Step |
Hyp |
Ref |
Expression |
1 |
|
xkofvcn.1 |
⊢ 𝑋 = ∪ 𝑅 |
2 |
|
xkofvcn.2 |
⊢ 𝐹 = ( 𝑓 ∈ ( 𝑅 Cn 𝑆 ) , 𝑥 ∈ 𝑋 ↦ ( 𝑓 ‘ 𝑥 ) ) |
3 |
|
nllytop |
⊢ ( 𝑅 ∈ 𝑛-Locally Comp → 𝑅 ∈ Top ) |
4 |
|
eqid |
⊢ ( 𝑆 ↑ko 𝑅 ) = ( 𝑆 ↑ko 𝑅 ) |
5 |
4
|
xkotopon |
⊢ ( ( 𝑅 ∈ Top ∧ 𝑆 ∈ Top ) → ( 𝑆 ↑ko 𝑅 ) ∈ ( TopOn ‘ ( 𝑅 Cn 𝑆 ) ) ) |
6 |
3 5
|
sylan |
⊢ ( ( 𝑅 ∈ 𝑛-Locally Comp ∧ 𝑆 ∈ Top ) → ( 𝑆 ↑ko 𝑅 ) ∈ ( TopOn ‘ ( 𝑅 Cn 𝑆 ) ) ) |
7 |
3
|
adantr |
⊢ ( ( 𝑅 ∈ 𝑛-Locally Comp ∧ 𝑆 ∈ Top ) → 𝑅 ∈ Top ) |
8 |
1
|
toptopon |
⊢ ( 𝑅 ∈ Top ↔ 𝑅 ∈ ( TopOn ‘ 𝑋 ) ) |
9 |
7 8
|
sylib |
⊢ ( ( 𝑅 ∈ 𝑛-Locally Comp ∧ 𝑆 ∈ Top ) → 𝑅 ∈ ( TopOn ‘ 𝑋 ) ) |
10 |
6 9
|
cnmpt1st |
⊢ ( ( 𝑅 ∈ 𝑛-Locally Comp ∧ 𝑆 ∈ Top ) → ( 𝑓 ∈ ( 𝑅 Cn 𝑆 ) , 𝑥 ∈ 𝑋 ↦ 𝑓 ) ∈ ( ( ( 𝑆 ↑ko 𝑅 ) ×t 𝑅 ) Cn ( 𝑆 ↑ko 𝑅 ) ) ) |
11 |
6 9
|
cnmpt2nd |
⊢ ( ( 𝑅 ∈ 𝑛-Locally Comp ∧ 𝑆 ∈ Top ) → ( 𝑓 ∈ ( 𝑅 Cn 𝑆 ) , 𝑥 ∈ 𝑋 ↦ 𝑥 ) ∈ ( ( ( 𝑆 ↑ko 𝑅 ) ×t 𝑅 ) Cn 𝑅 ) ) |
12 |
|
1on |
⊢ 1o ∈ On |
13 |
|
distopon |
⊢ ( 1o ∈ On → 𝒫 1o ∈ ( TopOn ‘ 1o ) ) |
14 |
12 13
|
mp1i |
⊢ ( ( 𝑅 ∈ 𝑛-Locally Comp ∧ 𝑆 ∈ Top ) → 𝒫 1o ∈ ( TopOn ‘ 1o ) ) |
15 |
|
xkoccn |
⊢ ( ( 𝒫 1o ∈ ( TopOn ‘ 1o ) ∧ 𝑅 ∈ ( TopOn ‘ 𝑋 ) ) → ( 𝑦 ∈ 𝑋 ↦ ( 1o × { 𝑦 } ) ) ∈ ( 𝑅 Cn ( 𝑅 ↑ko 𝒫 1o ) ) ) |
16 |
14 9 15
|
syl2anc |
⊢ ( ( 𝑅 ∈ 𝑛-Locally Comp ∧ 𝑆 ∈ Top ) → ( 𝑦 ∈ 𝑋 ↦ ( 1o × { 𝑦 } ) ) ∈ ( 𝑅 Cn ( 𝑅 ↑ko 𝒫 1o ) ) ) |
17 |
|
sneq |
⊢ ( 𝑦 = 𝑥 → { 𝑦 } = { 𝑥 } ) |
18 |
17
|
xpeq2d |
⊢ ( 𝑦 = 𝑥 → ( 1o × { 𝑦 } ) = ( 1o × { 𝑥 } ) ) |
19 |
6 9 11 9 16 18
|
cnmpt21 |
⊢ ( ( 𝑅 ∈ 𝑛-Locally Comp ∧ 𝑆 ∈ Top ) → ( 𝑓 ∈ ( 𝑅 Cn 𝑆 ) , 𝑥 ∈ 𝑋 ↦ ( 1o × { 𝑥 } ) ) ∈ ( ( ( 𝑆 ↑ko 𝑅 ) ×t 𝑅 ) Cn ( 𝑅 ↑ko 𝒫 1o ) ) ) |
20 |
|
distop |
⊢ ( 1o ∈ On → 𝒫 1o ∈ Top ) |
21 |
12 20
|
mp1i |
⊢ ( ( 𝑅 ∈ 𝑛-Locally Comp ∧ 𝑆 ∈ Top ) → 𝒫 1o ∈ Top ) |
22 |
|
eqid |
⊢ ( 𝑅 ↑ko 𝒫 1o ) = ( 𝑅 ↑ko 𝒫 1o ) |
23 |
22
|
xkotopon |
⊢ ( ( 𝒫 1o ∈ Top ∧ 𝑅 ∈ Top ) → ( 𝑅 ↑ko 𝒫 1o ) ∈ ( TopOn ‘ ( 𝒫 1o Cn 𝑅 ) ) ) |
24 |
21 7 23
|
syl2anc |
⊢ ( ( 𝑅 ∈ 𝑛-Locally Comp ∧ 𝑆 ∈ Top ) → ( 𝑅 ↑ko 𝒫 1o ) ∈ ( TopOn ‘ ( 𝒫 1o Cn 𝑅 ) ) ) |
25 |
|
simpl |
⊢ ( ( 𝑅 ∈ 𝑛-Locally Comp ∧ 𝑆 ∈ Top ) → 𝑅 ∈ 𝑛-Locally Comp ) |
26 |
|
simpr |
⊢ ( ( 𝑅 ∈ 𝑛-Locally Comp ∧ 𝑆 ∈ Top ) → 𝑆 ∈ Top ) |
27 |
|
eqid |
⊢ ( 𝑔 ∈ ( 𝑅 Cn 𝑆 ) , ℎ ∈ ( 𝒫 1o Cn 𝑅 ) ↦ ( 𝑔 ∘ ℎ ) ) = ( 𝑔 ∈ ( 𝑅 Cn 𝑆 ) , ℎ ∈ ( 𝒫 1o Cn 𝑅 ) ↦ ( 𝑔 ∘ ℎ ) ) |
28 |
27
|
xkococn |
⊢ ( ( 𝒫 1o ∈ Top ∧ 𝑅 ∈ 𝑛-Locally Comp ∧ 𝑆 ∈ Top ) → ( 𝑔 ∈ ( 𝑅 Cn 𝑆 ) , ℎ ∈ ( 𝒫 1o Cn 𝑅 ) ↦ ( 𝑔 ∘ ℎ ) ) ∈ ( ( ( 𝑆 ↑ko 𝑅 ) ×t ( 𝑅 ↑ko 𝒫 1o ) ) Cn ( 𝑆 ↑ko 𝒫 1o ) ) ) |
29 |
21 25 26 28
|
syl3anc |
⊢ ( ( 𝑅 ∈ 𝑛-Locally Comp ∧ 𝑆 ∈ Top ) → ( 𝑔 ∈ ( 𝑅 Cn 𝑆 ) , ℎ ∈ ( 𝒫 1o Cn 𝑅 ) ↦ ( 𝑔 ∘ ℎ ) ) ∈ ( ( ( 𝑆 ↑ko 𝑅 ) ×t ( 𝑅 ↑ko 𝒫 1o ) ) Cn ( 𝑆 ↑ko 𝒫 1o ) ) ) |
30 |
|
coeq1 |
⊢ ( 𝑔 = 𝑓 → ( 𝑔 ∘ ℎ ) = ( 𝑓 ∘ ℎ ) ) |
31 |
|
coeq2 |
⊢ ( ℎ = ( 1o × { 𝑥 } ) → ( 𝑓 ∘ ℎ ) = ( 𝑓 ∘ ( 1o × { 𝑥 } ) ) ) |
32 |
30 31
|
sylan9eq |
⊢ ( ( 𝑔 = 𝑓 ∧ ℎ = ( 1o × { 𝑥 } ) ) → ( 𝑔 ∘ ℎ ) = ( 𝑓 ∘ ( 1o × { 𝑥 } ) ) ) |
33 |
6 9 10 19 6 24 29 32
|
cnmpt22 |
⊢ ( ( 𝑅 ∈ 𝑛-Locally Comp ∧ 𝑆 ∈ Top ) → ( 𝑓 ∈ ( 𝑅 Cn 𝑆 ) , 𝑥 ∈ 𝑋 ↦ ( 𝑓 ∘ ( 1o × { 𝑥 } ) ) ) ∈ ( ( ( 𝑆 ↑ko 𝑅 ) ×t 𝑅 ) Cn ( 𝑆 ↑ko 𝒫 1o ) ) ) |
34 |
|
eqid |
⊢ ( 𝑆 ↑ko 𝒫 1o ) = ( 𝑆 ↑ko 𝒫 1o ) |
35 |
34
|
xkotopon |
⊢ ( ( 𝒫 1o ∈ Top ∧ 𝑆 ∈ Top ) → ( 𝑆 ↑ko 𝒫 1o ) ∈ ( TopOn ‘ ( 𝒫 1o Cn 𝑆 ) ) ) |
36 |
21 26 35
|
syl2anc |
⊢ ( ( 𝑅 ∈ 𝑛-Locally Comp ∧ 𝑆 ∈ Top ) → ( 𝑆 ↑ko 𝒫 1o ) ∈ ( TopOn ‘ ( 𝒫 1o Cn 𝑆 ) ) ) |
37 |
|
0lt1o |
⊢ ∅ ∈ 1o |
38 |
37
|
a1i |
⊢ ( ( 𝑅 ∈ 𝑛-Locally Comp ∧ 𝑆 ∈ Top ) → ∅ ∈ 1o ) |
39 |
|
unipw |
⊢ ∪ 𝒫 1o = 1o |
40 |
39
|
eqcomi |
⊢ 1o = ∪ 𝒫 1o |
41 |
40
|
xkopjcn |
⊢ ( ( 𝒫 1o ∈ Top ∧ 𝑆 ∈ Top ∧ ∅ ∈ 1o ) → ( 𝑔 ∈ ( 𝒫 1o Cn 𝑆 ) ↦ ( 𝑔 ‘ ∅ ) ) ∈ ( ( 𝑆 ↑ko 𝒫 1o ) Cn 𝑆 ) ) |
42 |
21 26 38 41
|
syl3anc |
⊢ ( ( 𝑅 ∈ 𝑛-Locally Comp ∧ 𝑆 ∈ Top ) → ( 𝑔 ∈ ( 𝒫 1o Cn 𝑆 ) ↦ ( 𝑔 ‘ ∅ ) ) ∈ ( ( 𝑆 ↑ko 𝒫 1o ) Cn 𝑆 ) ) |
43 |
|
fveq1 |
⊢ ( 𝑔 = ( 𝑓 ∘ ( 1o × { 𝑥 } ) ) → ( 𝑔 ‘ ∅ ) = ( ( 𝑓 ∘ ( 1o × { 𝑥 } ) ) ‘ ∅ ) ) |
44 |
|
vex |
⊢ 𝑥 ∈ V |
45 |
44
|
fconst |
⊢ ( 1o × { 𝑥 } ) : 1o ⟶ { 𝑥 } |
46 |
|
fvco3 |
⊢ ( ( ( 1o × { 𝑥 } ) : 1o ⟶ { 𝑥 } ∧ ∅ ∈ 1o ) → ( ( 𝑓 ∘ ( 1o × { 𝑥 } ) ) ‘ ∅ ) = ( 𝑓 ‘ ( ( 1o × { 𝑥 } ) ‘ ∅ ) ) ) |
47 |
45 37 46
|
mp2an |
⊢ ( ( 𝑓 ∘ ( 1o × { 𝑥 } ) ) ‘ ∅ ) = ( 𝑓 ‘ ( ( 1o × { 𝑥 } ) ‘ ∅ ) ) |
48 |
44
|
fvconst2 |
⊢ ( ∅ ∈ 1o → ( ( 1o × { 𝑥 } ) ‘ ∅ ) = 𝑥 ) |
49 |
37 48
|
ax-mp |
⊢ ( ( 1o × { 𝑥 } ) ‘ ∅ ) = 𝑥 |
50 |
49
|
fveq2i |
⊢ ( 𝑓 ‘ ( ( 1o × { 𝑥 } ) ‘ ∅ ) ) = ( 𝑓 ‘ 𝑥 ) |
51 |
47 50
|
eqtri |
⊢ ( ( 𝑓 ∘ ( 1o × { 𝑥 } ) ) ‘ ∅ ) = ( 𝑓 ‘ 𝑥 ) |
52 |
43 51
|
eqtrdi |
⊢ ( 𝑔 = ( 𝑓 ∘ ( 1o × { 𝑥 } ) ) → ( 𝑔 ‘ ∅ ) = ( 𝑓 ‘ 𝑥 ) ) |
53 |
6 9 33 36 42 52
|
cnmpt21 |
⊢ ( ( 𝑅 ∈ 𝑛-Locally Comp ∧ 𝑆 ∈ Top ) → ( 𝑓 ∈ ( 𝑅 Cn 𝑆 ) , 𝑥 ∈ 𝑋 ↦ ( 𝑓 ‘ 𝑥 ) ) ∈ ( ( ( 𝑆 ↑ko 𝑅 ) ×t 𝑅 ) Cn 𝑆 ) ) |
54 |
2 53
|
eqeltrid |
⊢ ( ( 𝑅 ∈ 𝑛-Locally Comp ∧ 𝑆 ∈ Top ) → 𝐹 ∈ ( ( ( 𝑆 ↑ko 𝑅 ) ×t 𝑅 ) Cn 𝑆 ) ) |