) )  ⊆  𝑉  ↔  ∪  𝑦  ∈  𝑤 ( 𝑘 ‘ 𝑦 )  ⊆  ( ◡ 𝐴  “  𝑉 ) ) ) | 
						
							| 161 | 144 145 147 160 | syl3anc | ⊢ ( ( ( 𝜑  ∧  𝑤  ∈  ( 𝒫  ( 𝑆  ↾t  ( 𝐵  “  𝐾 ) )  ∩  Fin ) )  ∧  ( ( 𝐵  “  𝐾 )  =  ∪  𝑤  ∧  ( 𝑘 : 𝑤 ⟶ 𝒫  ( ◡ 𝐴  “  𝑉 )  ∧  ∀ 𝑦  ∈  𝑤 ( 𝑦  ⊆  ( ( int ‘ 𝑆 ) ‘ ( 𝑘 ‘ 𝑦 ) )  ∧  ( 𝑆  ↾t  ( 𝑘 ‘ 𝑦 ) )  ∈  Comp ) ) ) )  →  ( ∪  𝑦  ∈  𝑤 ( 𝐴  “  ( 𝑘 ‘ 𝑦 ) )  ⊆  𝑉  ↔  ∪  𝑦  ∈  𝑤 ( 𝑘 ‘ 𝑦 )  ⊆  ( ◡ 𝐴  “  𝑉 ) ) ) | 
						
							| 162 | 143 161 | mpbird | ⊢ ( ( ( 𝜑  ∧  𝑤  ∈  ( 𝒫  ( 𝑆  ↾t  ( 𝐵  “  𝐾 ) )  ∩  Fin ) )  ∧  ( ( 𝐵  “  𝐾 )  =  ∪  𝑤  ∧  ( 𝑘 : 𝑤 ⟶ 𝒫  ( ◡ 𝐴  “  𝑉 )  ∧  ∀ 𝑦  ∈  𝑤 ( 𝑦  ⊆  ( ( int ‘ 𝑆 ) ‘ ( 𝑘 ‘ 𝑦 ) )  ∧  ( 𝑆  ↾t  ( 𝑘 ‘ 𝑦 ) )  ∈  Comp ) ) ) )  →  ∪  𝑦  ∈  𝑤 ( 𝐴  “  ( 𝑘 ‘ 𝑦 ) )  ⊆  𝑉 ) | 
						
							| 163 | 142 162 | eqsstrrd | ⊢ ( ( ( 𝜑  ∧  𝑤  ∈  ( 𝒫  ( 𝑆  ↾t  ( 𝐵  “  𝐾 ) )  ∩  Fin ) )  ∧  ( ( 𝐵  “  𝐾 )  =  ∪  𝑤  ∧  ( 𝑘 : 𝑤 ⟶ 𝒫  ( ◡ 𝐴  “  𝑉 )  ∧  ∀ 𝑦  ∈  𝑤 ( 𝑦  ⊆  ( ( int ‘ 𝑆 ) ‘ ( 𝑘 ‘ 𝑦 ) )  ∧  ( 𝑆  ↾t  ( 𝑘 ‘ 𝑦 ) )  ∈  Comp ) ) ) )  →  ( 𝐴  “  ∪  ran  𝑘 )  ⊆  𝑉 ) | 
						
							| 164 | 138 139 163 | elrabd | ⊢ ( ( ( 𝜑  ∧  𝑤  ∈  ( 𝒫  ( 𝑆  ↾t  ( 𝐵  “  𝐾 ) )  ∩  Fin ) )  ∧  ( ( 𝐵  “  𝐾 )  =  ∪  𝑤  ∧  ( 𝑘 : 𝑤 ⟶ 𝒫  ( ◡ 𝐴  “  𝑉 )  ∧  ∀ 𝑦  ∈  𝑤 ( 𝑦  ⊆  ( ( int ‘ 𝑆 ) ‘ ( 𝑘 ‘ 𝑦 ) )  ∧  ( 𝑆  ↾t  ( 𝑘 ‘ 𝑦 ) )  ∈  Comp ) ) ) )  →  𝐴  ∈  { 𝑎  ∈  ( 𝑆  Cn  𝑇 )  ∣  ( 𝑎  “  ∪  ran  𝑘 )  ⊆  𝑉 } ) | 
						
							| 165 |  | imaeq1 | ⊢ ( 𝑏  =  𝐵  →  ( 𝑏  “  𝐾 )  =  ( 𝐵  “  𝐾 ) ) | 
						
							| 166 | 165 | sseq1d | ⊢ ( 𝑏  =  𝐵  →  ( ( 𝑏  “  𝐾 )  ⊆  ∪  𝑦  ∈  𝑤 ( ( int ‘ 𝑆 ) ‘ ( 𝑘 ‘ 𝑦 ) )  ↔  ( 𝐵  “  𝐾 )  ⊆  ∪  𝑦  ∈  𝑤 ( ( int ‘ 𝑆 ) ‘ ( 𝑘 ‘ 𝑦 ) ) ) ) | 
						
							| 167 | 7 | ad2antrr | ⊢ ( ( ( 𝜑  ∧  𝑤  ∈  ( 𝒫  ( 𝑆  ↾t  ( 𝐵  “  𝐾 ) )  ∩  Fin ) )  ∧  ( ( 𝐵  “  𝐾 )  =  ∪  𝑤  ∧  ( 𝑘 : 𝑤 ⟶ 𝒫  ( ◡ 𝐴  “  𝑉 )  ∧  ∀ 𝑦  ∈  𝑤 ( 𝑦  ⊆  ( ( int ‘ 𝑆 ) ‘ ( 𝑘 ‘ 𝑦 ) )  ∧  ( 𝑆  ↾t  ( 𝑘 ‘ 𝑦 ) )  ∈  Comp ) ) ) )  →  𝐵  ∈  ( 𝑅  Cn  𝑆 ) ) | 
						
							| 168 |  | simprl | ⊢ ( ( ( 𝜑  ∧  𝑤  ∈  ( 𝒫  ( 𝑆  ↾t  ( 𝐵  “  𝐾 ) )  ∩  Fin ) )  ∧  ( ( 𝐵  “  𝐾 )  =  ∪  𝑤  ∧  ( 𝑘 : 𝑤 ⟶ 𝒫  ( ◡ 𝐴  “  𝑉 )  ∧  ∀ 𝑦  ∈  𝑤 ( 𝑦  ⊆  ( ( int ‘ 𝑆 ) ‘ ( 𝑘 ‘ 𝑦 ) )  ∧  ( 𝑆  ↾t  ( 𝑘 ‘ 𝑦 ) )  ∈  Comp ) ) ) )  →  ( 𝐵  “  𝐾 )  =  ∪  𝑤 ) | 
						
							| 169 |  | uniiun | ⊢ ∪  𝑤  =  ∪  𝑦  ∈  𝑤 𝑦 | 
						
							| 170 | 168 169 | eqtrdi | ⊢ ( ( ( 𝜑  ∧  𝑤  ∈  ( 𝒫  ( 𝑆  ↾t  ( 𝐵  “  𝐾 ) )  ∩  Fin ) )  ∧  ( ( 𝐵  “  𝐾 )  =  ∪  𝑤  ∧  ( 𝑘 : 𝑤 ⟶ 𝒫  ( ◡ 𝐴  “  𝑉 )  ∧  ∀ 𝑦  ∈  𝑤 ( 𝑦  ⊆  ( ( int ‘ 𝑆 ) ‘ ( 𝑘 ‘ 𝑦 ) )  ∧  ( 𝑆  ↾t  ( 𝑘 ‘ 𝑦 ) )  ∈  Comp ) ) ) )  →  ( 𝐵  “  𝐾 )  =  ∪  𝑦  ∈  𝑤 𝑦 ) | 
						
							| 171 |  | simpl | ⊢ ( ( 𝑦  ⊆  ( ( int ‘ 𝑆 ) ‘ ( 𝑘 ‘ 𝑦 ) )  ∧  ( 𝑆  ↾t  ( 𝑘 ‘ 𝑦 ) )  ∈  Comp )  →  𝑦  ⊆  ( ( int ‘ 𝑆 ) ‘ ( 𝑘 ‘ 𝑦 ) ) ) | 
						
							| 172 | 171 | ralimi | ⊢ ( ∀ 𝑦  ∈  𝑤 ( 𝑦  ⊆  ( ( int ‘ 𝑆 ) ‘ ( 𝑘 ‘ 𝑦 ) )  ∧  ( 𝑆  ↾t  ( 𝑘 ‘ 𝑦 ) )  ∈  Comp )  →  ∀ 𝑦  ∈  𝑤 𝑦  ⊆  ( ( int ‘ 𝑆 ) ‘ ( 𝑘 ‘ 𝑦 ) ) ) | 
						
							| 173 |  | ss2iun | ⊢ ( ∀ 𝑦  ∈  𝑤 𝑦  ⊆  ( ( int ‘ 𝑆 ) ‘ ( 𝑘 ‘ 𝑦 ) )  →  ∪  𝑦  ∈  𝑤 𝑦  ⊆  ∪  𝑦  ∈  𝑤 ( ( int ‘ 𝑆 ) ‘ ( 𝑘 ‘ 𝑦 ) ) ) | 
						
							| 174 | 114 172 173 | 3syl | ⊢ ( ( ( 𝜑  ∧  𝑤  ∈  ( 𝒫  ( 𝑆  ↾t  ( 𝐵  “  𝐾 ) )  ∩  Fin ) )  ∧  ( ( 𝐵  “  𝐾 )  =  ∪  𝑤  ∧  ( 𝑘 : 𝑤 ⟶ 𝒫  ( ◡ 𝐴  “  𝑉 )  ∧  ∀ 𝑦  ∈  𝑤 ( 𝑦  ⊆  ( ( int ‘ 𝑆 ) ‘ ( 𝑘 ‘ 𝑦 ) )  ∧  ( 𝑆  ↾t  ( 𝑘 ‘ 𝑦 ) )  ∈  Comp ) ) ) )  →  ∪  𝑦  ∈  𝑤 𝑦  ⊆  ∪  𝑦  ∈  𝑤 ( ( int ‘ 𝑆 ) ‘ ( 𝑘 ‘ 𝑦 ) ) ) | 
						
							| 175 | 170 174 | eqsstrd | ⊢ ( ( ( 𝜑  ∧  𝑤  ∈  ( 𝒫  ( 𝑆  ↾t  ( 𝐵  “  𝐾 ) )  ∩  Fin ) )  ∧  ( ( 𝐵  “  𝐾 )  =  ∪  𝑤  ∧  ( 𝑘 : 𝑤 ⟶ 𝒫  ( ◡ 𝐴  “  𝑉 )  ∧  ∀ 𝑦  ∈  𝑤 ( 𝑦  ⊆  ( ( int ‘ 𝑆 ) ‘ ( 𝑘 ‘ 𝑦 ) )  ∧  ( 𝑆  ↾t  ( 𝑘 ‘ 𝑦 ) )  ∈  Comp ) ) ) )  →  ( 𝐵  “  𝐾 )  ⊆  ∪  𝑦  ∈  𝑤 ( ( int ‘ 𝑆 ) ‘ ( 𝑘 ‘ 𝑦 ) ) ) | 
						
							| 176 | 166 167 175 | elrabd | ⊢ ( ( ( 𝜑  ∧  𝑤  ∈  ( 𝒫  ( 𝑆  ↾t  ( 𝐵  “  𝐾 ) )  ∩  Fin ) )  ∧  ( ( 𝐵  “  𝐾 )  =  ∪  𝑤  ∧  ( 𝑘 : 𝑤 ⟶ 𝒫  ( ◡ 𝐴  “  𝑉 )  ∧  ∀ 𝑦  ∈  𝑤 ( 𝑦  ⊆  ( ( int ‘ 𝑆 ) ‘ ( 𝑘 ‘ 𝑦 ) )  ∧  ( 𝑆  ↾t  ( 𝑘 ‘ 𝑦 ) )  ∈  Comp ) ) ) )  →  𝐵  ∈  { 𝑏  ∈  ( 𝑅  Cn  𝑆 )  ∣  ( 𝑏  “  𝐾 )  ⊆  ∪  𝑦  ∈  𝑤 ( ( int ‘ 𝑆 ) ‘ ( 𝑘 ‘ 𝑦 ) ) } ) | 
						
							| 177 | 164 176 | opelxpd | ⊢ ( ( ( 𝜑  ∧  𝑤  ∈  ( 𝒫  ( 𝑆  ↾t  ( 𝐵  “  𝐾 ) )  ∩  Fin ) )  ∧  ( ( 𝐵  “  𝐾 )  =  ∪  𝑤  ∧  ( 𝑘 : 𝑤 ⟶ 𝒫  ( ◡ 𝐴  “  𝑉 )  ∧  ∀ 𝑦  ∈  𝑤 ( 𝑦  ⊆  ( ( int ‘ 𝑆 ) ‘ ( 𝑘 ‘ 𝑦 ) )  ∧  ( 𝑆  ↾t  ( 𝑘 ‘ 𝑦 ) )  ∈  Comp ) ) ) )  →  〈 𝐴 ,  𝐵 〉  ∈  ( { 𝑎  ∈  ( 𝑆  Cn  𝑇 )  ∣  ( 𝑎  “  ∪  ran  𝑘 )  ⊆  𝑉 }  ×  { 𝑏  ∈  ( 𝑅  Cn  𝑆 )  ∣  ( 𝑏  “  𝐾 )  ⊆  ∪  𝑦  ∈  𝑤 ( ( int ‘ 𝑆 ) ‘ ( 𝑘 ‘ 𝑦 ) ) } ) ) | 
						
							| 178 |  | imaeq1 | ⊢ ( 𝑎  =  𝑢  →  ( 𝑎  “  ∪  ran  𝑘 )  =  ( 𝑢  “  ∪  ran  𝑘 ) ) | 
						
							| 179 | 178 | sseq1d | ⊢ ( 𝑎  =  𝑢  →  ( ( 𝑎  “  ∪  ran  𝑘 )  ⊆  𝑉  ↔  ( 𝑢  “  ∪  ran  𝑘 )  ⊆  𝑉 ) ) | 
						
							| 180 | 179 | elrab | ⊢ ( 𝑢  ∈  { 𝑎  ∈  ( 𝑆  Cn  𝑇 )  ∣  ( 𝑎  “  ∪  ran  𝑘 )  ⊆  𝑉 }  ↔  ( 𝑢  ∈  ( 𝑆  Cn  𝑇 )  ∧  ( 𝑢  “  ∪  ran  𝑘 )  ⊆  𝑉 ) ) | 
						
							| 181 |  | imaeq1 | ⊢ ( 𝑏  =  𝑣  →  ( 𝑏  “  𝐾 )  =  ( 𝑣  “  𝐾 ) ) | 
						
							| 182 | 181 | sseq1d | ⊢ ( 𝑏  =  𝑣  →  ( ( 𝑏  “  𝐾 )  ⊆  ∪  𝑦  ∈  𝑤 ( ( int ‘ 𝑆 ) ‘ ( 𝑘 ‘ 𝑦 ) )  ↔  ( 𝑣  “  𝐾 )  ⊆  ∪  𝑦  ∈  𝑤 ( ( int ‘ 𝑆 ) ‘ ( 𝑘 ‘ 𝑦 ) ) ) ) | 
						
							| 183 | 182 | elrab | ⊢ ( 𝑣  ∈  { 𝑏  ∈  ( 𝑅  Cn  𝑆 )  ∣  ( 𝑏  “  𝐾 )  ⊆  ∪  𝑦  ∈  𝑤 ( ( int ‘ 𝑆 ) ‘ ( 𝑘 ‘ 𝑦 ) ) }  ↔  ( 𝑣  ∈  ( 𝑅  Cn  𝑆 )  ∧  ( 𝑣  “  𝐾 )  ⊆  ∪  𝑦  ∈  𝑤 ( ( int ‘ 𝑆 ) ‘ ( 𝑘 ‘ 𝑦 ) ) ) ) | 
						
							| 184 | 180 183 | anbi12i | ⊢ ( ( 𝑢  ∈  { 𝑎  ∈  ( 𝑆  Cn  𝑇 )  ∣  ( 𝑎  “  ∪  ran  𝑘 )  ⊆  𝑉 }  ∧  𝑣  ∈  { 𝑏  ∈  ( 𝑅  Cn  𝑆 )  ∣  ( 𝑏  “  𝐾 )  ⊆  ∪  𝑦  ∈  𝑤 ( ( int ‘ 𝑆 ) ‘ ( 𝑘 ‘ 𝑦 ) ) } )  ↔  ( ( 𝑢  ∈  ( 𝑆  Cn  𝑇 )  ∧  ( 𝑢  “  ∪  ran  𝑘 )  ⊆  𝑉 )  ∧  ( 𝑣  ∈  ( 𝑅  Cn  𝑆 )  ∧  ( 𝑣  “  𝐾 )  ⊆  ∪  𝑦  ∈  𝑤 ( ( int ‘ 𝑆 ) ‘ ( 𝑘 ‘ 𝑦 ) ) ) ) ) | 
						
							| 185 |  | simprll | ⊢ ( ( ( ( 𝜑  ∧  𝑤  ∈  ( 𝒫  ( 𝑆  ↾t  ( 𝐵  “  𝐾 ) )  ∩  Fin ) )  ∧  ( ( 𝐵  “  𝐾 )  =  ∪  𝑤  ∧  ( 𝑘 : 𝑤 ⟶ 𝒫  ( ◡ 𝐴  “  𝑉 )  ∧  ∀ 𝑦  ∈  𝑤 ( 𝑦  ⊆  ( ( int ‘ 𝑆 ) ‘ ( 𝑘 ‘ 𝑦 ) )  ∧  ( 𝑆  ↾t  ( 𝑘 ‘ 𝑦 ) )  ∈  Comp ) ) ) )  ∧  ( ( 𝑢  ∈  ( 𝑆  Cn  𝑇 )  ∧  ( 𝑢  “  ∪  ran  𝑘 )  ⊆  𝑉 )  ∧  ( 𝑣  ∈  ( 𝑅  Cn  𝑆 )  ∧  ( 𝑣  “  𝐾 )  ⊆  ∪  𝑦  ∈  𝑤 ( ( int ‘ 𝑆 ) ‘ ( 𝑘 ‘ 𝑦 ) ) ) ) )  →  𝑢  ∈  ( 𝑆  Cn  𝑇 ) ) | 
						
							| 186 |  | simprrl | ⊢ ( ( ( ( 𝜑  ∧  𝑤  ∈  ( 𝒫  ( 𝑆  ↾t  ( 𝐵  “  𝐾 ) )  ∩  Fin ) )  ∧  ( ( 𝐵  “  𝐾 )  =  ∪  𝑤  ∧  ( 𝑘 : 𝑤 ⟶ 𝒫  ( ◡ 𝐴  “  𝑉 )  ∧  ∀ 𝑦  ∈  𝑤 ( 𝑦  ⊆  ( ( int ‘ 𝑆 ) ‘ ( 𝑘 ‘ 𝑦 ) )  ∧  ( 𝑆  ↾t  ( 𝑘 ‘ 𝑦 ) )  ∈  Comp ) ) ) )  ∧  ( ( 𝑢  ∈  ( 𝑆  Cn  𝑇 )  ∧  ( 𝑢  “  ∪  ran  𝑘 )  ⊆  𝑉 )  ∧  ( 𝑣  ∈  ( 𝑅  Cn  𝑆 )  ∧  ( 𝑣  “  𝐾 )  ⊆  ∪  𝑦  ∈  𝑤 ( ( int ‘ 𝑆 ) ‘ ( 𝑘 ‘ 𝑦 ) ) ) ) )  →  𝑣  ∈  ( 𝑅  Cn  𝑆 ) ) | 
						
							| 187 |  | coeq1 | ⊢ ( 𝑓  =  𝑢  →  ( 𝑓  ∘  𝑔 )  =  ( 𝑢  ∘  𝑔 ) ) | 
						
							| 188 |  | coeq2 | ⊢ ( 𝑔  =  𝑣  →  ( 𝑢  ∘  𝑔 )  =  ( 𝑢  ∘  𝑣 ) ) | 
						
							| 189 |  | vex | ⊢ 𝑢  ∈  V | 
						
							| 190 |  | vex | ⊢ 𝑣  ∈  V | 
						
							| 191 | 189 190 | coex | ⊢ ( 𝑢  ∘  𝑣 )  ∈  V | 
						
							| 192 | 187 188 1 191 | ovmpo | ⊢ ( ( 𝑢  ∈  ( 𝑆  Cn  𝑇 )  ∧  𝑣  ∈  ( 𝑅  Cn  𝑆 ) )  →  ( 𝑢 𝐹 𝑣 )  =  ( 𝑢  ∘  𝑣 ) ) | 
						
							| 193 | 185 186 192 | syl2anc | ⊢ ( ( ( ( 𝜑  ∧  𝑤  ∈  ( 𝒫  ( 𝑆  ↾t  ( 𝐵  “  𝐾 ) )  ∩  Fin ) )  ∧  ( ( 𝐵  “  𝐾 )  =  ∪  𝑤  ∧  ( 𝑘 : 𝑤 ⟶ 𝒫  ( ◡ 𝐴  “  𝑉 )  ∧  ∀ 𝑦  ∈  𝑤 ( 𝑦  ⊆  ( ( int ‘ 𝑆 ) ‘ ( 𝑘 ‘ 𝑦 ) )  ∧  ( 𝑆  ↾t  ( 𝑘 ‘ 𝑦 ) )  ∈  Comp ) ) ) )  ∧  ( ( 𝑢  ∈  ( 𝑆  Cn  𝑇 )  ∧  ( 𝑢  “  ∪  ran  𝑘 )  ⊆  𝑉 )  ∧  ( 𝑣  ∈  ( 𝑅  Cn  𝑆 )  ∧  ( 𝑣  “  𝐾 )  ⊆  ∪  𝑦  ∈  𝑤 ( ( int ‘ 𝑆 ) ‘ ( 𝑘 ‘ 𝑦 ) ) ) ) )  →  ( 𝑢 𝐹 𝑣 )  =  ( 𝑢  ∘  𝑣 ) ) | 
						
							| 194 |  | imaeq1 | ⊢ ( ℎ  =  ( 𝑢  ∘  𝑣 )  →  ( ℎ  “  𝐾 )  =  ( ( 𝑢  ∘  𝑣 )  “  𝐾 ) ) | 
						
							| 195 | 194 | sseq1d | ⊢ ( ℎ  =  ( 𝑢  ∘  𝑣 )  →  ( ( ℎ  “  𝐾 )  ⊆  𝑉  ↔  ( ( 𝑢  ∘  𝑣 )  “  𝐾 )  ⊆  𝑉 ) ) | 
						
							| 196 |  | cnco | ⊢ ( ( 𝑣  ∈  ( 𝑅  Cn  𝑆 )  ∧  𝑢  ∈  ( 𝑆  Cn  𝑇 ) )  →  ( 𝑢  ∘  𝑣 )  ∈  ( 𝑅  Cn  𝑇 ) ) | 
						
							| 197 | 186 185 196 | syl2anc | ⊢ ( ( ( ( 𝜑  ∧  𝑤  ∈  ( 𝒫  ( 𝑆  ↾t  ( 𝐵  “  𝐾 ) )  ∩  Fin ) )  ∧  ( ( 𝐵  “  𝐾 )  =  ∪  𝑤  ∧  ( 𝑘 : 𝑤 ⟶ 𝒫  ( ◡ 𝐴  “  𝑉 )  ∧  ∀ 𝑦  ∈  𝑤 ( 𝑦  ⊆  ( ( int ‘ 𝑆 ) ‘ ( 𝑘 ‘ 𝑦 ) )  ∧  ( 𝑆  ↾t  ( 𝑘 ‘ 𝑦 ) )  ∈  Comp ) ) ) )  ∧  ( ( 𝑢  ∈  ( 𝑆  Cn  𝑇 )  ∧  ( 𝑢  “  ∪  ran  𝑘 )  ⊆  𝑉 )  ∧  ( 𝑣  ∈  ( 𝑅  Cn  𝑆 )  ∧  ( 𝑣  “  𝐾 )  ⊆  ∪  𝑦  ∈  𝑤 ( ( int ‘ 𝑆 ) ‘ ( 𝑘 ‘ 𝑦 ) ) ) ) )  →  ( 𝑢  ∘  𝑣 )  ∈  ( 𝑅  Cn  𝑇 ) ) | 
						
							| 198 |  | imaco | ⊢ ( ( 𝑢  ∘  𝑣 )  “  𝐾 )  =  ( 𝑢  “  ( 𝑣  “  𝐾 ) ) | 
						
							| 199 |  | simprrr | ⊢ ( ( ( ( 𝜑  ∧  𝑤  ∈  ( 𝒫  ( 𝑆  ↾t  ( 𝐵  “  𝐾 ) )  ∩  Fin ) )  ∧  ( ( 𝐵  “  𝐾 )  =  ∪  𝑤  ∧  ( 𝑘 : 𝑤 ⟶ 𝒫  ( ◡ 𝐴  “  𝑉 )  ∧  ∀ 𝑦  ∈  𝑤 ( 𝑦  ⊆  ( ( int ‘ 𝑆 ) ‘ ( 𝑘 ‘ 𝑦 ) )  ∧  ( 𝑆  ↾t  ( 𝑘 ‘ 𝑦 ) )  ∈  Comp ) ) ) )  ∧  ( ( 𝑢  ∈  ( 𝑆  Cn  𝑇 )  ∧  ( 𝑢  “  ∪  ran  𝑘 )  ⊆  𝑉 )  ∧  ( 𝑣  ∈  ( 𝑅  Cn  𝑆 )  ∧  ( 𝑣  “  𝐾 )  ⊆  ∪  𝑦  ∈  𝑤 ( ( int ‘ 𝑆 ) ‘ ( 𝑘 ‘ 𝑦 ) ) ) ) )  →  ( 𝑣  “  𝐾 )  ⊆  ∪  𝑦  ∈  𝑤 ( ( int ‘ 𝑆 ) ‘ ( 𝑘 ‘ 𝑦 ) ) ) | 
						
							| 200 | 17 | ntrss2 | ⊢ ( ( 𝑆  ∈  Top  ∧  ( 𝑘 ‘ 𝑦 )  ⊆  ∪  𝑆 )  →  ( ( int ‘ 𝑆 ) ‘ ( 𝑘 ‘ 𝑦 ) )  ⊆  ( 𝑘 ‘ 𝑦 ) ) | 
						
							| 201 | 200 | ex | ⊢ ( 𝑆  ∈  Top  →  ( ( 𝑘 ‘ 𝑦 )  ⊆  ∪  𝑆  →  ( ( int ‘ 𝑆 ) ‘ ( 𝑘 ‘ 𝑦 ) )  ⊆  ( 𝑘 ‘ 𝑦 ) ) ) | 
						
							| 202 | 201 | ralimdv | ⊢ ( 𝑆  ∈  Top  →  ( ∀ 𝑦  ∈  𝑤 ( 𝑘 ‘ 𝑦 )  ⊆  ∪  𝑆  →  ∀ 𝑦  ∈  𝑤 ( ( int ‘ 𝑆 ) ‘ ( 𝑘 ‘ 𝑦 ) )  ⊆  ( 𝑘 ‘ 𝑦 ) ) ) | 
						
							| 203 | 90 127 202 | sylc | ⊢ ( ( ( 𝜑  ∧  𝑤  ∈  ( 𝒫  ( 𝑆  ↾t  ( 𝐵  “  𝐾 ) )  ∩  Fin ) )  ∧  ( ( 𝐵  “  𝐾 )  =  ∪  𝑤  ∧  ( 𝑘 : 𝑤 ⟶ 𝒫  ( ◡ 𝐴  “  𝑉 )  ∧  ∀ 𝑦  ∈  𝑤 ( 𝑦  ⊆  ( ( int ‘ 𝑆 ) ‘ ( 𝑘 ‘ 𝑦 ) )  ∧  ( 𝑆  ↾t  ( 𝑘 ‘ 𝑦 ) )  ∈  Comp ) ) ) )  →  ∀ 𝑦  ∈  𝑤 ( ( int ‘ 𝑆 ) ‘ ( 𝑘 ‘ 𝑦 ) )  ⊆  ( 𝑘 ‘ 𝑦 ) ) | 
						
							| 204 |  | ss2iun | ⊢ ( ∀ 𝑦  ∈  𝑤 ( ( int ‘ 𝑆 ) ‘ ( 𝑘 ‘ 𝑦 ) )  ⊆  ( 𝑘 ‘ 𝑦 )  →  ∪  𝑦  ∈  𝑤 ( ( int ‘ 𝑆 ) ‘ ( 𝑘 ‘ 𝑦 ) )  ⊆  ∪  𝑦  ∈  𝑤 ( 𝑘 ‘ 𝑦 ) ) | 
						
							| 205 | 203 204 | syl | ⊢ ( ( ( 𝜑  ∧  𝑤  ∈  ( 𝒫  ( 𝑆  ↾t  ( 𝐵  “  𝐾 ) )  ∩  Fin ) )  ∧  ( ( 𝐵  “  𝐾 )  =  ∪  𝑤  ∧  ( 𝑘 : 𝑤 ⟶ 𝒫  ( ◡ 𝐴  “  𝑉 )  ∧  ∀ 𝑦  ∈  𝑤 ( 𝑦  ⊆  ( ( int ‘ 𝑆 ) ‘ ( 𝑘 ‘ 𝑦 ) )  ∧  ( 𝑆  ↾t  ( 𝑘 ‘ 𝑦 ) )  ∈  Comp ) ) ) )  →  ∪  𝑦  ∈  𝑤 ( ( int ‘ 𝑆 ) ‘ ( 𝑘 ‘ 𝑦 ) )  ⊆  ∪  𝑦  ∈  𝑤 ( 𝑘 ‘ 𝑦 ) ) | 
						
							| 206 | 205 110 | sseqtrd | ⊢ ( ( ( 𝜑  ∧  𝑤  ∈  ( 𝒫  ( 𝑆  ↾t  ( 𝐵  “  𝐾 ) )  ∩  Fin ) )  ∧  ( ( 𝐵  “  𝐾 )  =  ∪  𝑤  ∧  ( 𝑘 : 𝑤 ⟶ 𝒫  ( ◡ 𝐴  “  𝑉 )  ∧  ∀ 𝑦  ∈  𝑤 ( 𝑦  ⊆  ( ( int ‘ 𝑆 ) ‘ ( 𝑘 ‘ 𝑦 ) )  ∧  ( 𝑆  ↾t  ( 𝑘 ‘ 𝑦 ) )  ∈  Comp ) ) ) )  →  ∪  𝑦  ∈  𝑤 ( ( int ‘ 𝑆 ) ‘ ( 𝑘 ‘ 𝑦 ) )  ⊆  ∪  ran  𝑘 ) | 
						
							| 207 | 206 | adantr | ⊢ ( ( ( ( 𝜑  ∧  𝑤  ∈  ( 𝒫  ( 𝑆  ↾t  ( 𝐵  “  𝐾 ) )  ∩  Fin ) )  ∧  ( ( 𝐵  “  𝐾 )  =  ∪  𝑤  ∧  ( 𝑘 : 𝑤 ⟶ 𝒫  ( ◡ 𝐴  “  𝑉 )  ∧  ∀ 𝑦  ∈  𝑤 ( 𝑦  ⊆  ( ( int ‘ 𝑆 ) ‘ ( 𝑘 ‘ 𝑦 ) )  ∧  ( 𝑆  ↾t  ( 𝑘 ‘ 𝑦 ) )  ∈  Comp ) ) ) )  ∧  ( ( 𝑢  ∈  ( 𝑆  Cn  𝑇 )  ∧  ( 𝑢  “  ∪  ran  𝑘 )  ⊆  𝑉 )  ∧  ( 𝑣  ∈  ( 𝑅  Cn  𝑆 )  ∧  ( 𝑣  “  𝐾 )  ⊆  ∪  𝑦  ∈  𝑤 ( ( int ‘ 𝑆 ) ‘ ( 𝑘 ‘ 𝑦 ) ) ) ) )  →  ∪  𝑦  ∈  𝑤 ( ( int ‘ 𝑆 ) ‘ ( 𝑘 ‘ 𝑦 ) )  ⊆  ∪  ran  𝑘 ) | 
						
							| 208 | 199 207 | sstrd | ⊢ ( ( ( ( 𝜑  ∧  𝑤  ∈  ( 𝒫  ( 𝑆  ↾t  ( 𝐵  “  𝐾 ) )  ∩  Fin ) )  ∧  ( ( 𝐵  “  𝐾 )  =  ∪  𝑤  ∧  ( 𝑘 : 𝑤 ⟶ 𝒫  ( ◡ 𝐴  “  𝑉 )  ∧  ∀ 𝑦  ∈  𝑤 ( 𝑦  ⊆  ( ( int ‘ 𝑆 ) ‘ ( 𝑘 ‘ 𝑦 ) )  ∧  ( 𝑆  ↾t  ( 𝑘 ‘ 𝑦 ) )  ∈  Comp ) ) ) )  ∧  ( ( 𝑢  ∈  ( 𝑆  Cn  𝑇 )  ∧  ( 𝑢  “  ∪  ran  𝑘 )  ⊆  𝑉 )  ∧  ( 𝑣  ∈  ( 𝑅  Cn  𝑆 )  ∧  ( 𝑣  “  𝐾 )  ⊆  ∪  𝑦  ∈  𝑤 ( ( int ‘ 𝑆 ) ‘ ( 𝑘 ‘ 𝑦 ) ) ) ) )  →  ( 𝑣  “  𝐾 )  ⊆  ∪  ran  𝑘 ) | 
						
							| 209 |  | imass2 | ⊢ ( ( 𝑣  “  𝐾 )  ⊆  ∪  ran  𝑘  →  ( 𝑢  “  ( 𝑣  “  𝐾 ) )  ⊆  ( 𝑢  “  ∪  ran  𝑘 ) ) | 
						
							| 210 | 208 209 | syl | ⊢ ( ( ( ( 𝜑  ∧  𝑤  ∈  ( 𝒫  ( 𝑆  ↾t  ( 𝐵  “  𝐾 ) )  ∩  Fin ) )  ∧  ( ( 𝐵  “  𝐾 )  =  ∪  𝑤  ∧  ( 𝑘 : 𝑤 ⟶ 𝒫  ( ◡ 𝐴  “  𝑉 )  ∧  ∀ 𝑦  ∈  𝑤 ( 𝑦  ⊆  ( ( int ‘ 𝑆 ) ‘ ( 𝑘 ‘ 𝑦 ) )  ∧  ( 𝑆  ↾t  ( 𝑘 ‘ 𝑦 ) )  ∈  Comp ) ) ) )  ∧  ( ( 𝑢  ∈  ( 𝑆  Cn  𝑇 )  ∧  ( 𝑢  “  ∪  ran  𝑘 )  ⊆  𝑉 )  ∧  ( 𝑣  ∈  ( 𝑅  Cn  𝑆 )  ∧  ( 𝑣  “  𝐾 )  ⊆  ∪  𝑦  ∈  𝑤 ( ( int ‘ 𝑆 ) ‘ ( 𝑘 ‘ 𝑦 ) ) ) ) )  →  ( 𝑢  “  ( 𝑣  “  𝐾 ) )  ⊆  ( 𝑢  “  ∪  ran  𝑘 ) ) | 
						
							| 211 |  | simprlr | ⊢ ( ( ( ( 𝜑  ∧  𝑤  ∈  ( 𝒫  ( 𝑆  ↾t  ( 𝐵  “  𝐾 ) )  ∩  Fin ) )  ∧  ( ( 𝐵  “  𝐾 )  =  ∪  𝑤  ∧  ( 𝑘 : 𝑤 ⟶ 𝒫  ( ◡ 𝐴  “  𝑉 )  ∧  ∀ 𝑦  ∈  𝑤 ( 𝑦  ⊆  ( ( int ‘ 𝑆 ) ‘ ( 𝑘 ‘ 𝑦 ) )  ∧  ( 𝑆  ↾t  ( 𝑘 ‘ 𝑦 ) )  ∈  Comp ) ) ) )  ∧  ( ( 𝑢  ∈  ( 𝑆  Cn  𝑇 )  ∧  ( 𝑢  “  ∪  ran  𝑘 )  ⊆  𝑉 )  ∧  ( 𝑣  ∈  ( 𝑅  Cn  𝑆 )  ∧  ( 𝑣  “  𝐾 )  ⊆  ∪  𝑦  ∈  𝑤 ( ( int ‘ 𝑆 ) ‘ ( 𝑘 ‘ 𝑦 ) ) ) ) )  →  ( 𝑢  “  ∪  ran  𝑘 )  ⊆  𝑉 ) | 
						
							| 212 | 210 211 | sstrd | ⊢ ( ( ( ( 𝜑  ∧  𝑤  ∈  ( 𝒫  ( 𝑆  ↾t  ( 𝐵  “  𝐾 ) )  ∩  Fin ) )  ∧  ( ( 𝐵  “  𝐾 )  =  ∪  𝑤  ∧  ( 𝑘 : 𝑤 ⟶ 𝒫  ( ◡ 𝐴  “  𝑉 )  ∧  ∀ 𝑦  ∈  𝑤 ( 𝑦  ⊆  ( ( int ‘ 𝑆 ) ‘ ( 𝑘 ‘ 𝑦 ) )  ∧  ( 𝑆  ↾t  ( 𝑘 ‘ 𝑦 ) )  ∈  Comp ) ) ) )  ∧  ( ( 𝑢  ∈  ( 𝑆  Cn  𝑇 )  ∧  ( 𝑢  “  ∪  ran  𝑘 )  ⊆  𝑉 )  ∧  ( 𝑣  ∈  ( 𝑅  Cn  𝑆 )  ∧  ( 𝑣  “  𝐾 )  ⊆  ∪  𝑦  ∈  𝑤 ( ( int ‘ 𝑆 ) ‘ ( 𝑘 ‘ 𝑦 ) ) ) ) )  →  ( 𝑢  “  ( 𝑣  “  𝐾 ) )  ⊆  𝑉 ) | 
						
							| 213 | 198 212 | eqsstrid | ⊢ ( ( ( ( 𝜑  ∧  𝑤  ∈  ( 𝒫  ( 𝑆  ↾t  ( 𝐵  “  𝐾 ) )  ∩  Fin ) )  ∧  ( ( 𝐵  “  𝐾 )  =  ∪  𝑤  ∧  ( 𝑘 : 𝑤 ⟶ 𝒫  ( ◡ 𝐴  “  𝑉 )  ∧  ∀ 𝑦  ∈  𝑤 ( 𝑦  ⊆  ( ( int ‘ 𝑆 ) ‘ ( 𝑘 ‘ 𝑦 ) )  ∧  ( 𝑆  ↾t  ( 𝑘 ‘ 𝑦 ) )  ∈  Comp ) ) ) )  ∧  ( ( 𝑢  ∈  ( 𝑆  Cn  𝑇 )  ∧  ( 𝑢  “  ∪  ran  𝑘 )  ⊆  𝑉 )  ∧  ( 𝑣  ∈  ( 𝑅  Cn  𝑆 )  ∧  ( 𝑣  “  𝐾 )  ⊆  ∪  𝑦  ∈  𝑤 ( ( int ‘ 𝑆 ) ‘ ( 𝑘 ‘ 𝑦 ) ) ) ) )  →  ( ( 𝑢  ∘  𝑣 )  “  𝐾 )  ⊆  𝑉 ) | 
						
							| 214 | 195 197 213 | elrabd | ⊢ ( ( ( ( 𝜑  ∧  𝑤  ∈  ( 𝒫  ( 𝑆  ↾t  ( 𝐵  “  𝐾 ) )  ∩  Fin ) )  ∧  ( ( 𝐵  “  𝐾 )  =  ∪  𝑤  ∧  ( 𝑘 : 𝑤 ⟶ 𝒫  ( ◡ 𝐴  “  𝑉 )  ∧  ∀ 𝑦  ∈  𝑤 ( 𝑦  ⊆  ( ( int ‘ 𝑆 ) ‘ ( 𝑘 ‘ 𝑦 ) )  ∧  ( 𝑆  ↾t  ( 𝑘 ‘ 𝑦 ) )  ∈  Comp ) ) ) )  ∧  ( ( 𝑢  ∈  ( 𝑆  Cn  𝑇 )  ∧  ( 𝑢  “  ∪  ran  𝑘 )  ⊆  𝑉 )  ∧  ( 𝑣  ∈  ( 𝑅  Cn  𝑆 )  ∧  ( 𝑣  “  𝐾 )  ⊆  ∪  𝑦  ∈  𝑤 ( ( int ‘ 𝑆 ) ‘ ( 𝑘 ‘ 𝑦 ) ) ) ) )  →  ( 𝑢  ∘  𝑣 )  ∈  { ℎ  ∈  ( 𝑅  Cn  𝑇 )  ∣  ( ℎ  “  𝐾 )  ⊆  𝑉 } ) | 
						
							| 215 | 193 214 | eqeltrd | ⊢ ( ( ( ( 𝜑  ∧  𝑤  ∈  ( 𝒫  ( 𝑆  ↾t  ( 𝐵  “  𝐾 ) )  ∩  Fin ) )  ∧  ( ( 𝐵  “  𝐾 )  =  ∪  𝑤  ∧  ( 𝑘 : 𝑤 ⟶ 𝒫  ( ◡ 𝐴  “  𝑉 )  ∧  ∀ 𝑦  ∈  𝑤 ( 𝑦  ⊆  ( ( int ‘ 𝑆 ) ‘ ( 𝑘 ‘ 𝑦 ) )  ∧  ( 𝑆  ↾t  ( 𝑘 ‘ 𝑦 ) )  ∈  Comp ) ) ) )  ∧  ( ( 𝑢  ∈  ( 𝑆  Cn  𝑇 )  ∧  ( 𝑢  “  ∪  ran  𝑘 )  ⊆  𝑉 )  ∧  ( 𝑣  ∈  ( 𝑅  Cn  𝑆 )  ∧  ( 𝑣  “  𝐾 )  ⊆  ∪  𝑦  ∈  𝑤 ( ( int ‘ 𝑆 ) ‘ ( 𝑘 ‘ 𝑦 ) ) ) ) )  →  ( 𝑢 𝐹 𝑣 )  ∈  { ℎ  ∈  ( 𝑅  Cn  𝑇 )  ∣  ( ℎ  “  𝐾 )  ⊆  𝑉 } ) | 
						
							| 216 | 184 215 | sylan2b | ⊢ ( ( ( ( 𝜑  ∧  𝑤  ∈  ( 𝒫  ( 𝑆  ↾t  ( 𝐵  “  𝐾 ) )  ∩  Fin ) )  ∧  ( ( 𝐵  “  𝐾 )  =  ∪  𝑤  ∧  ( 𝑘 : 𝑤 ⟶ 𝒫  ( ◡ 𝐴  “  𝑉 )  ∧  ∀ 𝑦  ∈  𝑤 ( 𝑦  ⊆  ( ( int ‘ 𝑆 ) ‘ ( 𝑘 ‘ 𝑦 ) )  ∧  ( 𝑆  ↾t  ( 𝑘 ‘ 𝑦 ) )  ∈  Comp ) ) ) )  ∧  ( 𝑢  ∈  { 𝑎  ∈  ( 𝑆  Cn  𝑇 )  ∣  ( 𝑎  “  ∪  ran  𝑘 )  ⊆  𝑉 }  ∧  𝑣  ∈  { 𝑏  ∈  ( 𝑅  Cn  𝑆 )  ∣  ( 𝑏  “  𝐾 )  ⊆  ∪  𝑦  ∈  𝑤 ( ( int ‘ 𝑆 ) ‘ ( 𝑘 ‘ 𝑦 ) ) } ) )  →  ( 𝑢 𝐹 𝑣 )  ∈  { ℎ  ∈  ( 𝑅  Cn  𝑇 )  ∣  ( ℎ  “  𝐾 )  ⊆  𝑉 } ) | 
						
							| 217 | 216 | ralrimivva | ⊢ ( ( ( 𝜑  ∧  𝑤  ∈  ( 𝒫  ( 𝑆  ↾t  ( 𝐵  “  𝐾 ) )  ∩  Fin ) )  ∧  ( ( 𝐵  “  𝐾 )  =  ∪  𝑤  ∧  ( 𝑘 : 𝑤 ⟶ 𝒫  ( ◡ 𝐴  “  𝑉 )  ∧  ∀ 𝑦  ∈  𝑤 ( 𝑦  ⊆  ( ( int ‘ 𝑆 ) ‘ ( 𝑘 ‘ 𝑦 ) )  ∧  ( 𝑆  ↾t  ( 𝑘 ‘ 𝑦 ) )  ∈  Comp ) ) ) )  →  ∀ 𝑢  ∈  { 𝑎  ∈  ( 𝑆  Cn  𝑇 )  ∣  ( 𝑎  “  ∪  ran  𝑘 )  ⊆  𝑉 } ∀ 𝑣  ∈  { 𝑏  ∈  ( 𝑅  Cn  𝑆 )  ∣  ( 𝑏  “  𝐾 )  ⊆  ∪  𝑦  ∈  𝑤 ( ( int ‘ 𝑆 ) ‘ ( 𝑘 ‘ 𝑦 ) ) } ( 𝑢 𝐹 𝑣 )  ∈  { ℎ  ∈  ( 𝑅  Cn  𝑇 )  ∣  ( ℎ  “  𝐾 )  ⊆  𝑉 } ) | 
						
							| 218 | 1 | mpofun | ⊢ Fun  𝐹 | 
						
							| 219 |  | ssrab2 | ⊢ { 𝑎  ∈  ( 𝑆  Cn  𝑇 )  ∣  ( 𝑎  “  ∪  ran  𝑘 )  ⊆  𝑉 }  ⊆  ( 𝑆  Cn  𝑇 ) | 
						
							| 220 |  | ssrab2 | ⊢ { 𝑏  ∈  ( 𝑅  Cn  𝑆 )  ∣  ( 𝑏  “  𝐾 )  ⊆  ∪  𝑦  ∈  𝑤 ( ( int ‘ 𝑆 ) ‘ ( 𝑘 ‘ 𝑦 ) ) }  ⊆  ( 𝑅  Cn  𝑆 ) | 
						
							| 221 |  | xpss12 | ⊢ ( ( { 𝑎  ∈  ( 𝑆  Cn  𝑇 )  ∣  ( 𝑎  “  ∪  ran  𝑘 )  ⊆  𝑉 }  ⊆  ( 𝑆  Cn  𝑇 )  ∧  { 𝑏  ∈  ( 𝑅  Cn  𝑆 )  ∣  ( 𝑏  “  𝐾 )  ⊆  ∪  𝑦  ∈  𝑤 ( ( int ‘ 𝑆 ) ‘ ( 𝑘 ‘ 𝑦 ) ) }  ⊆  ( 𝑅  Cn  𝑆 ) )  →  ( { 𝑎  ∈  ( 𝑆  Cn  𝑇 )  ∣  ( 𝑎  “  ∪  ran  𝑘 )  ⊆  𝑉 }  ×  { 𝑏  ∈  ( 𝑅  Cn  𝑆 )  ∣  ( 𝑏  “  𝐾 )  ⊆  ∪  𝑦  ∈  𝑤 ( ( int ‘ 𝑆 ) ‘ ( 𝑘 ‘ 𝑦 ) ) } )  ⊆  ( ( 𝑆  Cn  𝑇 )  ×  ( 𝑅  Cn  𝑆 ) ) ) | 
						
							| 222 | 219 220 221 | mp2an | ⊢ ( { 𝑎  ∈  ( 𝑆  Cn  𝑇 )  ∣  ( 𝑎  “  ∪  ran  𝑘 )  ⊆  𝑉 }  ×  { 𝑏  ∈  ( 𝑅  Cn  𝑆 )  ∣  ( 𝑏  “  𝐾 )  ⊆  ∪  𝑦  ∈  𝑤 ( ( int ‘ 𝑆 ) ‘ ( 𝑘 ‘ 𝑦 ) ) } )  ⊆  ( ( 𝑆  Cn  𝑇 )  ×  ( 𝑅  Cn  𝑆 ) ) | 
						
							| 223 |  | vex | ⊢ 𝑓  ∈  V | 
						
							| 224 |  | vex | ⊢ 𝑔  ∈  V | 
						
							| 225 | 223 224 | coex | ⊢ ( 𝑓  ∘  𝑔 )  ∈  V | 
						
							| 226 | 1 225 | dmmpo | ⊢ dom  𝐹  =  ( ( 𝑆  Cn  𝑇 )  ×  ( 𝑅  Cn  𝑆 ) ) | 
						
							| 227 | 222 226 | sseqtrri | ⊢ ( { 𝑎  ∈  ( 𝑆  Cn  𝑇 )  ∣  ( 𝑎  “  ∪  ran  𝑘 )  ⊆  𝑉 }  ×  { 𝑏  ∈  ( 𝑅  Cn  𝑆 )  ∣  ( 𝑏  “  𝐾 )  ⊆  ∪  𝑦  ∈  𝑤 ( ( int ‘ 𝑆 ) ‘ ( 𝑘 ‘ 𝑦 ) ) } )  ⊆  dom  𝐹 | 
						
							| 228 |  | funimassov | ⊢ ( ( Fun  𝐹  ∧  ( { 𝑎  ∈  ( 𝑆  Cn  𝑇 )  ∣  ( 𝑎  “  ∪  ran  𝑘 )  ⊆  𝑉 }  ×  { 𝑏  ∈  ( 𝑅  Cn  𝑆 )  ∣  ( 𝑏  “  𝐾 )  ⊆  ∪  𝑦  ∈  𝑤 ( ( int ‘ 𝑆 ) ‘ ( 𝑘 ‘ 𝑦 ) ) } )  ⊆  dom  𝐹 )  →  ( ( 𝐹  “  ( { 𝑎  ∈  ( 𝑆  Cn  𝑇 )  ∣  ( 𝑎  “  ∪  ran  𝑘 )  ⊆  𝑉 }  ×  { 𝑏  ∈  ( 𝑅  Cn  𝑆 )  ∣  ( 𝑏  “  𝐾 )  ⊆  ∪  𝑦  ∈  𝑤 ( ( int ‘ 𝑆 ) ‘ ( 𝑘 ‘ 𝑦 ) ) } ) )  ⊆  { ℎ  ∈  ( 𝑅  Cn  𝑇 )  ∣  ( ℎ  “  𝐾 )  ⊆  𝑉 }  ↔  ∀ 𝑢  ∈  { 𝑎  ∈  ( 𝑆  Cn  𝑇 )  ∣  ( 𝑎  “  ∪  ran  𝑘 )  ⊆  𝑉 } ∀ 𝑣  ∈  { 𝑏  ∈  ( 𝑅  Cn  𝑆 )  ∣  ( 𝑏  “  𝐾 )  ⊆  ∪  𝑦  ∈  𝑤 ( ( int ‘ 𝑆 ) ‘ ( 𝑘 ‘ 𝑦 ) ) } ( 𝑢 𝐹 𝑣 )  ∈  { ℎ  ∈  ( 𝑅  Cn  𝑇 )  ∣  ( ℎ  “  𝐾 )  ⊆  𝑉 } ) ) | 
						
							| 229 | 218 227 228 | mp2an | ⊢ ( ( 𝐹  “  ( { 𝑎  ∈  ( 𝑆  Cn  𝑇 )  ∣  ( 𝑎  “  ∪  ran  𝑘 )  ⊆  𝑉 }  ×  { 𝑏  ∈  ( 𝑅  Cn  𝑆 )  ∣  ( 𝑏  “  𝐾 )  ⊆  ∪  𝑦  ∈  𝑤 ( ( int ‘ 𝑆 ) ‘ ( 𝑘 ‘ 𝑦 ) ) } ) )  ⊆  { ℎ  ∈  ( 𝑅  Cn  𝑇 )  ∣  ( ℎ  “  𝐾 )  ⊆  𝑉 }  ↔  ∀ 𝑢  ∈  { 𝑎  ∈  ( 𝑆  Cn  𝑇 )  ∣  ( 𝑎  “  ∪  ran  𝑘 )  ⊆  𝑉 } ∀ 𝑣  ∈  { 𝑏  ∈  ( 𝑅  Cn  𝑆 )  ∣  ( 𝑏  “  𝐾 )  ⊆  ∪  𝑦  ∈  𝑤 ( ( int ‘ 𝑆 ) ‘ ( 𝑘 ‘ 𝑦 ) ) } ( 𝑢 𝐹 𝑣 )  ∈  { ℎ  ∈  ( 𝑅  Cn  𝑇 )  ∣  ( ℎ  “  𝐾 )  ⊆  𝑉 } ) | 
						
							| 230 | 217 229 | sylibr | ⊢ ( ( ( 𝜑  ∧  𝑤  ∈  ( 𝒫  ( 𝑆  ↾t  ( 𝐵  “  𝐾 ) )  ∩  Fin ) )  ∧  ( ( 𝐵  “  𝐾 )  =  ∪  𝑤  ∧  ( 𝑘 : 𝑤 ⟶ 𝒫  ( ◡ 𝐴  “  𝑉 )  ∧  ∀ 𝑦  ∈  𝑤 ( 𝑦  ⊆  ( ( int ‘ 𝑆 ) ‘ ( 𝑘 ‘ 𝑦 ) )  ∧  ( 𝑆  ↾t  ( 𝑘 ‘ 𝑦 ) )  ∈  Comp ) ) ) )  →  ( 𝐹  “  ( { 𝑎  ∈  ( 𝑆  Cn  𝑇 )  ∣  ( 𝑎  “  ∪  ran  𝑘 )  ⊆  𝑉 }  ×  { 𝑏  ∈  ( 𝑅  Cn  𝑆 )  ∣  ( 𝑏  “  𝐾 )  ⊆  ∪  𝑦  ∈  𝑤 ( ( int ‘ 𝑆 ) ‘ ( 𝑘 ‘ 𝑦 ) ) } ) )  ⊆  { ℎ  ∈  ( 𝑅  Cn  𝑇 )  ∣  ( ℎ  “  𝐾 )  ⊆  𝑉 } ) | 
						
							| 231 |  | funimass3 | ⊢ ( ( Fun  𝐹  ∧  ( { 𝑎  ∈  ( 𝑆  Cn  𝑇 )  ∣  ( 𝑎  “  ∪  ran  𝑘 )  ⊆  𝑉 }  ×  { 𝑏  ∈  ( 𝑅  Cn  𝑆 )  ∣  ( 𝑏  “  𝐾 )  ⊆  ∪  𝑦  ∈  𝑤 ( ( int ‘ 𝑆 ) ‘ ( 𝑘 ‘ 𝑦 ) ) } )  ⊆  dom  𝐹 )  →  ( ( 𝐹  “  ( { 𝑎  ∈  ( 𝑆  Cn  𝑇 )  ∣  ( 𝑎  “  ∪  ran  𝑘 )  ⊆  𝑉 }  ×  { 𝑏  ∈  ( 𝑅  Cn  𝑆 )  ∣  ( 𝑏  “  𝐾 )  ⊆  ∪  𝑦  ∈  𝑤 ( ( int ‘ 𝑆 ) ‘ ( 𝑘 ‘ 𝑦 ) ) } ) )  ⊆  { ℎ  ∈  ( 𝑅  Cn  𝑇 )  ∣  ( ℎ  “  𝐾 )  ⊆  𝑉 }  ↔  ( { 𝑎  ∈  ( 𝑆  Cn  𝑇 )  ∣  ( 𝑎  “  ∪  ran  𝑘 )  ⊆  𝑉 }  ×  { 𝑏  ∈  ( 𝑅  Cn  𝑆 )  ∣  ( 𝑏  “  𝐾 )  ⊆  ∪  𝑦  ∈  𝑤 ( ( int ‘ 𝑆 ) ‘ ( 𝑘 ‘ 𝑦 ) ) } )  ⊆  ( ◡ 𝐹  “  { ℎ  ∈  ( 𝑅  Cn  𝑇 )  ∣  ( ℎ  “  𝐾 )  ⊆  𝑉 } ) ) ) | 
						
							| 232 | 218 227 231 | mp2an | ⊢ ( ( 𝐹  “  ( { 𝑎  ∈  ( 𝑆  Cn  𝑇 )  ∣  ( 𝑎  “  ∪  ran  𝑘 )  ⊆  𝑉 }  ×  { 𝑏  ∈  ( 𝑅  Cn  𝑆 )  ∣  ( 𝑏  “  𝐾 )  ⊆  ∪  𝑦  ∈  𝑤 ( ( int ‘ 𝑆 ) ‘ ( 𝑘 ‘ 𝑦 ) ) } ) )  ⊆  { ℎ  ∈  ( 𝑅  Cn  𝑇 )  ∣  ( ℎ  “  𝐾 )  ⊆  𝑉 }  ↔  ( { 𝑎  ∈  ( 𝑆  Cn  𝑇 )  ∣  ( 𝑎  “  ∪  ran  𝑘 )  ⊆  𝑉 }  ×  { 𝑏  ∈  ( 𝑅  Cn  𝑆 )  ∣  ( 𝑏  “  𝐾 )  ⊆  ∪  𝑦  ∈  𝑤 ( ( int ‘ 𝑆 ) ‘ ( 𝑘 ‘ 𝑦 ) ) } )  ⊆  ( ◡ 𝐹  “  { ℎ  ∈  ( 𝑅  Cn  𝑇 )  ∣  ( ℎ  “  𝐾 )  ⊆  𝑉 } ) ) | 
						
							| 233 | 230 232 | sylib | ⊢ ( ( ( 𝜑  ∧  𝑤  ∈  ( 𝒫  ( 𝑆  ↾t  ( 𝐵  “  𝐾 ) )  ∩  Fin ) )  ∧  ( ( 𝐵  “  𝐾 )  =  ∪  𝑤  ∧  ( 𝑘 : 𝑤 ⟶ 𝒫  ( ◡ 𝐴  “  𝑉 )  ∧  ∀ 𝑦  ∈  𝑤 ( 𝑦  ⊆  ( ( int ‘ 𝑆 ) ‘ ( 𝑘 ‘ 𝑦 ) )  ∧  ( 𝑆  ↾t  ( 𝑘 ‘ 𝑦 ) )  ∈  Comp ) ) ) )  →  ( { 𝑎  ∈  ( 𝑆  Cn  𝑇 )  ∣  ( 𝑎  “  ∪  ran  𝑘 )  ⊆  𝑉 }  ×  { 𝑏  ∈  ( 𝑅  Cn  𝑆 )  ∣  ( 𝑏  “  𝐾 )  ⊆  ∪  𝑦  ∈  𝑤 ( ( int ‘ 𝑆 ) ‘ ( 𝑘 ‘ 𝑦 ) ) } )  ⊆  ( ◡ 𝐹  “  { ℎ  ∈  ( 𝑅  Cn  𝑇 )  ∣  ( ℎ  “  𝐾 )  ⊆  𝑉 } ) ) | 
						
							| 234 |  | eleq2 | ⊢ ( 𝑧  =  ( { 𝑎  ∈  ( 𝑆  Cn  𝑇 )  ∣  ( 𝑎  “  ∪  ran  𝑘 )  ⊆  𝑉 }  ×  { 𝑏  ∈  ( 𝑅  Cn  𝑆 )  ∣  ( 𝑏  “  𝐾 )  ⊆  ∪  𝑦  ∈  𝑤 ( ( int ‘ 𝑆 ) ‘ ( 𝑘 ‘ 𝑦 ) ) } )  →  ( 〈 𝐴 ,  𝐵 〉  ∈  𝑧  ↔  〈 𝐴 ,  𝐵 〉  ∈  ( { 𝑎  ∈  ( 𝑆  Cn  𝑇 )  ∣  ( 𝑎  “  ∪  ran  𝑘 )  ⊆  𝑉 }  ×  { 𝑏  ∈  ( 𝑅  Cn  𝑆 )  ∣  ( 𝑏  “  𝐾 )  ⊆  ∪  𝑦  ∈  𝑤 ( ( int ‘ 𝑆 ) ‘ ( 𝑘 ‘ 𝑦 ) ) } ) ) ) | 
						
							| 235 |  | sseq1 | ⊢ ( 𝑧  =  ( { 𝑎  ∈  ( 𝑆  Cn  𝑇 )  ∣  ( 𝑎  “  ∪  ran  𝑘 )  ⊆  𝑉 }  ×  { 𝑏  ∈  ( 𝑅  Cn  𝑆 )  ∣  ( 𝑏  “  𝐾 )  ⊆  ∪  𝑦  ∈  𝑤 ( ( int ‘ 𝑆 ) ‘ ( 𝑘 ‘ 𝑦 ) ) } )  →  ( 𝑧  ⊆  ( ◡ 𝐹  “  { ℎ  ∈  ( 𝑅  Cn  𝑇 )  ∣  ( ℎ  “  𝐾 )  ⊆  𝑉 } )  ↔  ( { 𝑎  ∈  ( 𝑆  Cn  𝑇 )  ∣  ( 𝑎  “  ∪  ran  𝑘 )  ⊆  𝑉 }  ×  { 𝑏  ∈  ( 𝑅  Cn  𝑆 )  ∣  ( 𝑏  “  𝐾 )  ⊆  ∪  𝑦  ∈  𝑤 ( ( int ‘ 𝑆 ) ‘ ( 𝑘 ‘ 𝑦 ) ) } )  ⊆  ( ◡ 𝐹  “  { ℎ  ∈  ( 𝑅  Cn  𝑇 )  ∣  ( ℎ  “  𝐾 )  ⊆  𝑉 } ) ) ) | 
						
							| 236 | 234 235 | anbi12d | ⊢ ( 𝑧  =  ( { 𝑎  ∈  ( 𝑆  Cn  𝑇 )  ∣  ( 𝑎  “  ∪  ran  𝑘 )  ⊆  𝑉 }  ×  { 𝑏  ∈  ( 𝑅  Cn  𝑆 )  ∣  ( 𝑏  “  𝐾 )  ⊆  ∪  𝑦  ∈  𝑤 ( ( int ‘ 𝑆 ) ‘ ( 𝑘 ‘ 𝑦 ) ) } )  →  ( ( 〈 𝐴 ,  𝐵 〉  ∈  𝑧  ∧  𝑧  ⊆  ( ◡ 𝐹  “  { ℎ  ∈  ( 𝑅  Cn  𝑇 )  ∣  ( ℎ  “  𝐾 )  ⊆  𝑉 } ) )  ↔  ( 〈 𝐴 ,  𝐵 〉  ∈  ( { 𝑎  ∈  ( 𝑆  Cn  𝑇 )  ∣  ( 𝑎  “  ∪  ran  𝑘 )  ⊆  𝑉 }  ×  { 𝑏  ∈  ( 𝑅  Cn  𝑆 )  ∣  ( 𝑏  “  𝐾 )  ⊆  ∪  𝑦  ∈  𝑤 ( ( int ‘ 𝑆 ) ‘ ( 𝑘 ‘ 𝑦 ) ) } )  ∧  ( { 𝑎  ∈  ( 𝑆  Cn  𝑇 )  ∣  ( 𝑎  “  ∪  ran  𝑘 )  ⊆  𝑉 }  ×  { 𝑏  ∈  ( 𝑅  Cn  𝑆 )  ∣  ( 𝑏  “  𝐾 )  ⊆  ∪  𝑦  ∈  𝑤 ( ( int ‘ 𝑆 ) ‘ ( 𝑘 ‘ 𝑦 ) ) } )  ⊆  ( ◡ 𝐹  “  { ℎ  ∈  ( 𝑅  Cn  𝑇 )  ∣  ( ℎ  “  𝐾 )  ⊆  𝑉 } ) ) ) ) | 
						
							| 237 | 236 | rspcev | ⊢ ( ( ( { 𝑎  ∈  ( 𝑆  Cn  𝑇 )  ∣  ( 𝑎  “  ∪  ran  𝑘 )  ⊆  𝑉 }  ×  { 𝑏  ∈  ( 𝑅  Cn  𝑆 )  ∣  ( 𝑏  “  𝐾 )  ⊆  ∪  𝑦  ∈  𝑤 ( ( int ‘ 𝑆 ) ‘ ( 𝑘 ‘ 𝑦 ) ) } )  ∈  ( ( 𝑇  ↑ko  𝑆 )  ×t  ( 𝑆  ↑ko  𝑅 ) )  ∧  ( 〈 𝐴 ,  𝐵 〉  ∈  ( { 𝑎  ∈  ( 𝑆  Cn  𝑇 )  ∣  ( 𝑎  “  ∪  ran  𝑘 )  ⊆  𝑉 }  ×  { 𝑏  ∈  ( 𝑅  Cn  𝑆 )  ∣  ( 𝑏  “  𝐾 )  ⊆  ∪  𝑦  ∈  𝑤 ( ( int ‘ 𝑆 ) ‘ ( 𝑘 ‘ 𝑦 ) ) } )  ∧  ( { 𝑎  ∈  ( 𝑆  Cn  𝑇 )  ∣  ( 𝑎  “  ∪  ran  𝑘 )  ⊆  𝑉 }  ×  { 𝑏  ∈  ( 𝑅  Cn  𝑆 )  ∣  ( 𝑏  “  𝐾 )  ⊆  ∪  𝑦  ∈  𝑤 ( ( int ‘ 𝑆 ) ‘ ( 𝑘 ‘ 𝑦 ) ) } )  ⊆  ( ◡ 𝐹  “  { ℎ  ∈  ( 𝑅  Cn  𝑇 )  ∣  ( ℎ  “  𝐾 )  ⊆  𝑉 } ) ) )  →  ∃ 𝑧  ∈  ( ( 𝑇  ↑ko  𝑆 )  ×t  ( 𝑆  ↑ko  𝑅 ) ) ( 〈 𝐴 ,  𝐵 〉  ∈  𝑧  ∧  𝑧  ⊆  ( ◡ 𝐹  “  { ℎ  ∈  ( 𝑅  Cn  𝑇 )  ∣  ( ℎ  “  𝐾 )  ⊆  𝑉 } ) ) ) | 
						
							| 238 | 136 177 233 237 | syl12anc | ⊢ ( ( ( 𝜑  ∧  𝑤  ∈  ( 𝒫  ( 𝑆  ↾t  ( 𝐵  “  𝐾 ) )  ∩  Fin ) )  ∧  ( ( 𝐵  “  𝐾 )  =  ∪  𝑤  ∧  ( 𝑘 : 𝑤 ⟶ 𝒫  ( ◡ 𝐴  “  𝑉 )  ∧  ∀ 𝑦  ∈  𝑤 ( 𝑦  ⊆  ( ( int ‘ 𝑆 ) ‘ ( 𝑘 ‘ 𝑦 ) )  ∧  ( 𝑆  ↾t  ( 𝑘 ‘ 𝑦 ) )  ∈  Comp ) ) ) )  →  ∃ 𝑧  ∈  ( ( 𝑇  ↑ko  𝑆 )  ×t  ( 𝑆  ↑ko  𝑅 ) ) ( 〈 𝐴 ,  𝐵 〉  ∈  𝑧  ∧  𝑧  ⊆  ( ◡ 𝐹  “  { ℎ  ∈  ( 𝑅  Cn  𝑇 )  ∣  ( ℎ  “  𝐾 )  ⊆  𝑉 } ) ) ) | 
						
							| 239 | 238 | expr | ⊢ ( ( ( 𝜑  ∧  𝑤  ∈  ( 𝒫  ( 𝑆  ↾t  ( 𝐵  “  𝐾 ) )  ∩  Fin ) )  ∧  ( 𝐵  “  𝐾 )  =  ∪  𝑤 )  →  ( ( 𝑘 : 𝑤 ⟶ 𝒫  ( ◡ 𝐴  “  𝑉 )  ∧  ∀ 𝑦  ∈  𝑤 ( 𝑦  ⊆  ( ( int ‘ 𝑆 ) ‘ ( 𝑘 ‘ 𝑦 ) )  ∧  ( 𝑆  ↾t  ( 𝑘 ‘ 𝑦 ) )  ∈  Comp ) )  →  ∃ 𝑧  ∈  ( ( 𝑇  ↑ko  𝑆 )  ×t  ( 𝑆  ↑ko  𝑅 ) ) ( 〈 𝐴 ,  𝐵 〉  ∈  𝑧  ∧  𝑧  ⊆  ( ◡ 𝐹  “  { ℎ  ∈  ( 𝑅  Cn  𝑇 )  ∣  ( ℎ  “  𝐾 )  ⊆  𝑉 } ) ) ) ) | 
						
							| 240 | 239 | exlimdv | ⊢ ( ( ( 𝜑  ∧  𝑤  ∈  ( 𝒫  ( 𝑆  ↾t  ( 𝐵  “  𝐾 ) )  ∩  Fin ) )  ∧  ( 𝐵  “  𝐾 )  =  ∪  𝑤 )  →  ( ∃ 𝑘 ( 𝑘 : 𝑤 ⟶ 𝒫  ( ◡ 𝐴  “  𝑉 )  ∧  ∀ 𝑦  ∈  𝑤 ( 𝑦  ⊆  ( ( int ‘ 𝑆 ) ‘ ( 𝑘 ‘ 𝑦 ) )  ∧  ( 𝑆  ↾t  ( 𝑘 ‘ 𝑦 ) )  ∈  Comp ) )  →  ∃ 𝑧  ∈  ( ( 𝑇  ↑ko  𝑆 )  ×t  ( 𝑆  ↑ko  𝑅 ) ) ( 〈 𝐴 ,  𝐵 〉  ∈  𝑧  ∧  𝑧  ⊆  ( ◡ 𝐹  “  { ℎ  ∈  ( 𝑅  Cn  𝑇 )  ∣  ( ℎ  “  𝐾 )  ⊆  𝑉 } ) ) ) ) | 
						
							| 241 | 89 240 | syldan | ⊢ ( ( ( 𝜑  ∧  𝑤  ∈  ( 𝒫  ( 𝑆  ↾t  ( 𝐵  “  𝐾 ) )  ∩  Fin ) )  ∧  ∪  ( 𝑆  ↾t  ( 𝐵  “  𝐾 ) )  =  ∪  𝑤 )  →  ( ∃ 𝑘 ( 𝑘 : 𝑤 ⟶ 𝒫  ( ◡ 𝐴  “  𝑉 )  ∧  ∀ 𝑦  ∈  𝑤 ( 𝑦  ⊆  ( ( int ‘ 𝑆 ) ‘ ( 𝑘 ‘ 𝑦 ) )  ∧  ( 𝑆  ↾t  ( 𝑘 ‘ 𝑦 ) )  ∈  Comp ) )  →  ∃ 𝑧  ∈  ( ( 𝑇  ↑ko  𝑆 )  ×t  ( 𝑆  ↑ko  𝑅 ) ) ( 〈 𝐴 ,  𝐵 〉  ∈  𝑧  ∧  𝑧  ⊆  ( ◡ 𝐹  “  { ℎ  ∈  ( 𝑅  Cn  𝑇 )  ∣  ( ℎ  “  𝐾 )  ⊆  𝑉 } ) ) ) ) | 
						
							| 242 | 241 | expimpd | ⊢ ( ( 𝜑  ∧  𝑤  ∈  ( 𝒫  ( 𝑆  ↾t  ( 𝐵  “  𝐾 ) )  ∩  Fin ) )  →  ( ( ∪  ( 𝑆  ↾t  ( 𝐵  “  𝐾 ) )  =  ∪  𝑤  ∧  ∃ 𝑘 ( 𝑘 : 𝑤 ⟶ 𝒫  ( ◡ 𝐴  “  𝑉 )  ∧  ∀ 𝑦  ∈  𝑤 ( 𝑦  ⊆  ( ( int ‘ 𝑆 ) ‘ ( 𝑘 ‘ 𝑦 ) )  ∧  ( 𝑆  ↾t  ( 𝑘 ‘ 𝑦 ) )  ∈  Comp ) ) )  →  ∃ 𝑧  ∈  ( ( 𝑇  ↑ko  𝑆 )  ×t  ( 𝑆  ↑ko  𝑅 ) ) ( 〈 𝐴 ,  𝐵 〉  ∈  𝑧  ∧  𝑧  ⊆  ( ◡ 𝐹  “  { ℎ  ∈  ( 𝑅  Cn  𝑇 )  ∣  ( ℎ  “  𝐾 )  ⊆  𝑉 } ) ) ) ) | 
						
							| 243 | 242 | rexlimdva | ⊢ ( 𝜑  →  ( ∃ 𝑤  ∈  ( 𝒫  ( 𝑆  ↾t  ( 𝐵  “  𝐾 ) )  ∩  Fin ) ( ∪  ( 𝑆  ↾t  ( 𝐵  “  𝐾 ) )  =  ∪  𝑤  ∧  ∃ 𝑘 ( 𝑘 : 𝑤 ⟶ 𝒫  ( ◡ 𝐴  “  𝑉 )  ∧  ∀ 𝑦  ∈  𝑤 ( 𝑦  ⊆  ( ( int ‘ 𝑆 ) ‘ ( 𝑘 ‘ 𝑦 ) )  ∧  ( 𝑆  ↾t  ( 𝑘 ‘ 𝑦 ) )  ∈  Comp ) ) )  →  ∃ 𝑧  ∈  ( ( 𝑇  ↑ko  𝑆 )  ×t  ( 𝑆  ↑ko  𝑅 ) ) ( 〈 𝐴 ,  𝐵 〉  ∈  𝑧  ∧  𝑧  ⊆  ( ◡ 𝐹  “  { ℎ  ∈  ( 𝑅  Cn  𝑇 )  ∣  ( ℎ  “  𝐾 )  ⊆  𝑉 } ) ) ) ) | 
						
							| 244 | 86 243 | mpd | ⊢ ( 𝜑  →  ∃ 𝑧  ∈  ( ( 𝑇  ↑ko  𝑆 )  ×t  ( 𝑆  ↑ko  𝑅 ) ) ( 〈 𝐴 ,  𝐵 〉  ∈  𝑧  ∧  𝑧  ⊆  ( ◡ 𝐹  “  { ℎ  ∈  ( 𝑅  Cn  𝑇 )  ∣  ( ℎ  “  𝐾 )  ⊆  𝑉 } ) ) ) |