Step |
Hyp |
Ref |
Expression |
1 |
|
xkoopn.x |
⊢ 𝑋 = ∪ 𝑅 |
2 |
|
xkoopn.r |
⊢ ( 𝜑 → 𝑅 ∈ Top ) |
3 |
|
xkoopn.s |
⊢ ( 𝜑 → 𝑆 ∈ Top ) |
4 |
|
xkoopn.a |
⊢ ( 𝜑 → 𝐴 ⊆ 𝑋 ) |
5 |
|
xkoopn.c |
⊢ ( 𝜑 → ( 𝑅 ↾t 𝐴 ) ∈ Comp ) |
6 |
|
xkoopn.u |
⊢ ( 𝜑 → 𝑈 ∈ 𝑆 ) |
7 |
|
ovex |
⊢ ( 𝑅 Cn 𝑆 ) ∈ V |
8 |
7
|
pwex |
⊢ 𝒫 ( 𝑅 Cn 𝑆 ) ∈ V |
9 |
|
eqid |
⊢ { 𝑥 ∈ 𝒫 𝑋 ∣ ( 𝑅 ↾t 𝑥 ) ∈ Comp } = { 𝑥 ∈ 𝒫 𝑋 ∣ ( 𝑅 ↾t 𝑥 ) ∈ Comp } |
10 |
|
eqid |
⊢ ( 𝑘 ∈ { 𝑥 ∈ 𝒫 𝑋 ∣ ( 𝑅 ↾t 𝑥 ) ∈ Comp } , 𝑣 ∈ 𝑆 ↦ { 𝑓 ∈ ( 𝑅 Cn 𝑆 ) ∣ ( 𝑓 “ 𝑘 ) ⊆ 𝑣 } ) = ( 𝑘 ∈ { 𝑥 ∈ 𝒫 𝑋 ∣ ( 𝑅 ↾t 𝑥 ) ∈ Comp } , 𝑣 ∈ 𝑆 ↦ { 𝑓 ∈ ( 𝑅 Cn 𝑆 ) ∣ ( 𝑓 “ 𝑘 ) ⊆ 𝑣 } ) |
11 |
1 9 10
|
xkotf |
⊢ ( 𝑘 ∈ { 𝑥 ∈ 𝒫 𝑋 ∣ ( 𝑅 ↾t 𝑥 ) ∈ Comp } , 𝑣 ∈ 𝑆 ↦ { 𝑓 ∈ ( 𝑅 Cn 𝑆 ) ∣ ( 𝑓 “ 𝑘 ) ⊆ 𝑣 } ) : ( { 𝑥 ∈ 𝒫 𝑋 ∣ ( 𝑅 ↾t 𝑥 ) ∈ Comp } × 𝑆 ) ⟶ 𝒫 ( 𝑅 Cn 𝑆 ) |
12 |
|
frn |
⊢ ( ( 𝑘 ∈ { 𝑥 ∈ 𝒫 𝑋 ∣ ( 𝑅 ↾t 𝑥 ) ∈ Comp } , 𝑣 ∈ 𝑆 ↦ { 𝑓 ∈ ( 𝑅 Cn 𝑆 ) ∣ ( 𝑓 “ 𝑘 ) ⊆ 𝑣 } ) : ( { 𝑥 ∈ 𝒫 𝑋 ∣ ( 𝑅 ↾t 𝑥 ) ∈ Comp } × 𝑆 ) ⟶ 𝒫 ( 𝑅 Cn 𝑆 ) → ran ( 𝑘 ∈ { 𝑥 ∈ 𝒫 𝑋 ∣ ( 𝑅 ↾t 𝑥 ) ∈ Comp } , 𝑣 ∈ 𝑆 ↦ { 𝑓 ∈ ( 𝑅 Cn 𝑆 ) ∣ ( 𝑓 “ 𝑘 ) ⊆ 𝑣 } ) ⊆ 𝒫 ( 𝑅 Cn 𝑆 ) ) |
13 |
11 12
|
ax-mp |
⊢ ran ( 𝑘 ∈ { 𝑥 ∈ 𝒫 𝑋 ∣ ( 𝑅 ↾t 𝑥 ) ∈ Comp } , 𝑣 ∈ 𝑆 ↦ { 𝑓 ∈ ( 𝑅 Cn 𝑆 ) ∣ ( 𝑓 “ 𝑘 ) ⊆ 𝑣 } ) ⊆ 𝒫 ( 𝑅 Cn 𝑆 ) |
14 |
8 13
|
ssexi |
⊢ ran ( 𝑘 ∈ { 𝑥 ∈ 𝒫 𝑋 ∣ ( 𝑅 ↾t 𝑥 ) ∈ Comp } , 𝑣 ∈ 𝑆 ↦ { 𝑓 ∈ ( 𝑅 Cn 𝑆 ) ∣ ( 𝑓 “ 𝑘 ) ⊆ 𝑣 } ) ∈ V |
15 |
|
ssfii |
⊢ ( ran ( 𝑘 ∈ { 𝑥 ∈ 𝒫 𝑋 ∣ ( 𝑅 ↾t 𝑥 ) ∈ Comp } , 𝑣 ∈ 𝑆 ↦ { 𝑓 ∈ ( 𝑅 Cn 𝑆 ) ∣ ( 𝑓 “ 𝑘 ) ⊆ 𝑣 } ) ∈ V → ran ( 𝑘 ∈ { 𝑥 ∈ 𝒫 𝑋 ∣ ( 𝑅 ↾t 𝑥 ) ∈ Comp } , 𝑣 ∈ 𝑆 ↦ { 𝑓 ∈ ( 𝑅 Cn 𝑆 ) ∣ ( 𝑓 “ 𝑘 ) ⊆ 𝑣 } ) ⊆ ( fi ‘ ran ( 𝑘 ∈ { 𝑥 ∈ 𝒫 𝑋 ∣ ( 𝑅 ↾t 𝑥 ) ∈ Comp } , 𝑣 ∈ 𝑆 ↦ { 𝑓 ∈ ( 𝑅 Cn 𝑆 ) ∣ ( 𝑓 “ 𝑘 ) ⊆ 𝑣 } ) ) ) |
16 |
14 15
|
ax-mp |
⊢ ran ( 𝑘 ∈ { 𝑥 ∈ 𝒫 𝑋 ∣ ( 𝑅 ↾t 𝑥 ) ∈ Comp } , 𝑣 ∈ 𝑆 ↦ { 𝑓 ∈ ( 𝑅 Cn 𝑆 ) ∣ ( 𝑓 “ 𝑘 ) ⊆ 𝑣 } ) ⊆ ( fi ‘ ran ( 𝑘 ∈ { 𝑥 ∈ 𝒫 𝑋 ∣ ( 𝑅 ↾t 𝑥 ) ∈ Comp } , 𝑣 ∈ 𝑆 ↦ { 𝑓 ∈ ( 𝑅 Cn 𝑆 ) ∣ ( 𝑓 “ 𝑘 ) ⊆ 𝑣 } ) ) |
17 |
|
fvex |
⊢ ( fi ‘ ran ( 𝑘 ∈ { 𝑥 ∈ 𝒫 𝑋 ∣ ( 𝑅 ↾t 𝑥 ) ∈ Comp } , 𝑣 ∈ 𝑆 ↦ { 𝑓 ∈ ( 𝑅 Cn 𝑆 ) ∣ ( 𝑓 “ 𝑘 ) ⊆ 𝑣 } ) ) ∈ V |
18 |
|
bastg |
⊢ ( ( fi ‘ ran ( 𝑘 ∈ { 𝑥 ∈ 𝒫 𝑋 ∣ ( 𝑅 ↾t 𝑥 ) ∈ Comp } , 𝑣 ∈ 𝑆 ↦ { 𝑓 ∈ ( 𝑅 Cn 𝑆 ) ∣ ( 𝑓 “ 𝑘 ) ⊆ 𝑣 } ) ) ∈ V → ( fi ‘ ran ( 𝑘 ∈ { 𝑥 ∈ 𝒫 𝑋 ∣ ( 𝑅 ↾t 𝑥 ) ∈ Comp } , 𝑣 ∈ 𝑆 ↦ { 𝑓 ∈ ( 𝑅 Cn 𝑆 ) ∣ ( 𝑓 “ 𝑘 ) ⊆ 𝑣 } ) ) ⊆ ( topGen ‘ ( fi ‘ ran ( 𝑘 ∈ { 𝑥 ∈ 𝒫 𝑋 ∣ ( 𝑅 ↾t 𝑥 ) ∈ Comp } , 𝑣 ∈ 𝑆 ↦ { 𝑓 ∈ ( 𝑅 Cn 𝑆 ) ∣ ( 𝑓 “ 𝑘 ) ⊆ 𝑣 } ) ) ) ) |
19 |
17 18
|
ax-mp |
⊢ ( fi ‘ ran ( 𝑘 ∈ { 𝑥 ∈ 𝒫 𝑋 ∣ ( 𝑅 ↾t 𝑥 ) ∈ Comp } , 𝑣 ∈ 𝑆 ↦ { 𝑓 ∈ ( 𝑅 Cn 𝑆 ) ∣ ( 𝑓 “ 𝑘 ) ⊆ 𝑣 } ) ) ⊆ ( topGen ‘ ( fi ‘ ran ( 𝑘 ∈ { 𝑥 ∈ 𝒫 𝑋 ∣ ( 𝑅 ↾t 𝑥 ) ∈ Comp } , 𝑣 ∈ 𝑆 ↦ { 𝑓 ∈ ( 𝑅 Cn 𝑆 ) ∣ ( 𝑓 “ 𝑘 ) ⊆ 𝑣 } ) ) ) |
20 |
16 19
|
sstri |
⊢ ran ( 𝑘 ∈ { 𝑥 ∈ 𝒫 𝑋 ∣ ( 𝑅 ↾t 𝑥 ) ∈ Comp } , 𝑣 ∈ 𝑆 ↦ { 𝑓 ∈ ( 𝑅 Cn 𝑆 ) ∣ ( 𝑓 “ 𝑘 ) ⊆ 𝑣 } ) ⊆ ( topGen ‘ ( fi ‘ ran ( 𝑘 ∈ { 𝑥 ∈ 𝒫 𝑋 ∣ ( 𝑅 ↾t 𝑥 ) ∈ Comp } , 𝑣 ∈ 𝑆 ↦ { 𝑓 ∈ ( 𝑅 Cn 𝑆 ) ∣ ( 𝑓 “ 𝑘 ) ⊆ 𝑣 } ) ) ) |
21 |
|
oveq2 |
⊢ ( 𝑥 = 𝐴 → ( 𝑅 ↾t 𝑥 ) = ( 𝑅 ↾t 𝐴 ) ) |
22 |
21
|
eleq1d |
⊢ ( 𝑥 = 𝐴 → ( ( 𝑅 ↾t 𝑥 ) ∈ Comp ↔ ( 𝑅 ↾t 𝐴 ) ∈ Comp ) ) |
23 |
1
|
topopn |
⊢ ( 𝑅 ∈ Top → 𝑋 ∈ 𝑅 ) |
24 |
|
elpw2g |
⊢ ( 𝑋 ∈ 𝑅 → ( 𝐴 ∈ 𝒫 𝑋 ↔ 𝐴 ⊆ 𝑋 ) ) |
25 |
2 23 24
|
3syl |
⊢ ( 𝜑 → ( 𝐴 ∈ 𝒫 𝑋 ↔ 𝐴 ⊆ 𝑋 ) ) |
26 |
4 25
|
mpbird |
⊢ ( 𝜑 → 𝐴 ∈ 𝒫 𝑋 ) |
27 |
22 26 5
|
elrabd |
⊢ ( 𝜑 → 𝐴 ∈ { 𝑥 ∈ 𝒫 𝑋 ∣ ( 𝑅 ↾t 𝑥 ) ∈ Comp } ) |
28 |
|
eqidd |
⊢ ( 𝜑 → { 𝑓 ∈ ( 𝑅 Cn 𝑆 ) ∣ ( 𝑓 “ 𝐴 ) ⊆ 𝑈 } = { 𝑓 ∈ ( 𝑅 Cn 𝑆 ) ∣ ( 𝑓 “ 𝐴 ) ⊆ 𝑈 } ) |
29 |
|
imaeq2 |
⊢ ( 𝑘 = 𝐴 → ( 𝑓 “ 𝑘 ) = ( 𝑓 “ 𝐴 ) ) |
30 |
29
|
sseq1d |
⊢ ( 𝑘 = 𝐴 → ( ( 𝑓 “ 𝑘 ) ⊆ 𝑣 ↔ ( 𝑓 “ 𝐴 ) ⊆ 𝑣 ) ) |
31 |
30
|
rabbidv |
⊢ ( 𝑘 = 𝐴 → { 𝑓 ∈ ( 𝑅 Cn 𝑆 ) ∣ ( 𝑓 “ 𝑘 ) ⊆ 𝑣 } = { 𝑓 ∈ ( 𝑅 Cn 𝑆 ) ∣ ( 𝑓 “ 𝐴 ) ⊆ 𝑣 } ) |
32 |
31
|
eqeq2d |
⊢ ( 𝑘 = 𝐴 → ( { 𝑓 ∈ ( 𝑅 Cn 𝑆 ) ∣ ( 𝑓 “ 𝐴 ) ⊆ 𝑈 } = { 𝑓 ∈ ( 𝑅 Cn 𝑆 ) ∣ ( 𝑓 “ 𝑘 ) ⊆ 𝑣 } ↔ { 𝑓 ∈ ( 𝑅 Cn 𝑆 ) ∣ ( 𝑓 “ 𝐴 ) ⊆ 𝑈 } = { 𝑓 ∈ ( 𝑅 Cn 𝑆 ) ∣ ( 𝑓 “ 𝐴 ) ⊆ 𝑣 } ) ) |
33 |
|
sseq2 |
⊢ ( 𝑣 = 𝑈 → ( ( 𝑓 “ 𝐴 ) ⊆ 𝑣 ↔ ( 𝑓 “ 𝐴 ) ⊆ 𝑈 ) ) |
34 |
33
|
rabbidv |
⊢ ( 𝑣 = 𝑈 → { 𝑓 ∈ ( 𝑅 Cn 𝑆 ) ∣ ( 𝑓 “ 𝐴 ) ⊆ 𝑣 } = { 𝑓 ∈ ( 𝑅 Cn 𝑆 ) ∣ ( 𝑓 “ 𝐴 ) ⊆ 𝑈 } ) |
35 |
34
|
eqeq2d |
⊢ ( 𝑣 = 𝑈 → ( { 𝑓 ∈ ( 𝑅 Cn 𝑆 ) ∣ ( 𝑓 “ 𝐴 ) ⊆ 𝑈 } = { 𝑓 ∈ ( 𝑅 Cn 𝑆 ) ∣ ( 𝑓 “ 𝐴 ) ⊆ 𝑣 } ↔ { 𝑓 ∈ ( 𝑅 Cn 𝑆 ) ∣ ( 𝑓 “ 𝐴 ) ⊆ 𝑈 } = { 𝑓 ∈ ( 𝑅 Cn 𝑆 ) ∣ ( 𝑓 “ 𝐴 ) ⊆ 𝑈 } ) ) |
36 |
32 35
|
rspc2ev |
⊢ ( ( 𝐴 ∈ { 𝑥 ∈ 𝒫 𝑋 ∣ ( 𝑅 ↾t 𝑥 ) ∈ Comp } ∧ 𝑈 ∈ 𝑆 ∧ { 𝑓 ∈ ( 𝑅 Cn 𝑆 ) ∣ ( 𝑓 “ 𝐴 ) ⊆ 𝑈 } = { 𝑓 ∈ ( 𝑅 Cn 𝑆 ) ∣ ( 𝑓 “ 𝐴 ) ⊆ 𝑈 } ) → ∃ 𝑘 ∈ { 𝑥 ∈ 𝒫 𝑋 ∣ ( 𝑅 ↾t 𝑥 ) ∈ Comp } ∃ 𝑣 ∈ 𝑆 { 𝑓 ∈ ( 𝑅 Cn 𝑆 ) ∣ ( 𝑓 “ 𝐴 ) ⊆ 𝑈 } = { 𝑓 ∈ ( 𝑅 Cn 𝑆 ) ∣ ( 𝑓 “ 𝑘 ) ⊆ 𝑣 } ) |
37 |
27 6 28 36
|
syl3anc |
⊢ ( 𝜑 → ∃ 𝑘 ∈ { 𝑥 ∈ 𝒫 𝑋 ∣ ( 𝑅 ↾t 𝑥 ) ∈ Comp } ∃ 𝑣 ∈ 𝑆 { 𝑓 ∈ ( 𝑅 Cn 𝑆 ) ∣ ( 𝑓 “ 𝐴 ) ⊆ 𝑈 } = { 𝑓 ∈ ( 𝑅 Cn 𝑆 ) ∣ ( 𝑓 “ 𝑘 ) ⊆ 𝑣 } ) |
38 |
7
|
rabex |
⊢ { 𝑓 ∈ ( 𝑅 Cn 𝑆 ) ∣ ( 𝑓 “ 𝐴 ) ⊆ 𝑈 } ∈ V |
39 |
|
eqeq1 |
⊢ ( 𝑦 = { 𝑓 ∈ ( 𝑅 Cn 𝑆 ) ∣ ( 𝑓 “ 𝐴 ) ⊆ 𝑈 } → ( 𝑦 = { 𝑓 ∈ ( 𝑅 Cn 𝑆 ) ∣ ( 𝑓 “ 𝑘 ) ⊆ 𝑣 } ↔ { 𝑓 ∈ ( 𝑅 Cn 𝑆 ) ∣ ( 𝑓 “ 𝐴 ) ⊆ 𝑈 } = { 𝑓 ∈ ( 𝑅 Cn 𝑆 ) ∣ ( 𝑓 “ 𝑘 ) ⊆ 𝑣 } ) ) |
40 |
39
|
2rexbidv |
⊢ ( 𝑦 = { 𝑓 ∈ ( 𝑅 Cn 𝑆 ) ∣ ( 𝑓 “ 𝐴 ) ⊆ 𝑈 } → ( ∃ 𝑘 ∈ { 𝑥 ∈ 𝒫 𝑋 ∣ ( 𝑅 ↾t 𝑥 ) ∈ Comp } ∃ 𝑣 ∈ 𝑆 𝑦 = { 𝑓 ∈ ( 𝑅 Cn 𝑆 ) ∣ ( 𝑓 “ 𝑘 ) ⊆ 𝑣 } ↔ ∃ 𝑘 ∈ { 𝑥 ∈ 𝒫 𝑋 ∣ ( 𝑅 ↾t 𝑥 ) ∈ Comp } ∃ 𝑣 ∈ 𝑆 { 𝑓 ∈ ( 𝑅 Cn 𝑆 ) ∣ ( 𝑓 “ 𝐴 ) ⊆ 𝑈 } = { 𝑓 ∈ ( 𝑅 Cn 𝑆 ) ∣ ( 𝑓 “ 𝑘 ) ⊆ 𝑣 } ) ) |
41 |
10
|
rnmpo |
⊢ ran ( 𝑘 ∈ { 𝑥 ∈ 𝒫 𝑋 ∣ ( 𝑅 ↾t 𝑥 ) ∈ Comp } , 𝑣 ∈ 𝑆 ↦ { 𝑓 ∈ ( 𝑅 Cn 𝑆 ) ∣ ( 𝑓 “ 𝑘 ) ⊆ 𝑣 } ) = { 𝑦 ∣ ∃ 𝑘 ∈ { 𝑥 ∈ 𝒫 𝑋 ∣ ( 𝑅 ↾t 𝑥 ) ∈ Comp } ∃ 𝑣 ∈ 𝑆 𝑦 = { 𝑓 ∈ ( 𝑅 Cn 𝑆 ) ∣ ( 𝑓 “ 𝑘 ) ⊆ 𝑣 } } |
42 |
38 40 41
|
elab2 |
⊢ ( { 𝑓 ∈ ( 𝑅 Cn 𝑆 ) ∣ ( 𝑓 “ 𝐴 ) ⊆ 𝑈 } ∈ ran ( 𝑘 ∈ { 𝑥 ∈ 𝒫 𝑋 ∣ ( 𝑅 ↾t 𝑥 ) ∈ Comp } , 𝑣 ∈ 𝑆 ↦ { 𝑓 ∈ ( 𝑅 Cn 𝑆 ) ∣ ( 𝑓 “ 𝑘 ) ⊆ 𝑣 } ) ↔ ∃ 𝑘 ∈ { 𝑥 ∈ 𝒫 𝑋 ∣ ( 𝑅 ↾t 𝑥 ) ∈ Comp } ∃ 𝑣 ∈ 𝑆 { 𝑓 ∈ ( 𝑅 Cn 𝑆 ) ∣ ( 𝑓 “ 𝐴 ) ⊆ 𝑈 } = { 𝑓 ∈ ( 𝑅 Cn 𝑆 ) ∣ ( 𝑓 “ 𝑘 ) ⊆ 𝑣 } ) |
43 |
37 42
|
sylibr |
⊢ ( 𝜑 → { 𝑓 ∈ ( 𝑅 Cn 𝑆 ) ∣ ( 𝑓 “ 𝐴 ) ⊆ 𝑈 } ∈ ran ( 𝑘 ∈ { 𝑥 ∈ 𝒫 𝑋 ∣ ( 𝑅 ↾t 𝑥 ) ∈ Comp } , 𝑣 ∈ 𝑆 ↦ { 𝑓 ∈ ( 𝑅 Cn 𝑆 ) ∣ ( 𝑓 “ 𝑘 ) ⊆ 𝑣 } ) ) |
44 |
20 43
|
sselid |
⊢ ( 𝜑 → { 𝑓 ∈ ( 𝑅 Cn 𝑆 ) ∣ ( 𝑓 “ 𝐴 ) ⊆ 𝑈 } ∈ ( topGen ‘ ( fi ‘ ran ( 𝑘 ∈ { 𝑥 ∈ 𝒫 𝑋 ∣ ( 𝑅 ↾t 𝑥 ) ∈ Comp } , 𝑣 ∈ 𝑆 ↦ { 𝑓 ∈ ( 𝑅 Cn 𝑆 ) ∣ ( 𝑓 “ 𝑘 ) ⊆ 𝑣 } ) ) ) ) |
45 |
1 9 10
|
xkoval |
⊢ ( ( 𝑅 ∈ Top ∧ 𝑆 ∈ Top ) → ( 𝑆 ↑ko 𝑅 ) = ( topGen ‘ ( fi ‘ ran ( 𝑘 ∈ { 𝑥 ∈ 𝒫 𝑋 ∣ ( 𝑅 ↾t 𝑥 ) ∈ Comp } , 𝑣 ∈ 𝑆 ↦ { 𝑓 ∈ ( 𝑅 Cn 𝑆 ) ∣ ( 𝑓 “ 𝑘 ) ⊆ 𝑣 } ) ) ) ) |
46 |
2 3 45
|
syl2anc |
⊢ ( 𝜑 → ( 𝑆 ↑ko 𝑅 ) = ( topGen ‘ ( fi ‘ ran ( 𝑘 ∈ { 𝑥 ∈ 𝒫 𝑋 ∣ ( 𝑅 ↾t 𝑥 ) ∈ Comp } , 𝑣 ∈ 𝑆 ↦ { 𝑓 ∈ ( 𝑅 Cn 𝑆 ) ∣ ( 𝑓 “ 𝑘 ) ⊆ 𝑣 } ) ) ) ) |
47 |
44 46
|
eleqtrrd |
⊢ ( 𝜑 → { 𝑓 ∈ ( 𝑅 Cn 𝑆 ) ∣ ( 𝑓 “ 𝐴 ) ⊆ 𝑈 } ∈ ( 𝑆 ↑ko 𝑅 ) ) |