Step |
Hyp |
Ref |
Expression |
1 |
|
xkohmeo.x |
⊢ ( 𝜑 → 𝐽 ∈ ( TopOn ‘ 𝑋 ) ) |
2 |
|
xkohmeo.y |
⊢ ( 𝜑 → 𝐾 ∈ ( TopOn ‘ 𝑌 ) ) |
3 |
|
xkohmeo.f |
⊢ 𝐹 = ( 𝑓 ∈ ( ( 𝐽 ×t 𝐾 ) Cn 𝐿 ) ↦ ( 𝑥 ∈ 𝑋 ↦ ( 𝑦 ∈ 𝑌 ↦ ( 𝑥 𝑓 𝑦 ) ) ) ) |
4 |
|
xkohmeo.j |
⊢ ( 𝜑 → 𝐽 ∈ 𝑛-Locally Comp ) |
5 |
|
xkohmeo.k |
⊢ ( 𝜑 → 𝐾 ∈ 𝑛-Locally Comp ) |
6 |
|
xkohmeo.l |
⊢ ( 𝜑 → 𝐿 ∈ Top ) |
7 |
|
txtopon |
⊢ ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐾 ∈ ( TopOn ‘ 𝑌 ) ) → ( 𝐽 ×t 𝐾 ) ∈ ( TopOn ‘ ( 𝑋 × 𝑌 ) ) ) |
8 |
1 2 7
|
syl2anc |
⊢ ( 𝜑 → ( 𝐽 ×t 𝐾 ) ∈ ( TopOn ‘ ( 𝑋 × 𝑌 ) ) ) |
9 |
|
topontop |
⊢ ( ( 𝐽 ×t 𝐾 ) ∈ ( TopOn ‘ ( 𝑋 × 𝑌 ) ) → ( 𝐽 ×t 𝐾 ) ∈ Top ) |
10 |
8 9
|
syl |
⊢ ( 𝜑 → ( 𝐽 ×t 𝐾 ) ∈ Top ) |
11 |
|
eqid |
⊢ ( 𝐿 ↑ko ( 𝐽 ×t 𝐾 ) ) = ( 𝐿 ↑ko ( 𝐽 ×t 𝐾 ) ) |
12 |
11
|
xkotopon |
⊢ ( ( ( 𝐽 ×t 𝐾 ) ∈ Top ∧ 𝐿 ∈ Top ) → ( 𝐿 ↑ko ( 𝐽 ×t 𝐾 ) ) ∈ ( TopOn ‘ ( ( 𝐽 ×t 𝐾 ) Cn 𝐿 ) ) ) |
13 |
10 6 12
|
syl2anc |
⊢ ( 𝜑 → ( 𝐿 ↑ko ( 𝐽 ×t 𝐾 ) ) ∈ ( TopOn ‘ ( ( 𝐽 ×t 𝐾 ) Cn 𝐿 ) ) ) |
14 |
|
vex |
⊢ 𝑓 ∈ V |
15 |
|
vex |
⊢ 𝑥 ∈ V |
16 |
14 15
|
op1std |
⊢ ( 𝑧 = 〈 𝑓 , 𝑥 〉 → ( 1st ‘ 𝑧 ) = 𝑓 ) |
17 |
14 15
|
op2ndd |
⊢ ( 𝑧 = 〈 𝑓 , 𝑥 〉 → ( 2nd ‘ 𝑧 ) = 𝑥 ) |
18 |
|
eqidd |
⊢ ( 𝑧 = 〈 𝑓 , 𝑥 〉 → 𝑦 = 𝑦 ) |
19 |
16 17 18
|
oveq123d |
⊢ ( 𝑧 = 〈 𝑓 , 𝑥 〉 → ( ( 2nd ‘ 𝑧 ) ( 1st ‘ 𝑧 ) 𝑦 ) = ( 𝑥 𝑓 𝑦 ) ) |
20 |
19
|
mpteq2dv |
⊢ ( 𝑧 = 〈 𝑓 , 𝑥 〉 → ( 𝑦 ∈ 𝑌 ↦ ( ( 2nd ‘ 𝑧 ) ( 1st ‘ 𝑧 ) 𝑦 ) ) = ( 𝑦 ∈ 𝑌 ↦ ( 𝑥 𝑓 𝑦 ) ) ) |
21 |
20
|
mpompt |
⊢ ( 𝑧 ∈ ( ( ( 𝐽 ×t 𝐾 ) Cn 𝐿 ) × 𝑋 ) ↦ ( 𝑦 ∈ 𝑌 ↦ ( ( 2nd ‘ 𝑧 ) ( 1st ‘ 𝑧 ) 𝑦 ) ) ) = ( 𝑓 ∈ ( ( 𝐽 ×t 𝐾 ) Cn 𝐿 ) , 𝑥 ∈ 𝑋 ↦ ( 𝑦 ∈ 𝑌 ↦ ( 𝑥 𝑓 𝑦 ) ) ) |
22 |
|
txtopon |
⊢ ( ( ( 𝐿 ↑ko ( 𝐽 ×t 𝐾 ) ) ∈ ( TopOn ‘ ( ( 𝐽 ×t 𝐾 ) Cn 𝐿 ) ) ∧ 𝐽 ∈ ( TopOn ‘ 𝑋 ) ) → ( ( 𝐿 ↑ko ( 𝐽 ×t 𝐾 ) ) ×t 𝐽 ) ∈ ( TopOn ‘ ( ( ( 𝐽 ×t 𝐾 ) Cn 𝐿 ) × 𝑋 ) ) ) |
23 |
13 1 22
|
syl2anc |
⊢ ( 𝜑 → ( ( 𝐿 ↑ko ( 𝐽 ×t 𝐾 ) ) ×t 𝐽 ) ∈ ( TopOn ‘ ( ( ( 𝐽 ×t 𝐾 ) Cn 𝐿 ) × 𝑋 ) ) ) |
24 |
|
vex |
⊢ 𝑧 ∈ V |
25 |
|
vex |
⊢ 𝑦 ∈ V |
26 |
24 25
|
op1std |
⊢ ( 𝑤 = 〈 𝑧 , 𝑦 〉 → ( 1st ‘ 𝑤 ) = 𝑧 ) |
27 |
26
|
fveq2d |
⊢ ( 𝑤 = 〈 𝑧 , 𝑦 〉 → ( 1st ‘ ( 1st ‘ 𝑤 ) ) = ( 1st ‘ 𝑧 ) ) |
28 |
26
|
fveq2d |
⊢ ( 𝑤 = 〈 𝑧 , 𝑦 〉 → ( 2nd ‘ ( 1st ‘ 𝑤 ) ) = ( 2nd ‘ 𝑧 ) ) |
29 |
24 25
|
op2ndd |
⊢ ( 𝑤 = 〈 𝑧 , 𝑦 〉 → ( 2nd ‘ 𝑤 ) = 𝑦 ) |
30 |
27 28 29
|
oveq123d |
⊢ ( 𝑤 = 〈 𝑧 , 𝑦 〉 → ( ( 2nd ‘ ( 1st ‘ 𝑤 ) ) ( 1st ‘ ( 1st ‘ 𝑤 ) ) ( 2nd ‘ 𝑤 ) ) = ( ( 2nd ‘ 𝑧 ) ( 1st ‘ 𝑧 ) 𝑦 ) ) |
31 |
30
|
mpompt |
⊢ ( 𝑤 ∈ ( ( ( ( 𝐽 ×t 𝐾 ) Cn 𝐿 ) × 𝑋 ) × 𝑌 ) ↦ ( ( 2nd ‘ ( 1st ‘ 𝑤 ) ) ( 1st ‘ ( 1st ‘ 𝑤 ) ) ( 2nd ‘ 𝑤 ) ) ) = ( 𝑧 ∈ ( ( ( 𝐽 ×t 𝐾 ) Cn 𝐿 ) × 𝑋 ) , 𝑦 ∈ 𝑌 ↦ ( ( 2nd ‘ 𝑧 ) ( 1st ‘ 𝑧 ) 𝑦 ) ) |
32 |
|
txtopon |
⊢ ( ( ( ( 𝐿 ↑ko ( 𝐽 ×t 𝐾 ) ) ×t 𝐽 ) ∈ ( TopOn ‘ ( ( ( 𝐽 ×t 𝐾 ) Cn 𝐿 ) × 𝑋 ) ) ∧ 𝐾 ∈ ( TopOn ‘ 𝑌 ) ) → ( ( ( 𝐿 ↑ko ( 𝐽 ×t 𝐾 ) ) ×t 𝐽 ) ×t 𝐾 ) ∈ ( TopOn ‘ ( ( ( ( 𝐽 ×t 𝐾 ) Cn 𝐿 ) × 𝑋 ) × 𝑌 ) ) ) |
33 |
23 2 32
|
syl2anc |
⊢ ( 𝜑 → ( ( ( 𝐿 ↑ko ( 𝐽 ×t 𝐾 ) ) ×t 𝐽 ) ×t 𝐾 ) ∈ ( TopOn ‘ ( ( ( ( 𝐽 ×t 𝐾 ) Cn 𝐿 ) × 𝑋 ) × 𝑌 ) ) ) |
34 |
|
toptopon2 |
⊢ ( 𝐿 ∈ Top ↔ 𝐿 ∈ ( TopOn ‘ ∪ 𝐿 ) ) |
35 |
6 34
|
sylib |
⊢ ( 𝜑 → 𝐿 ∈ ( TopOn ‘ ∪ 𝐿 ) ) |
36 |
|
txcmp |
⊢ ( ( 𝑥 ∈ Comp ∧ 𝑦 ∈ Comp ) → ( 𝑥 ×t 𝑦 ) ∈ Comp ) |
37 |
36
|
txnlly |
⊢ ( ( 𝐽 ∈ 𝑛-Locally Comp ∧ 𝐾 ∈ 𝑛-Locally Comp ) → ( 𝐽 ×t 𝐾 ) ∈ 𝑛-Locally Comp ) |
38 |
4 5 37
|
syl2anc |
⊢ ( 𝜑 → ( 𝐽 ×t 𝐾 ) ∈ 𝑛-Locally Comp ) |
39 |
27
|
mpompt |
⊢ ( 𝑤 ∈ ( ( ( ( 𝐽 ×t 𝐾 ) Cn 𝐿 ) × 𝑋 ) × 𝑌 ) ↦ ( 1st ‘ ( 1st ‘ 𝑤 ) ) ) = ( 𝑧 ∈ ( ( ( 𝐽 ×t 𝐾 ) Cn 𝐿 ) × 𝑋 ) , 𝑦 ∈ 𝑌 ↦ ( 1st ‘ 𝑧 ) ) |
40 |
8
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑤 ∈ ( ( ( ( 𝐽 ×t 𝐾 ) Cn 𝐿 ) × 𝑋 ) × 𝑌 ) ) → ( 𝐽 ×t 𝐾 ) ∈ ( TopOn ‘ ( 𝑋 × 𝑌 ) ) ) |
41 |
35
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑤 ∈ ( ( ( ( 𝐽 ×t 𝐾 ) Cn 𝐿 ) × 𝑋 ) × 𝑌 ) ) → 𝐿 ∈ ( TopOn ‘ ∪ 𝐿 ) ) |
42 |
|
xp1st |
⊢ ( 𝑤 ∈ ( ( ( ( 𝐽 ×t 𝐾 ) Cn 𝐿 ) × 𝑋 ) × 𝑌 ) → ( 1st ‘ 𝑤 ) ∈ ( ( ( 𝐽 ×t 𝐾 ) Cn 𝐿 ) × 𝑋 ) ) |
43 |
42
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑤 ∈ ( ( ( ( 𝐽 ×t 𝐾 ) Cn 𝐿 ) × 𝑋 ) × 𝑌 ) ) → ( 1st ‘ 𝑤 ) ∈ ( ( ( 𝐽 ×t 𝐾 ) Cn 𝐿 ) × 𝑋 ) ) |
44 |
|
xp1st |
⊢ ( ( 1st ‘ 𝑤 ) ∈ ( ( ( 𝐽 ×t 𝐾 ) Cn 𝐿 ) × 𝑋 ) → ( 1st ‘ ( 1st ‘ 𝑤 ) ) ∈ ( ( 𝐽 ×t 𝐾 ) Cn 𝐿 ) ) |
45 |
43 44
|
syl |
⊢ ( ( 𝜑 ∧ 𝑤 ∈ ( ( ( ( 𝐽 ×t 𝐾 ) Cn 𝐿 ) × 𝑋 ) × 𝑌 ) ) → ( 1st ‘ ( 1st ‘ 𝑤 ) ) ∈ ( ( 𝐽 ×t 𝐾 ) Cn 𝐿 ) ) |
46 |
|
cnf2 |
⊢ ( ( ( 𝐽 ×t 𝐾 ) ∈ ( TopOn ‘ ( 𝑋 × 𝑌 ) ) ∧ 𝐿 ∈ ( TopOn ‘ ∪ 𝐿 ) ∧ ( 1st ‘ ( 1st ‘ 𝑤 ) ) ∈ ( ( 𝐽 ×t 𝐾 ) Cn 𝐿 ) ) → ( 1st ‘ ( 1st ‘ 𝑤 ) ) : ( 𝑋 × 𝑌 ) ⟶ ∪ 𝐿 ) |
47 |
40 41 45 46
|
syl3anc |
⊢ ( ( 𝜑 ∧ 𝑤 ∈ ( ( ( ( 𝐽 ×t 𝐾 ) Cn 𝐿 ) × 𝑋 ) × 𝑌 ) ) → ( 1st ‘ ( 1st ‘ 𝑤 ) ) : ( 𝑋 × 𝑌 ) ⟶ ∪ 𝐿 ) |
48 |
47
|
feqmptd |
⊢ ( ( 𝜑 ∧ 𝑤 ∈ ( ( ( ( 𝐽 ×t 𝐾 ) Cn 𝐿 ) × 𝑋 ) × 𝑌 ) ) → ( 1st ‘ ( 1st ‘ 𝑤 ) ) = ( 𝑢 ∈ ( 𝑋 × 𝑌 ) ↦ ( ( 1st ‘ ( 1st ‘ 𝑤 ) ) ‘ 𝑢 ) ) ) |
49 |
48
|
mpteq2dva |
⊢ ( 𝜑 → ( 𝑤 ∈ ( ( ( ( 𝐽 ×t 𝐾 ) Cn 𝐿 ) × 𝑋 ) × 𝑌 ) ↦ ( 1st ‘ ( 1st ‘ 𝑤 ) ) ) = ( 𝑤 ∈ ( ( ( ( 𝐽 ×t 𝐾 ) Cn 𝐿 ) × 𝑋 ) × 𝑌 ) ↦ ( 𝑢 ∈ ( 𝑋 × 𝑌 ) ↦ ( ( 1st ‘ ( 1st ‘ 𝑤 ) ) ‘ 𝑢 ) ) ) ) |
50 |
39 49
|
eqtr3id |
⊢ ( 𝜑 → ( 𝑧 ∈ ( ( ( 𝐽 ×t 𝐾 ) Cn 𝐿 ) × 𝑋 ) , 𝑦 ∈ 𝑌 ↦ ( 1st ‘ 𝑧 ) ) = ( 𝑤 ∈ ( ( ( ( 𝐽 ×t 𝐾 ) Cn 𝐿 ) × 𝑋 ) × 𝑌 ) ↦ ( 𝑢 ∈ ( 𝑋 × 𝑌 ) ↦ ( ( 1st ‘ ( 1st ‘ 𝑤 ) ) ‘ 𝑢 ) ) ) ) |
51 |
23 2
|
cnmpt1st |
⊢ ( 𝜑 → ( 𝑧 ∈ ( ( ( 𝐽 ×t 𝐾 ) Cn 𝐿 ) × 𝑋 ) , 𝑦 ∈ 𝑌 ↦ 𝑧 ) ∈ ( ( ( ( 𝐿 ↑ko ( 𝐽 ×t 𝐾 ) ) ×t 𝐽 ) ×t 𝐾 ) Cn ( ( 𝐿 ↑ko ( 𝐽 ×t 𝐾 ) ) ×t 𝐽 ) ) ) |
52 |
|
fveq2 |
⊢ ( 𝑡 = 𝑧 → ( 1st ‘ 𝑡 ) = ( 1st ‘ 𝑧 ) ) |
53 |
52
|
cbvmptv |
⊢ ( 𝑡 ∈ ( ( ( 𝐽 ×t 𝐾 ) Cn 𝐿 ) × 𝑋 ) ↦ ( 1st ‘ 𝑡 ) ) = ( 𝑧 ∈ ( ( ( 𝐽 ×t 𝐾 ) Cn 𝐿 ) × 𝑋 ) ↦ ( 1st ‘ 𝑧 ) ) |
54 |
16
|
mpompt |
⊢ ( 𝑧 ∈ ( ( ( 𝐽 ×t 𝐾 ) Cn 𝐿 ) × 𝑋 ) ↦ ( 1st ‘ 𝑧 ) ) = ( 𝑓 ∈ ( ( 𝐽 ×t 𝐾 ) Cn 𝐿 ) , 𝑥 ∈ 𝑋 ↦ 𝑓 ) |
55 |
13 1
|
cnmpt1st |
⊢ ( 𝜑 → ( 𝑓 ∈ ( ( 𝐽 ×t 𝐾 ) Cn 𝐿 ) , 𝑥 ∈ 𝑋 ↦ 𝑓 ) ∈ ( ( ( 𝐿 ↑ko ( 𝐽 ×t 𝐾 ) ) ×t 𝐽 ) Cn ( 𝐿 ↑ko ( 𝐽 ×t 𝐾 ) ) ) ) |
56 |
54 55
|
eqeltrid |
⊢ ( 𝜑 → ( 𝑧 ∈ ( ( ( 𝐽 ×t 𝐾 ) Cn 𝐿 ) × 𝑋 ) ↦ ( 1st ‘ 𝑧 ) ) ∈ ( ( ( 𝐿 ↑ko ( 𝐽 ×t 𝐾 ) ) ×t 𝐽 ) Cn ( 𝐿 ↑ko ( 𝐽 ×t 𝐾 ) ) ) ) |
57 |
53 56
|
eqeltrid |
⊢ ( 𝜑 → ( 𝑡 ∈ ( ( ( 𝐽 ×t 𝐾 ) Cn 𝐿 ) × 𝑋 ) ↦ ( 1st ‘ 𝑡 ) ) ∈ ( ( ( 𝐿 ↑ko ( 𝐽 ×t 𝐾 ) ) ×t 𝐽 ) Cn ( 𝐿 ↑ko ( 𝐽 ×t 𝐾 ) ) ) ) |
58 |
23 2 51 23 57 52
|
cnmpt21 |
⊢ ( 𝜑 → ( 𝑧 ∈ ( ( ( 𝐽 ×t 𝐾 ) Cn 𝐿 ) × 𝑋 ) , 𝑦 ∈ 𝑌 ↦ ( 1st ‘ 𝑧 ) ) ∈ ( ( ( ( 𝐿 ↑ko ( 𝐽 ×t 𝐾 ) ) ×t 𝐽 ) ×t 𝐾 ) Cn ( 𝐿 ↑ko ( 𝐽 ×t 𝐾 ) ) ) ) |
59 |
50 58
|
eqeltrrd |
⊢ ( 𝜑 → ( 𝑤 ∈ ( ( ( ( 𝐽 ×t 𝐾 ) Cn 𝐿 ) × 𝑋 ) × 𝑌 ) ↦ ( 𝑢 ∈ ( 𝑋 × 𝑌 ) ↦ ( ( 1st ‘ ( 1st ‘ 𝑤 ) ) ‘ 𝑢 ) ) ) ∈ ( ( ( ( 𝐿 ↑ko ( 𝐽 ×t 𝐾 ) ) ×t 𝐽 ) ×t 𝐾 ) Cn ( 𝐿 ↑ko ( 𝐽 ×t 𝐾 ) ) ) ) |
60 |
28
|
mpompt |
⊢ ( 𝑤 ∈ ( ( ( ( 𝐽 ×t 𝐾 ) Cn 𝐿 ) × 𝑋 ) × 𝑌 ) ↦ ( 2nd ‘ ( 1st ‘ 𝑤 ) ) ) = ( 𝑧 ∈ ( ( ( 𝐽 ×t 𝐾 ) Cn 𝐿 ) × 𝑋 ) , 𝑦 ∈ 𝑌 ↦ ( 2nd ‘ 𝑧 ) ) |
61 |
|
fveq2 |
⊢ ( 𝑡 = 𝑧 → ( 2nd ‘ 𝑡 ) = ( 2nd ‘ 𝑧 ) ) |
62 |
61
|
cbvmptv |
⊢ ( 𝑡 ∈ ( ( ( 𝐽 ×t 𝐾 ) Cn 𝐿 ) × 𝑋 ) ↦ ( 2nd ‘ 𝑡 ) ) = ( 𝑧 ∈ ( ( ( 𝐽 ×t 𝐾 ) Cn 𝐿 ) × 𝑋 ) ↦ ( 2nd ‘ 𝑧 ) ) |
63 |
17
|
mpompt |
⊢ ( 𝑧 ∈ ( ( ( 𝐽 ×t 𝐾 ) Cn 𝐿 ) × 𝑋 ) ↦ ( 2nd ‘ 𝑧 ) ) = ( 𝑓 ∈ ( ( 𝐽 ×t 𝐾 ) Cn 𝐿 ) , 𝑥 ∈ 𝑋 ↦ 𝑥 ) |
64 |
13 1
|
cnmpt2nd |
⊢ ( 𝜑 → ( 𝑓 ∈ ( ( 𝐽 ×t 𝐾 ) Cn 𝐿 ) , 𝑥 ∈ 𝑋 ↦ 𝑥 ) ∈ ( ( ( 𝐿 ↑ko ( 𝐽 ×t 𝐾 ) ) ×t 𝐽 ) Cn 𝐽 ) ) |
65 |
63 64
|
eqeltrid |
⊢ ( 𝜑 → ( 𝑧 ∈ ( ( ( 𝐽 ×t 𝐾 ) Cn 𝐿 ) × 𝑋 ) ↦ ( 2nd ‘ 𝑧 ) ) ∈ ( ( ( 𝐿 ↑ko ( 𝐽 ×t 𝐾 ) ) ×t 𝐽 ) Cn 𝐽 ) ) |
66 |
62 65
|
eqeltrid |
⊢ ( 𝜑 → ( 𝑡 ∈ ( ( ( 𝐽 ×t 𝐾 ) Cn 𝐿 ) × 𝑋 ) ↦ ( 2nd ‘ 𝑡 ) ) ∈ ( ( ( 𝐿 ↑ko ( 𝐽 ×t 𝐾 ) ) ×t 𝐽 ) Cn 𝐽 ) ) |
67 |
23 2 51 23 66 61
|
cnmpt21 |
⊢ ( 𝜑 → ( 𝑧 ∈ ( ( ( 𝐽 ×t 𝐾 ) Cn 𝐿 ) × 𝑋 ) , 𝑦 ∈ 𝑌 ↦ ( 2nd ‘ 𝑧 ) ) ∈ ( ( ( ( 𝐿 ↑ko ( 𝐽 ×t 𝐾 ) ) ×t 𝐽 ) ×t 𝐾 ) Cn 𝐽 ) ) |
68 |
60 67
|
eqeltrid |
⊢ ( 𝜑 → ( 𝑤 ∈ ( ( ( ( 𝐽 ×t 𝐾 ) Cn 𝐿 ) × 𝑋 ) × 𝑌 ) ↦ ( 2nd ‘ ( 1st ‘ 𝑤 ) ) ) ∈ ( ( ( ( 𝐿 ↑ko ( 𝐽 ×t 𝐾 ) ) ×t 𝐽 ) ×t 𝐾 ) Cn 𝐽 ) ) |
69 |
29
|
mpompt |
⊢ ( 𝑤 ∈ ( ( ( ( 𝐽 ×t 𝐾 ) Cn 𝐿 ) × 𝑋 ) × 𝑌 ) ↦ ( 2nd ‘ 𝑤 ) ) = ( 𝑧 ∈ ( ( ( 𝐽 ×t 𝐾 ) Cn 𝐿 ) × 𝑋 ) , 𝑦 ∈ 𝑌 ↦ 𝑦 ) |
70 |
23 2
|
cnmpt2nd |
⊢ ( 𝜑 → ( 𝑧 ∈ ( ( ( 𝐽 ×t 𝐾 ) Cn 𝐿 ) × 𝑋 ) , 𝑦 ∈ 𝑌 ↦ 𝑦 ) ∈ ( ( ( ( 𝐿 ↑ko ( 𝐽 ×t 𝐾 ) ) ×t 𝐽 ) ×t 𝐾 ) Cn 𝐾 ) ) |
71 |
69 70
|
eqeltrid |
⊢ ( 𝜑 → ( 𝑤 ∈ ( ( ( ( 𝐽 ×t 𝐾 ) Cn 𝐿 ) × 𝑋 ) × 𝑌 ) ↦ ( 2nd ‘ 𝑤 ) ) ∈ ( ( ( ( 𝐿 ↑ko ( 𝐽 ×t 𝐾 ) ) ×t 𝐽 ) ×t 𝐾 ) Cn 𝐾 ) ) |
72 |
33 68 71
|
cnmpt1t |
⊢ ( 𝜑 → ( 𝑤 ∈ ( ( ( ( 𝐽 ×t 𝐾 ) Cn 𝐿 ) × 𝑋 ) × 𝑌 ) ↦ 〈 ( 2nd ‘ ( 1st ‘ 𝑤 ) ) , ( 2nd ‘ 𝑤 ) 〉 ) ∈ ( ( ( ( 𝐿 ↑ko ( 𝐽 ×t 𝐾 ) ) ×t 𝐽 ) ×t 𝐾 ) Cn ( 𝐽 ×t 𝐾 ) ) ) |
73 |
|
fveq2 |
⊢ ( 𝑢 = 〈 ( 2nd ‘ ( 1st ‘ 𝑤 ) ) , ( 2nd ‘ 𝑤 ) 〉 → ( ( 1st ‘ ( 1st ‘ 𝑤 ) ) ‘ 𝑢 ) = ( ( 1st ‘ ( 1st ‘ 𝑤 ) ) ‘ 〈 ( 2nd ‘ ( 1st ‘ 𝑤 ) ) , ( 2nd ‘ 𝑤 ) 〉 ) ) |
74 |
|
df-ov |
⊢ ( ( 2nd ‘ ( 1st ‘ 𝑤 ) ) ( 1st ‘ ( 1st ‘ 𝑤 ) ) ( 2nd ‘ 𝑤 ) ) = ( ( 1st ‘ ( 1st ‘ 𝑤 ) ) ‘ 〈 ( 2nd ‘ ( 1st ‘ 𝑤 ) ) , ( 2nd ‘ 𝑤 ) 〉 ) |
75 |
73 74
|
eqtr4di |
⊢ ( 𝑢 = 〈 ( 2nd ‘ ( 1st ‘ 𝑤 ) ) , ( 2nd ‘ 𝑤 ) 〉 → ( ( 1st ‘ ( 1st ‘ 𝑤 ) ) ‘ 𝑢 ) = ( ( 2nd ‘ ( 1st ‘ 𝑤 ) ) ( 1st ‘ ( 1st ‘ 𝑤 ) ) ( 2nd ‘ 𝑤 ) ) ) |
76 |
33 8 35 38 59 72 75
|
cnmptk1p |
⊢ ( 𝜑 → ( 𝑤 ∈ ( ( ( ( 𝐽 ×t 𝐾 ) Cn 𝐿 ) × 𝑋 ) × 𝑌 ) ↦ ( ( 2nd ‘ ( 1st ‘ 𝑤 ) ) ( 1st ‘ ( 1st ‘ 𝑤 ) ) ( 2nd ‘ 𝑤 ) ) ) ∈ ( ( ( ( 𝐿 ↑ko ( 𝐽 ×t 𝐾 ) ) ×t 𝐽 ) ×t 𝐾 ) Cn 𝐿 ) ) |
77 |
31 76
|
eqeltrrid |
⊢ ( 𝜑 → ( 𝑧 ∈ ( ( ( 𝐽 ×t 𝐾 ) Cn 𝐿 ) × 𝑋 ) , 𝑦 ∈ 𝑌 ↦ ( ( 2nd ‘ 𝑧 ) ( 1st ‘ 𝑧 ) 𝑦 ) ) ∈ ( ( ( ( 𝐿 ↑ko ( 𝐽 ×t 𝐾 ) ) ×t 𝐽 ) ×t 𝐾 ) Cn 𝐿 ) ) |
78 |
23 2 77
|
cnmpt2k |
⊢ ( 𝜑 → ( 𝑧 ∈ ( ( ( 𝐽 ×t 𝐾 ) Cn 𝐿 ) × 𝑋 ) ↦ ( 𝑦 ∈ 𝑌 ↦ ( ( 2nd ‘ 𝑧 ) ( 1st ‘ 𝑧 ) 𝑦 ) ) ) ∈ ( ( ( 𝐿 ↑ko ( 𝐽 ×t 𝐾 ) ) ×t 𝐽 ) Cn ( 𝐿 ↑ko 𝐾 ) ) ) |
79 |
21 78
|
eqeltrrid |
⊢ ( 𝜑 → ( 𝑓 ∈ ( ( 𝐽 ×t 𝐾 ) Cn 𝐿 ) , 𝑥 ∈ 𝑋 ↦ ( 𝑦 ∈ 𝑌 ↦ ( 𝑥 𝑓 𝑦 ) ) ) ∈ ( ( ( 𝐿 ↑ko ( 𝐽 ×t 𝐾 ) ) ×t 𝐽 ) Cn ( 𝐿 ↑ko 𝐾 ) ) ) |
80 |
13 1 79
|
cnmpt2k |
⊢ ( 𝜑 → ( 𝑓 ∈ ( ( 𝐽 ×t 𝐾 ) Cn 𝐿 ) ↦ ( 𝑥 ∈ 𝑋 ↦ ( 𝑦 ∈ 𝑌 ↦ ( 𝑥 𝑓 𝑦 ) ) ) ) ∈ ( ( 𝐿 ↑ko ( 𝐽 ×t 𝐾 ) ) Cn ( ( 𝐿 ↑ko 𝐾 ) ↑ko 𝐽 ) ) ) |
81 |
3 80
|
eqeltrid |
⊢ ( 𝜑 → 𝐹 ∈ ( ( 𝐿 ↑ko ( 𝐽 ×t 𝐾 ) ) Cn ( ( 𝐿 ↑ko 𝐾 ) ↑ko 𝐽 ) ) ) |
82 |
1 2 3 4 5 6
|
xkocnv |
⊢ ( 𝜑 → ◡ 𝐹 = ( 𝑔 ∈ ( 𝐽 Cn ( 𝐿 ↑ko 𝐾 ) ) ↦ ( 𝑥 ∈ 𝑋 , 𝑦 ∈ 𝑌 ↦ ( ( 𝑔 ‘ 𝑥 ) ‘ 𝑦 ) ) ) ) |
83 |
15 25
|
op1std |
⊢ ( 𝑧 = 〈 𝑥 , 𝑦 〉 → ( 1st ‘ 𝑧 ) = 𝑥 ) |
84 |
83
|
fveq2d |
⊢ ( 𝑧 = 〈 𝑥 , 𝑦 〉 → ( 𝑔 ‘ ( 1st ‘ 𝑧 ) ) = ( 𝑔 ‘ 𝑥 ) ) |
85 |
15 25
|
op2ndd |
⊢ ( 𝑧 = 〈 𝑥 , 𝑦 〉 → ( 2nd ‘ 𝑧 ) = 𝑦 ) |
86 |
84 85
|
fveq12d |
⊢ ( 𝑧 = 〈 𝑥 , 𝑦 〉 → ( ( 𝑔 ‘ ( 1st ‘ 𝑧 ) ) ‘ ( 2nd ‘ 𝑧 ) ) = ( ( 𝑔 ‘ 𝑥 ) ‘ 𝑦 ) ) |
87 |
86
|
mpompt |
⊢ ( 𝑧 ∈ ( 𝑋 × 𝑌 ) ↦ ( ( 𝑔 ‘ ( 1st ‘ 𝑧 ) ) ‘ ( 2nd ‘ 𝑧 ) ) ) = ( 𝑥 ∈ 𝑋 , 𝑦 ∈ 𝑌 ↦ ( ( 𝑔 ‘ 𝑥 ) ‘ 𝑦 ) ) |
88 |
87
|
mpteq2i |
⊢ ( 𝑔 ∈ ( 𝐽 Cn ( 𝐿 ↑ko 𝐾 ) ) ↦ ( 𝑧 ∈ ( 𝑋 × 𝑌 ) ↦ ( ( 𝑔 ‘ ( 1st ‘ 𝑧 ) ) ‘ ( 2nd ‘ 𝑧 ) ) ) ) = ( 𝑔 ∈ ( 𝐽 Cn ( 𝐿 ↑ko 𝐾 ) ) ↦ ( 𝑥 ∈ 𝑋 , 𝑦 ∈ 𝑌 ↦ ( ( 𝑔 ‘ 𝑥 ) ‘ 𝑦 ) ) ) |
89 |
82 88
|
eqtr4di |
⊢ ( 𝜑 → ◡ 𝐹 = ( 𝑔 ∈ ( 𝐽 Cn ( 𝐿 ↑ko 𝐾 ) ) ↦ ( 𝑧 ∈ ( 𝑋 × 𝑌 ) ↦ ( ( 𝑔 ‘ ( 1st ‘ 𝑧 ) ) ‘ ( 2nd ‘ 𝑧 ) ) ) ) ) |
90 |
|
nllytop |
⊢ ( 𝐽 ∈ 𝑛-Locally Comp → 𝐽 ∈ Top ) |
91 |
4 90
|
syl |
⊢ ( 𝜑 → 𝐽 ∈ Top ) |
92 |
|
nllytop |
⊢ ( 𝐾 ∈ 𝑛-Locally Comp → 𝐾 ∈ Top ) |
93 |
5 92
|
syl |
⊢ ( 𝜑 → 𝐾 ∈ Top ) |
94 |
|
xkotop |
⊢ ( ( 𝐾 ∈ Top ∧ 𝐿 ∈ Top ) → ( 𝐿 ↑ko 𝐾 ) ∈ Top ) |
95 |
93 6 94
|
syl2anc |
⊢ ( 𝜑 → ( 𝐿 ↑ko 𝐾 ) ∈ Top ) |
96 |
|
eqid |
⊢ ( ( 𝐿 ↑ko 𝐾 ) ↑ko 𝐽 ) = ( ( 𝐿 ↑ko 𝐾 ) ↑ko 𝐽 ) |
97 |
96
|
xkotopon |
⊢ ( ( 𝐽 ∈ Top ∧ ( 𝐿 ↑ko 𝐾 ) ∈ Top ) → ( ( 𝐿 ↑ko 𝐾 ) ↑ko 𝐽 ) ∈ ( TopOn ‘ ( 𝐽 Cn ( 𝐿 ↑ko 𝐾 ) ) ) ) |
98 |
91 95 97
|
syl2anc |
⊢ ( 𝜑 → ( ( 𝐿 ↑ko 𝐾 ) ↑ko 𝐽 ) ∈ ( TopOn ‘ ( 𝐽 Cn ( 𝐿 ↑ko 𝐾 ) ) ) ) |
99 |
|
vex |
⊢ 𝑔 ∈ V |
100 |
99 24
|
op1std |
⊢ ( 𝑤 = 〈 𝑔 , 𝑧 〉 → ( 1st ‘ 𝑤 ) = 𝑔 ) |
101 |
99 24
|
op2ndd |
⊢ ( 𝑤 = 〈 𝑔 , 𝑧 〉 → ( 2nd ‘ 𝑤 ) = 𝑧 ) |
102 |
101
|
fveq2d |
⊢ ( 𝑤 = 〈 𝑔 , 𝑧 〉 → ( 1st ‘ ( 2nd ‘ 𝑤 ) ) = ( 1st ‘ 𝑧 ) ) |
103 |
100 102
|
fveq12d |
⊢ ( 𝑤 = 〈 𝑔 , 𝑧 〉 → ( ( 1st ‘ 𝑤 ) ‘ ( 1st ‘ ( 2nd ‘ 𝑤 ) ) ) = ( 𝑔 ‘ ( 1st ‘ 𝑧 ) ) ) |
104 |
101
|
fveq2d |
⊢ ( 𝑤 = 〈 𝑔 , 𝑧 〉 → ( 2nd ‘ ( 2nd ‘ 𝑤 ) ) = ( 2nd ‘ 𝑧 ) ) |
105 |
103 104
|
fveq12d |
⊢ ( 𝑤 = 〈 𝑔 , 𝑧 〉 → ( ( ( 1st ‘ 𝑤 ) ‘ ( 1st ‘ ( 2nd ‘ 𝑤 ) ) ) ‘ ( 2nd ‘ ( 2nd ‘ 𝑤 ) ) ) = ( ( 𝑔 ‘ ( 1st ‘ 𝑧 ) ) ‘ ( 2nd ‘ 𝑧 ) ) ) |
106 |
105
|
mpompt |
⊢ ( 𝑤 ∈ ( ( 𝐽 Cn ( 𝐿 ↑ko 𝐾 ) ) × ( 𝑋 × 𝑌 ) ) ↦ ( ( ( 1st ‘ 𝑤 ) ‘ ( 1st ‘ ( 2nd ‘ 𝑤 ) ) ) ‘ ( 2nd ‘ ( 2nd ‘ 𝑤 ) ) ) ) = ( 𝑔 ∈ ( 𝐽 Cn ( 𝐿 ↑ko 𝐾 ) ) , 𝑧 ∈ ( 𝑋 × 𝑌 ) ↦ ( ( 𝑔 ‘ ( 1st ‘ 𝑧 ) ) ‘ ( 2nd ‘ 𝑧 ) ) ) |
107 |
|
txtopon |
⊢ ( ( ( ( 𝐿 ↑ko 𝐾 ) ↑ko 𝐽 ) ∈ ( TopOn ‘ ( 𝐽 Cn ( 𝐿 ↑ko 𝐾 ) ) ) ∧ ( 𝐽 ×t 𝐾 ) ∈ ( TopOn ‘ ( 𝑋 × 𝑌 ) ) ) → ( ( ( 𝐿 ↑ko 𝐾 ) ↑ko 𝐽 ) ×t ( 𝐽 ×t 𝐾 ) ) ∈ ( TopOn ‘ ( ( 𝐽 Cn ( 𝐿 ↑ko 𝐾 ) ) × ( 𝑋 × 𝑌 ) ) ) ) |
108 |
98 8 107
|
syl2anc |
⊢ ( 𝜑 → ( ( ( 𝐿 ↑ko 𝐾 ) ↑ko 𝐽 ) ×t ( 𝐽 ×t 𝐾 ) ) ∈ ( TopOn ‘ ( ( 𝐽 Cn ( 𝐿 ↑ko 𝐾 ) ) × ( 𝑋 × 𝑌 ) ) ) ) |
109 |
2
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑤 ∈ ( ( 𝐽 Cn ( 𝐿 ↑ko 𝐾 ) ) × ( 𝑋 × 𝑌 ) ) ) → 𝐾 ∈ ( TopOn ‘ 𝑌 ) ) |
110 |
35
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑤 ∈ ( ( 𝐽 Cn ( 𝐿 ↑ko 𝐾 ) ) × ( 𝑋 × 𝑌 ) ) ) → 𝐿 ∈ ( TopOn ‘ ∪ 𝐿 ) ) |
111 |
|
eqid |
⊢ ( 𝐿 ↑ko 𝐾 ) = ( 𝐿 ↑ko 𝐾 ) |
112 |
111
|
xkotopon |
⊢ ( ( 𝐾 ∈ Top ∧ 𝐿 ∈ Top ) → ( 𝐿 ↑ko 𝐾 ) ∈ ( TopOn ‘ ( 𝐾 Cn 𝐿 ) ) ) |
113 |
93 6 112
|
syl2anc |
⊢ ( 𝜑 → ( 𝐿 ↑ko 𝐾 ) ∈ ( TopOn ‘ ( 𝐾 Cn 𝐿 ) ) ) |
114 |
|
xp1st |
⊢ ( 𝑤 ∈ ( ( 𝐽 Cn ( 𝐿 ↑ko 𝐾 ) ) × ( 𝑋 × 𝑌 ) ) → ( 1st ‘ 𝑤 ) ∈ ( 𝐽 Cn ( 𝐿 ↑ko 𝐾 ) ) ) |
115 |
|
cnf2 |
⊢ ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ ( 𝐿 ↑ko 𝐾 ) ∈ ( TopOn ‘ ( 𝐾 Cn 𝐿 ) ) ∧ ( 1st ‘ 𝑤 ) ∈ ( 𝐽 Cn ( 𝐿 ↑ko 𝐾 ) ) ) → ( 1st ‘ 𝑤 ) : 𝑋 ⟶ ( 𝐾 Cn 𝐿 ) ) |
116 |
1 113 114 115
|
syl2an3an |
⊢ ( ( 𝜑 ∧ 𝑤 ∈ ( ( 𝐽 Cn ( 𝐿 ↑ko 𝐾 ) ) × ( 𝑋 × 𝑌 ) ) ) → ( 1st ‘ 𝑤 ) : 𝑋 ⟶ ( 𝐾 Cn 𝐿 ) ) |
117 |
|
xp2nd |
⊢ ( 𝑤 ∈ ( ( 𝐽 Cn ( 𝐿 ↑ko 𝐾 ) ) × ( 𝑋 × 𝑌 ) ) → ( 2nd ‘ 𝑤 ) ∈ ( 𝑋 × 𝑌 ) ) |
118 |
117
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑤 ∈ ( ( 𝐽 Cn ( 𝐿 ↑ko 𝐾 ) ) × ( 𝑋 × 𝑌 ) ) ) → ( 2nd ‘ 𝑤 ) ∈ ( 𝑋 × 𝑌 ) ) |
119 |
|
xp1st |
⊢ ( ( 2nd ‘ 𝑤 ) ∈ ( 𝑋 × 𝑌 ) → ( 1st ‘ ( 2nd ‘ 𝑤 ) ) ∈ 𝑋 ) |
120 |
118 119
|
syl |
⊢ ( ( 𝜑 ∧ 𝑤 ∈ ( ( 𝐽 Cn ( 𝐿 ↑ko 𝐾 ) ) × ( 𝑋 × 𝑌 ) ) ) → ( 1st ‘ ( 2nd ‘ 𝑤 ) ) ∈ 𝑋 ) |
121 |
116 120
|
ffvelrnd |
⊢ ( ( 𝜑 ∧ 𝑤 ∈ ( ( 𝐽 Cn ( 𝐿 ↑ko 𝐾 ) ) × ( 𝑋 × 𝑌 ) ) ) → ( ( 1st ‘ 𝑤 ) ‘ ( 1st ‘ ( 2nd ‘ 𝑤 ) ) ) ∈ ( 𝐾 Cn 𝐿 ) ) |
122 |
|
cnf2 |
⊢ ( ( 𝐾 ∈ ( TopOn ‘ 𝑌 ) ∧ 𝐿 ∈ ( TopOn ‘ ∪ 𝐿 ) ∧ ( ( 1st ‘ 𝑤 ) ‘ ( 1st ‘ ( 2nd ‘ 𝑤 ) ) ) ∈ ( 𝐾 Cn 𝐿 ) ) → ( ( 1st ‘ 𝑤 ) ‘ ( 1st ‘ ( 2nd ‘ 𝑤 ) ) ) : 𝑌 ⟶ ∪ 𝐿 ) |
123 |
109 110 121 122
|
syl3anc |
⊢ ( ( 𝜑 ∧ 𝑤 ∈ ( ( 𝐽 Cn ( 𝐿 ↑ko 𝐾 ) ) × ( 𝑋 × 𝑌 ) ) ) → ( ( 1st ‘ 𝑤 ) ‘ ( 1st ‘ ( 2nd ‘ 𝑤 ) ) ) : 𝑌 ⟶ ∪ 𝐿 ) |
124 |
123
|
feqmptd |
⊢ ( ( 𝜑 ∧ 𝑤 ∈ ( ( 𝐽 Cn ( 𝐿 ↑ko 𝐾 ) ) × ( 𝑋 × 𝑌 ) ) ) → ( ( 1st ‘ 𝑤 ) ‘ ( 1st ‘ ( 2nd ‘ 𝑤 ) ) ) = ( 𝑦 ∈ 𝑌 ↦ ( ( ( 1st ‘ 𝑤 ) ‘ ( 1st ‘ ( 2nd ‘ 𝑤 ) ) ) ‘ 𝑦 ) ) ) |
125 |
124
|
mpteq2dva |
⊢ ( 𝜑 → ( 𝑤 ∈ ( ( 𝐽 Cn ( 𝐿 ↑ko 𝐾 ) ) × ( 𝑋 × 𝑌 ) ) ↦ ( ( 1st ‘ 𝑤 ) ‘ ( 1st ‘ ( 2nd ‘ 𝑤 ) ) ) ) = ( 𝑤 ∈ ( ( 𝐽 Cn ( 𝐿 ↑ko 𝐾 ) ) × ( 𝑋 × 𝑌 ) ) ↦ ( 𝑦 ∈ 𝑌 ↦ ( ( ( 1st ‘ 𝑤 ) ‘ ( 1st ‘ ( 2nd ‘ 𝑤 ) ) ) ‘ 𝑦 ) ) ) ) |
126 |
100
|
mpompt |
⊢ ( 𝑤 ∈ ( ( 𝐽 Cn ( 𝐿 ↑ko 𝐾 ) ) × ( 𝑋 × 𝑌 ) ) ↦ ( 1st ‘ 𝑤 ) ) = ( 𝑔 ∈ ( 𝐽 Cn ( 𝐿 ↑ko 𝐾 ) ) , 𝑧 ∈ ( 𝑋 × 𝑌 ) ↦ 𝑔 ) |
127 |
116
|
feqmptd |
⊢ ( ( 𝜑 ∧ 𝑤 ∈ ( ( 𝐽 Cn ( 𝐿 ↑ko 𝐾 ) ) × ( 𝑋 × 𝑌 ) ) ) → ( 1st ‘ 𝑤 ) = ( 𝑥 ∈ 𝑋 ↦ ( ( 1st ‘ 𝑤 ) ‘ 𝑥 ) ) ) |
128 |
127
|
mpteq2dva |
⊢ ( 𝜑 → ( 𝑤 ∈ ( ( 𝐽 Cn ( 𝐿 ↑ko 𝐾 ) ) × ( 𝑋 × 𝑌 ) ) ↦ ( 1st ‘ 𝑤 ) ) = ( 𝑤 ∈ ( ( 𝐽 Cn ( 𝐿 ↑ko 𝐾 ) ) × ( 𝑋 × 𝑌 ) ) ↦ ( 𝑥 ∈ 𝑋 ↦ ( ( 1st ‘ 𝑤 ) ‘ 𝑥 ) ) ) ) |
129 |
126 128
|
eqtr3id |
⊢ ( 𝜑 → ( 𝑔 ∈ ( 𝐽 Cn ( 𝐿 ↑ko 𝐾 ) ) , 𝑧 ∈ ( 𝑋 × 𝑌 ) ↦ 𝑔 ) = ( 𝑤 ∈ ( ( 𝐽 Cn ( 𝐿 ↑ko 𝐾 ) ) × ( 𝑋 × 𝑌 ) ) ↦ ( 𝑥 ∈ 𝑋 ↦ ( ( 1st ‘ 𝑤 ) ‘ 𝑥 ) ) ) ) |
130 |
98 8
|
cnmpt1st |
⊢ ( 𝜑 → ( 𝑔 ∈ ( 𝐽 Cn ( 𝐿 ↑ko 𝐾 ) ) , 𝑧 ∈ ( 𝑋 × 𝑌 ) ↦ 𝑔 ) ∈ ( ( ( ( 𝐿 ↑ko 𝐾 ) ↑ko 𝐽 ) ×t ( 𝐽 ×t 𝐾 ) ) Cn ( ( 𝐿 ↑ko 𝐾 ) ↑ko 𝐽 ) ) ) |
131 |
129 130
|
eqeltrrd |
⊢ ( 𝜑 → ( 𝑤 ∈ ( ( 𝐽 Cn ( 𝐿 ↑ko 𝐾 ) ) × ( 𝑋 × 𝑌 ) ) ↦ ( 𝑥 ∈ 𝑋 ↦ ( ( 1st ‘ 𝑤 ) ‘ 𝑥 ) ) ) ∈ ( ( ( ( 𝐿 ↑ko 𝐾 ) ↑ko 𝐽 ) ×t ( 𝐽 ×t 𝐾 ) ) Cn ( ( 𝐿 ↑ko 𝐾 ) ↑ko 𝐽 ) ) ) |
132 |
102
|
mpompt |
⊢ ( 𝑤 ∈ ( ( 𝐽 Cn ( 𝐿 ↑ko 𝐾 ) ) × ( 𝑋 × 𝑌 ) ) ↦ ( 1st ‘ ( 2nd ‘ 𝑤 ) ) ) = ( 𝑔 ∈ ( 𝐽 Cn ( 𝐿 ↑ko 𝐾 ) ) , 𝑧 ∈ ( 𝑋 × 𝑌 ) ↦ ( 1st ‘ 𝑧 ) ) |
133 |
98 8
|
cnmpt2nd |
⊢ ( 𝜑 → ( 𝑔 ∈ ( 𝐽 Cn ( 𝐿 ↑ko 𝐾 ) ) , 𝑧 ∈ ( 𝑋 × 𝑌 ) ↦ 𝑧 ) ∈ ( ( ( ( 𝐿 ↑ko 𝐾 ) ↑ko 𝐽 ) ×t ( 𝐽 ×t 𝐾 ) ) Cn ( 𝐽 ×t 𝐾 ) ) ) |
134 |
52
|
cbvmptv |
⊢ ( 𝑡 ∈ ( 𝑋 × 𝑌 ) ↦ ( 1st ‘ 𝑡 ) ) = ( 𝑧 ∈ ( 𝑋 × 𝑌 ) ↦ ( 1st ‘ 𝑧 ) ) |
135 |
83
|
mpompt |
⊢ ( 𝑧 ∈ ( 𝑋 × 𝑌 ) ↦ ( 1st ‘ 𝑧 ) ) = ( 𝑥 ∈ 𝑋 , 𝑦 ∈ 𝑌 ↦ 𝑥 ) |
136 |
1 2
|
cnmpt1st |
⊢ ( 𝜑 → ( 𝑥 ∈ 𝑋 , 𝑦 ∈ 𝑌 ↦ 𝑥 ) ∈ ( ( 𝐽 ×t 𝐾 ) Cn 𝐽 ) ) |
137 |
135 136
|
eqeltrid |
⊢ ( 𝜑 → ( 𝑧 ∈ ( 𝑋 × 𝑌 ) ↦ ( 1st ‘ 𝑧 ) ) ∈ ( ( 𝐽 ×t 𝐾 ) Cn 𝐽 ) ) |
138 |
134 137
|
eqeltrid |
⊢ ( 𝜑 → ( 𝑡 ∈ ( 𝑋 × 𝑌 ) ↦ ( 1st ‘ 𝑡 ) ) ∈ ( ( 𝐽 ×t 𝐾 ) Cn 𝐽 ) ) |
139 |
98 8 133 8 138 52
|
cnmpt21 |
⊢ ( 𝜑 → ( 𝑔 ∈ ( 𝐽 Cn ( 𝐿 ↑ko 𝐾 ) ) , 𝑧 ∈ ( 𝑋 × 𝑌 ) ↦ ( 1st ‘ 𝑧 ) ) ∈ ( ( ( ( 𝐿 ↑ko 𝐾 ) ↑ko 𝐽 ) ×t ( 𝐽 ×t 𝐾 ) ) Cn 𝐽 ) ) |
140 |
132 139
|
eqeltrid |
⊢ ( 𝜑 → ( 𝑤 ∈ ( ( 𝐽 Cn ( 𝐿 ↑ko 𝐾 ) ) × ( 𝑋 × 𝑌 ) ) ↦ ( 1st ‘ ( 2nd ‘ 𝑤 ) ) ) ∈ ( ( ( ( 𝐿 ↑ko 𝐾 ) ↑ko 𝐽 ) ×t ( 𝐽 ×t 𝐾 ) ) Cn 𝐽 ) ) |
141 |
|
fveq2 |
⊢ ( 𝑥 = ( 1st ‘ ( 2nd ‘ 𝑤 ) ) → ( ( 1st ‘ 𝑤 ) ‘ 𝑥 ) = ( ( 1st ‘ 𝑤 ) ‘ ( 1st ‘ ( 2nd ‘ 𝑤 ) ) ) ) |
142 |
108 1 113 4 131 140 141
|
cnmptk1p |
⊢ ( 𝜑 → ( 𝑤 ∈ ( ( 𝐽 Cn ( 𝐿 ↑ko 𝐾 ) ) × ( 𝑋 × 𝑌 ) ) ↦ ( ( 1st ‘ 𝑤 ) ‘ ( 1st ‘ ( 2nd ‘ 𝑤 ) ) ) ) ∈ ( ( ( ( 𝐿 ↑ko 𝐾 ) ↑ko 𝐽 ) ×t ( 𝐽 ×t 𝐾 ) ) Cn ( 𝐿 ↑ko 𝐾 ) ) ) |
143 |
125 142
|
eqeltrrd |
⊢ ( 𝜑 → ( 𝑤 ∈ ( ( 𝐽 Cn ( 𝐿 ↑ko 𝐾 ) ) × ( 𝑋 × 𝑌 ) ) ↦ ( 𝑦 ∈ 𝑌 ↦ ( ( ( 1st ‘ 𝑤 ) ‘ ( 1st ‘ ( 2nd ‘ 𝑤 ) ) ) ‘ 𝑦 ) ) ) ∈ ( ( ( ( 𝐿 ↑ko 𝐾 ) ↑ko 𝐽 ) ×t ( 𝐽 ×t 𝐾 ) ) Cn ( 𝐿 ↑ko 𝐾 ) ) ) |
144 |
104
|
mpompt |
⊢ ( 𝑤 ∈ ( ( 𝐽 Cn ( 𝐿 ↑ko 𝐾 ) ) × ( 𝑋 × 𝑌 ) ) ↦ ( 2nd ‘ ( 2nd ‘ 𝑤 ) ) ) = ( 𝑔 ∈ ( 𝐽 Cn ( 𝐿 ↑ko 𝐾 ) ) , 𝑧 ∈ ( 𝑋 × 𝑌 ) ↦ ( 2nd ‘ 𝑧 ) ) |
145 |
61
|
cbvmptv |
⊢ ( 𝑡 ∈ ( 𝑋 × 𝑌 ) ↦ ( 2nd ‘ 𝑡 ) ) = ( 𝑧 ∈ ( 𝑋 × 𝑌 ) ↦ ( 2nd ‘ 𝑧 ) ) |
146 |
85
|
mpompt |
⊢ ( 𝑧 ∈ ( 𝑋 × 𝑌 ) ↦ ( 2nd ‘ 𝑧 ) ) = ( 𝑥 ∈ 𝑋 , 𝑦 ∈ 𝑌 ↦ 𝑦 ) |
147 |
1 2
|
cnmpt2nd |
⊢ ( 𝜑 → ( 𝑥 ∈ 𝑋 , 𝑦 ∈ 𝑌 ↦ 𝑦 ) ∈ ( ( 𝐽 ×t 𝐾 ) Cn 𝐾 ) ) |
148 |
146 147
|
eqeltrid |
⊢ ( 𝜑 → ( 𝑧 ∈ ( 𝑋 × 𝑌 ) ↦ ( 2nd ‘ 𝑧 ) ) ∈ ( ( 𝐽 ×t 𝐾 ) Cn 𝐾 ) ) |
149 |
145 148
|
eqeltrid |
⊢ ( 𝜑 → ( 𝑡 ∈ ( 𝑋 × 𝑌 ) ↦ ( 2nd ‘ 𝑡 ) ) ∈ ( ( 𝐽 ×t 𝐾 ) Cn 𝐾 ) ) |
150 |
98 8 133 8 149 61
|
cnmpt21 |
⊢ ( 𝜑 → ( 𝑔 ∈ ( 𝐽 Cn ( 𝐿 ↑ko 𝐾 ) ) , 𝑧 ∈ ( 𝑋 × 𝑌 ) ↦ ( 2nd ‘ 𝑧 ) ) ∈ ( ( ( ( 𝐿 ↑ko 𝐾 ) ↑ko 𝐽 ) ×t ( 𝐽 ×t 𝐾 ) ) Cn 𝐾 ) ) |
151 |
144 150
|
eqeltrid |
⊢ ( 𝜑 → ( 𝑤 ∈ ( ( 𝐽 Cn ( 𝐿 ↑ko 𝐾 ) ) × ( 𝑋 × 𝑌 ) ) ↦ ( 2nd ‘ ( 2nd ‘ 𝑤 ) ) ) ∈ ( ( ( ( 𝐿 ↑ko 𝐾 ) ↑ko 𝐽 ) ×t ( 𝐽 ×t 𝐾 ) ) Cn 𝐾 ) ) |
152 |
|
fveq2 |
⊢ ( 𝑦 = ( 2nd ‘ ( 2nd ‘ 𝑤 ) ) → ( ( ( 1st ‘ 𝑤 ) ‘ ( 1st ‘ ( 2nd ‘ 𝑤 ) ) ) ‘ 𝑦 ) = ( ( ( 1st ‘ 𝑤 ) ‘ ( 1st ‘ ( 2nd ‘ 𝑤 ) ) ) ‘ ( 2nd ‘ ( 2nd ‘ 𝑤 ) ) ) ) |
153 |
108 2 35 5 143 151 152
|
cnmptk1p |
⊢ ( 𝜑 → ( 𝑤 ∈ ( ( 𝐽 Cn ( 𝐿 ↑ko 𝐾 ) ) × ( 𝑋 × 𝑌 ) ) ↦ ( ( ( 1st ‘ 𝑤 ) ‘ ( 1st ‘ ( 2nd ‘ 𝑤 ) ) ) ‘ ( 2nd ‘ ( 2nd ‘ 𝑤 ) ) ) ) ∈ ( ( ( ( 𝐿 ↑ko 𝐾 ) ↑ko 𝐽 ) ×t ( 𝐽 ×t 𝐾 ) ) Cn 𝐿 ) ) |
154 |
106 153
|
eqeltrrid |
⊢ ( 𝜑 → ( 𝑔 ∈ ( 𝐽 Cn ( 𝐿 ↑ko 𝐾 ) ) , 𝑧 ∈ ( 𝑋 × 𝑌 ) ↦ ( ( 𝑔 ‘ ( 1st ‘ 𝑧 ) ) ‘ ( 2nd ‘ 𝑧 ) ) ) ∈ ( ( ( ( 𝐿 ↑ko 𝐾 ) ↑ko 𝐽 ) ×t ( 𝐽 ×t 𝐾 ) ) Cn 𝐿 ) ) |
155 |
98 8 154
|
cnmpt2k |
⊢ ( 𝜑 → ( 𝑔 ∈ ( 𝐽 Cn ( 𝐿 ↑ko 𝐾 ) ) ↦ ( 𝑧 ∈ ( 𝑋 × 𝑌 ) ↦ ( ( 𝑔 ‘ ( 1st ‘ 𝑧 ) ) ‘ ( 2nd ‘ 𝑧 ) ) ) ) ∈ ( ( ( 𝐿 ↑ko 𝐾 ) ↑ko 𝐽 ) Cn ( 𝐿 ↑ko ( 𝐽 ×t 𝐾 ) ) ) ) |
156 |
89 155
|
eqeltrd |
⊢ ( 𝜑 → ◡ 𝐹 ∈ ( ( ( 𝐿 ↑ko 𝐾 ) ↑ko 𝐽 ) Cn ( 𝐿 ↑ko ( 𝐽 ×t 𝐾 ) ) ) ) |
157 |
|
ishmeo |
⊢ ( 𝐹 ∈ ( ( 𝐿 ↑ko ( 𝐽 ×t 𝐾 ) ) Homeo ( ( 𝐿 ↑ko 𝐾 ) ↑ko 𝐽 ) ) ↔ ( 𝐹 ∈ ( ( 𝐿 ↑ko ( 𝐽 ×t 𝐾 ) ) Cn ( ( 𝐿 ↑ko 𝐾 ) ↑ko 𝐽 ) ) ∧ ◡ 𝐹 ∈ ( ( ( 𝐿 ↑ko 𝐾 ) ↑ko 𝐽 ) Cn ( 𝐿 ↑ko ( 𝐽 ×t 𝐾 ) ) ) ) ) |
158 |
81 156 157
|
sylanbrc |
⊢ ( 𝜑 → 𝐹 ∈ ( ( 𝐿 ↑ko ( 𝐽 ×t 𝐾 ) ) Homeo ( ( 𝐿 ↑ko 𝐾 ) ↑ko 𝐽 ) ) ) |