Step |
Hyp |
Ref |
Expression |
1 |
|
xkoptsub.x |
⊢ 𝑋 = ∪ 𝑅 |
2 |
|
xkoptsub.j |
⊢ 𝐽 = ( ∏t ‘ ( 𝑋 × { 𝑆 } ) ) |
3 |
1
|
topopn |
⊢ ( 𝑅 ∈ Top → 𝑋 ∈ 𝑅 ) |
4 |
3
|
adantr |
⊢ ( ( 𝑅 ∈ Top ∧ 𝑆 ∈ Top ) → 𝑋 ∈ 𝑅 ) |
5 |
|
fconstg |
⊢ ( 𝑆 ∈ Top → ( 𝑋 × { 𝑆 } ) : 𝑋 ⟶ { 𝑆 } ) |
6 |
5
|
adantl |
⊢ ( ( 𝑅 ∈ Top ∧ 𝑆 ∈ Top ) → ( 𝑋 × { 𝑆 } ) : 𝑋 ⟶ { 𝑆 } ) |
7 |
6
|
ffnd |
⊢ ( ( 𝑅 ∈ Top ∧ 𝑆 ∈ Top ) → ( 𝑋 × { 𝑆 } ) Fn 𝑋 ) |
8 |
|
eqid |
⊢ { 𝑥 ∣ ∃ 𝑔 ( ( 𝑔 Fn 𝑋 ∧ ∀ 𝑦 ∈ 𝑋 ( 𝑔 ‘ 𝑦 ) ∈ ( ( 𝑋 × { 𝑆 } ) ‘ 𝑦 ) ∧ ∃ 𝑧 ∈ Fin ∀ 𝑦 ∈ ( 𝑋 ∖ 𝑧 ) ( 𝑔 ‘ 𝑦 ) = ∪ ( ( 𝑋 × { 𝑆 } ) ‘ 𝑦 ) ) ∧ 𝑥 = X 𝑦 ∈ 𝑋 ( 𝑔 ‘ 𝑦 ) ) } = { 𝑥 ∣ ∃ 𝑔 ( ( 𝑔 Fn 𝑋 ∧ ∀ 𝑦 ∈ 𝑋 ( 𝑔 ‘ 𝑦 ) ∈ ( ( 𝑋 × { 𝑆 } ) ‘ 𝑦 ) ∧ ∃ 𝑧 ∈ Fin ∀ 𝑦 ∈ ( 𝑋 ∖ 𝑧 ) ( 𝑔 ‘ 𝑦 ) = ∪ ( ( 𝑋 × { 𝑆 } ) ‘ 𝑦 ) ) ∧ 𝑥 = X 𝑦 ∈ 𝑋 ( 𝑔 ‘ 𝑦 ) ) } |
9 |
8
|
ptval |
⊢ ( ( 𝑋 ∈ 𝑅 ∧ ( 𝑋 × { 𝑆 } ) Fn 𝑋 ) → ( ∏t ‘ ( 𝑋 × { 𝑆 } ) ) = ( topGen ‘ { 𝑥 ∣ ∃ 𝑔 ( ( 𝑔 Fn 𝑋 ∧ ∀ 𝑦 ∈ 𝑋 ( 𝑔 ‘ 𝑦 ) ∈ ( ( 𝑋 × { 𝑆 } ) ‘ 𝑦 ) ∧ ∃ 𝑧 ∈ Fin ∀ 𝑦 ∈ ( 𝑋 ∖ 𝑧 ) ( 𝑔 ‘ 𝑦 ) = ∪ ( ( 𝑋 × { 𝑆 } ) ‘ 𝑦 ) ) ∧ 𝑥 = X 𝑦 ∈ 𝑋 ( 𝑔 ‘ 𝑦 ) ) } ) ) |
10 |
4 7 9
|
syl2anc |
⊢ ( ( 𝑅 ∈ Top ∧ 𝑆 ∈ Top ) → ( ∏t ‘ ( 𝑋 × { 𝑆 } ) ) = ( topGen ‘ { 𝑥 ∣ ∃ 𝑔 ( ( 𝑔 Fn 𝑋 ∧ ∀ 𝑦 ∈ 𝑋 ( 𝑔 ‘ 𝑦 ) ∈ ( ( 𝑋 × { 𝑆 } ) ‘ 𝑦 ) ∧ ∃ 𝑧 ∈ Fin ∀ 𝑦 ∈ ( 𝑋 ∖ 𝑧 ) ( 𝑔 ‘ 𝑦 ) = ∪ ( ( 𝑋 × { 𝑆 } ) ‘ 𝑦 ) ) ∧ 𝑥 = X 𝑦 ∈ 𝑋 ( 𝑔 ‘ 𝑦 ) ) } ) ) |
11 |
|
simpr |
⊢ ( ( 𝑅 ∈ Top ∧ 𝑆 ∈ Top ) → 𝑆 ∈ Top ) |
12 |
11
|
snssd |
⊢ ( ( 𝑅 ∈ Top ∧ 𝑆 ∈ Top ) → { 𝑆 } ⊆ Top ) |
13 |
6 12
|
fssd |
⊢ ( ( 𝑅 ∈ Top ∧ 𝑆 ∈ Top ) → ( 𝑋 × { 𝑆 } ) : 𝑋 ⟶ Top ) |
14 |
|
eqid |
⊢ X 𝑛 ∈ 𝑋 ∪ ( ( 𝑋 × { 𝑆 } ) ‘ 𝑛 ) = X 𝑛 ∈ 𝑋 ∪ ( ( 𝑋 × { 𝑆 } ) ‘ 𝑛 ) |
15 |
8 14
|
ptbasfi |
⊢ ( ( 𝑋 ∈ 𝑅 ∧ ( 𝑋 × { 𝑆 } ) : 𝑋 ⟶ Top ) → { 𝑥 ∣ ∃ 𝑔 ( ( 𝑔 Fn 𝑋 ∧ ∀ 𝑦 ∈ 𝑋 ( 𝑔 ‘ 𝑦 ) ∈ ( ( 𝑋 × { 𝑆 } ) ‘ 𝑦 ) ∧ ∃ 𝑧 ∈ Fin ∀ 𝑦 ∈ ( 𝑋 ∖ 𝑧 ) ( 𝑔 ‘ 𝑦 ) = ∪ ( ( 𝑋 × { 𝑆 } ) ‘ 𝑦 ) ) ∧ 𝑥 = X 𝑦 ∈ 𝑋 ( 𝑔 ‘ 𝑦 ) ) } = ( fi ‘ ( { X 𝑛 ∈ 𝑋 ∪ ( ( 𝑋 × { 𝑆 } ) ‘ 𝑛 ) } ∪ ran ( 𝑘 ∈ 𝑋 , 𝑢 ∈ ( ( 𝑋 × { 𝑆 } ) ‘ 𝑘 ) ↦ ( ◡ ( 𝑤 ∈ X 𝑛 ∈ 𝑋 ∪ ( ( 𝑋 × { 𝑆 } ) ‘ 𝑛 ) ↦ ( 𝑤 ‘ 𝑘 ) ) “ 𝑢 ) ) ) ) ) |
16 |
4 13 15
|
syl2anc |
⊢ ( ( 𝑅 ∈ Top ∧ 𝑆 ∈ Top ) → { 𝑥 ∣ ∃ 𝑔 ( ( 𝑔 Fn 𝑋 ∧ ∀ 𝑦 ∈ 𝑋 ( 𝑔 ‘ 𝑦 ) ∈ ( ( 𝑋 × { 𝑆 } ) ‘ 𝑦 ) ∧ ∃ 𝑧 ∈ Fin ∀ 𝑦 ∈ ( 𝑋 ∖ 𝑧 ) ( 𝑔 ‘ 𝑦 ) = ∪ ( ( 𝑋 × { 𝑆 } ) ‘ 𝑦 ) ) ∧ 𝑥 = X 𝑦 ∈ 𝑋 ( 𝑔 ‘ 𝑦 ) ) } = ( fi ‘ ( { X 𝑛 ∈ 𝑋 ∪ ( ( 𝑋 × { 𝑆 } ) ‘ 𝑛 ) } ∪ ran ( 𝑘 ∈ 𝑋 , 𝑢 ∈ ( ( 𝑋 × { 𝑆 } ) ‘ 𝑘 ) ↦ ( ◡ ( 𝑤 ∈ X 𝑛 ∈ 𝑋 ∪ ( ( 𝑋 × { 𝑆 } ) ‘ 𝑛 ) ↦ ( 𝑤 ‘ 𝑘 ) ) “ 𝑢 ) ) ) ) ) |
17 |
|
fvconst2g |
⊢ ( ( 𝑆 ∈ Top ∧ 𝑛 ∈ 𝑋 ) → ( ( 𝑋 × { 𝑆 } ) ‘ 𝑛 ) = 𝑆 ) |
18 |
17
|
adantll |
⊢ ( ( ( 𝑅 ∈ Top ∧ 𝑆 ∈ Top ) ∧ 𝑛 ∈ 𝑋 ) → ( ( 𝑋 × { 𝑆 } ) ‘ 𝑛 ) = 𝑆 ) |
19 |
18
|
unieqd |
⊢ ( ( ( 𝑅 ∈ Top ∧ 𝑆 ∈ Top ) ∧ 𝑛 ∈ 𝑋 ) → ∪ ( ( 𝑋 × { 𝑆 } ) ‘ 𝑛 ) = ∪ 𝑆 ) |
20 |
19
|
ixpeq2dva |
⊢ ( ( 𝑅 ∈ Top ∧ 𝑆 ∈ Top ) → X 𝑛 ∈ 𝑋 ∪ ( ( 𝑋 × { 𝑆 } ) ‘ 𝑛 ) = X 𝑛 ∈ 𝑋 ∪ 𝑆 ) |
21 |
|
eqid |
⊢ ∪ 𝑆 = ∪ 𝑆 |
22 |
21
|
topopn |
⊢ ( 𝑆 ∈ Top → ∪ 𝑆 ∈ 𝑆 ) |
23 |
|
ixpconstg |
⊢ ( ( 𝑋 ∈ 𝑅 ∧ ∪ 𝑆 ∈ 𝑆 ) → X 𝑛 ∈ 𝑋 ∪ 𝑆 = ( ∪ 𝑆 ↑m 𝑋 ) ) |
24 |
3 22 23
|
syl2an |
⊢ ( ( 𝑅 ∈ Top ∧ 𝑆 ∈ Top ) → X 𝑛 ∈ 𝑋 ∪ 𝑆 = ( ∪ 𝑆 ↑m 𝑋 ) ) |
25 |
20 24
|
eqtrd |
⊢ ( ( 𝑅 ∈ Top ∧ 𝑆 ∈ Top ) → X 𝑛 ∈ 𝑋 ∪ ( ( 𝑋 × { 𝑆 } ) ‘ 𝑛 ) = ( ∪ 𝑆 ↑m 𝑋 ) ) |
26 |
25
|
sneqd |
⊢ ( ( 𝑅 ∈ Top ∧ 𝑆 ∈ Top ) → { X 𝑛 ∈ 𝑋 ∪ ( ( 𝑋 × { 𝑆 } ) ‘ 𝑛 ) } = { ( ∪ 𝑆 ↑m 𝑋 ) } ) |
27 |
|
eqid |
⊢ 𝑋 = 𝑋 |
28 |
|
fvconst2g |
⊢ ( ( 𝑆 ∈ Top ∧ 𝑘 ∈ 𝑋 ) → ( ( 𝑋 × { 𝑆 } ) ‘ 𝑘 ) = 𝑆 ) |
29 |
28
|
adantll |
⊢ ( ( ( 𝑅 ∈ Top ∧ 𝑆 ∈ Top ) ∧ 𝑘 ∈ 𝑋 ) → ( ( 𝑋 × { 𝑆 } ) ‘ 𝑘 ) = 𝑆 ) |
30 |
25
|
adantr |
⊢ ( ( ( 𝑅 ∈ Top ∧ 𝑆 ∈ Top ) ∧ 𝑘 ∈ 𝑋 ) → X 𝑛 ∈ 𝑋 ∪ ( ( 𝑋 × { 𝑆 } ) ‘ 𝑛 ) = ( ∪ 𝑆 ↑m 𝑋 ) ) |
31 |
30
|
mpteq1d |
⊢ ( ( ( 𝑅 ∈ Top ∧ 𝑆 ∈ Top ) ∧ 𝑘 ∈ 𝑋 ) → ( 𝑤 ∈ X 𝑛 ∈ 𝑋 ∪ ( ( 𝑋 × { 𝑆 } ) ‘ 𝑛 ) ↦ ( 𝑤 ‘ 𝑘 ) ) = ( 𝑤 ∈ ( ∪ 𝑆 ↑m 𝑋 ) ↦ ( 𝑤 ‘ 𝑘 ) ) ) |
32 |
31
|
cnveqd |
⊢ ( ( ( 𝑅 ∈ Top ∧ 𝑆 ∈ Top ) ∧ 𝑘 ∈ 𝑋 ) → ◡ ( 𝑤 ∈ X 𝑛 ∈ 𝑋 ∪ ( ( 𝑋 × { 𝑆 } ) ‘ 𝑛 ) ↦ ( 𝑤 ‘ 𝑘 ) ) = ◡ ( 𝑤 ∈ ( ∪ 𝑆 ↑m 𝑋 ) ↦ ( 𝑤 ‘ 𝑘 ) ) ) |
33 |
32
|
imaeq1d |
⊢ ( ( ( 𝑅 ∈ Top ∧ 𝑆 ∈ Top ) ∧ 𝑘 ∈ 𝑋 ) → ( ◡ ( 𝑤 ∈ X 𝑛 ∈ 𝑋 ∪ ( ( 𝑋 × { 𝑆 } ) ‘ 𝑛 ) ↦ ( 𝑤 ‘ 𝑘 ) ) “ 𝑢 ) = ( ◡ ( 𝑤 ∈ ( ∪ 𝑆 ↑m 𝑋 ) ↦ ( 𝑤 ‘ 𝑘 ) ) “ 𝑢 ) ) |
34 |
33
|
ralrimivw |
⊢ ( ( ( 𝑅 ∈ Top ∧ 𝑆 ∈ Top ) ∧ 𝑘 ∈ 𝑋 ) → ∀ 𝑢 ∈ ( ( 𝑋 × { 𝑆 } ) ‘ 𝑘 ) ( ◡ ( 𝑤 ∈ X 𝑛 ∈ 𝑋 ∪ ( ( 𝑋 × { 𝑆 } ) ‘ 𝑛 ) ↦ ( 𝑤 ‘ 𝑘 ) ) “ 𝑢 ) = ( ◡ ( 𝑤 ∈ ( ∪ 𝑆 ↑m 𝑋 ) ↦ ( 𝑤 ‘ 𝑘 ) ) “ 𝑢 ) ) |
35 |
29 34
|
jca |
⊢ ( ( ( 𝑅 ∈ Top ∧ 𝑆 ∈ Top ) ∧ 𝑘 ∈ 𝑋 ) → ( ( ( 𝑋 × { 𝑆 } ) ‘ 𝑘 ) = 𝑆 ∧ ∀ 𝑢 ∈ ( ( 𝑋 × { 𝑆 } ) ‘ 𝑘 ) ( ◡ ( 𝑤 ∈ X 𝑛 ∈ 𝑋 ∪ ( ( 𝑋 × { 𝑆 } ) ‘ 𝑛 ) ↦ ( 𝑤 ‘ 𝑘 ) ) “ 𝑢 ) = ( ◡ ( 𝑤 ∈ ( ∪ 𝑆 ↑m 𝑋 ) ↦ ( 𝑤 ‘ 𝑘 ) ) “ 𝑢 ) ) ) |
36 |
35
|
ralrimiva |
⊢ ( ( 𝑅 ∈ Top ∧ 𝑆 ∈ Top ) → ∀ 𝑘 ∈ 𝑋 ( ( ( 𝑋 × { 𝑆 } ) ‘ 𝑘 ) = 𝑆 ∧ ∀ 𝑢 ∈ ( ( 𝑋 × { 𝑆 } ) ‘ 𝑘 ) ( ◡ ( 𝑤 ∈ X 𝑛 ∈ 𝑋 ∪ ( ( 𝑋 × { 𝑆 } ) ‘ 𝑛 ) ↦ ( 𝑤 ‘ 𝑘 ) ) “ 𝑢 ) = ( ◡ ( 𝑤 ∈ ( ∪ 𝑆 ↑m 𝑋 ) ↦ ( 𝑤 ‘ 𝑘 ) ) “ 𝑢 ) ) ) |
37 |
|
mpoeq123 |
⊢ ( ( 𝑋 = 𝑋 ∧ ∀ 𝑘 ∈ 𝑋 ( ( ( 𝑋 × { 𝑆 } ) ‘ 𝑘 ) = 𝑆 ∧ ∀ 𝑢 ∈ ( ( 𝑋 × { 𝑆 } ) ‘ 𝑘 ) ( ◡ ( 𝑤 ∈ X 𝑛 ∈ 𝑋 ∪ ( ( 𝑋 × { 𝑆 } ) ‘ 𝑛 ) ↦ ( 𝑤 ‘ 𝑘 ) ) “ 𝑢 ) = ( ◡ ( 𝑤 ∈ ( ∪ 𝑆 ↑m 𝑋 ) ↦ ( 𝑤 ‘ 𝑘 ) ) “ 𝑢 ) ) ) → ( 𝑘 ∈ 𝑋 , 𝑢 ∈ ( ( 𝑋 × { 𝑆 } ) ‘ 𝑘 ) ↦ ( ◡ ( 𝑤 ∈ X 𝑛 ∈ 𝑋 ∪ ( ( 𝑋 × { 𝑆 } ) ‘ 𝑛 ) ↦ ( 𝑤 ‘ 𝑘 ) ) “ 𝑢 ) ) = ( 𝑘 ∈ 𝑋 , 𝑢 ∈ 𝑆 ↦ ( ◡ ( 𝑤 ∈ ( ∪ 𝑆 ↑m 𝑋 ) ↦ ( 𝑤 ‘ 𝑘 ) ) “ 𝑢 ) ) ) |
38 |
27 36 37
|
sylancr |
⊢ ( ( 𝑅 ∈ Top ∧ 𝑆 ∈ Top ) → ( 𝑘 ∈ 𝑋 , 𝑢 ∈ ( ( 𝑋 × { 𝑆 } ) ‘ 𝑘 ) ↦ ( ◡ ( 𝑤 ∈ X 𝑛 ∈ 𝑋 ∪ ( ( 𝑋 × { 𝑆 } ) ‘ 𝑛 ) ↦ ( 𝑤 ‘ 𝑘 ) ) “ 𝑢 ) ) = ( 𝑘 ∈ 𝑋 , 𝑢 ∈ 𝑆 ↦ ( ◡ ( 𝑤 ∈ ( ∪ 𝑆 ↑m 𝑋 ) ↦ ( 𝑤 ‘ 𝑘 ) ) “ 𝑢 ) ) ) |
39 |
38
|
rneqd |
⊢ ( ( 𝑅 ∈ Top ∧ 𝑆 ∈ Top ) → ran ( 𝑘 ∈ 𝑋 , 𝑢 ∈ ( ( 𝑋 × { 𝑆 } ) ‘ 𝑘 ) ↦ ( ◡ ( 𝑤 ∈ X 𝑛 ∈ 𝑋 ∪ ( ( 𝑋 × { 𝑆 } ) ‘ 𝑛 ) ↦ ( 𝑤 ‘ 𝑘 ) ) “ 𝑢 ) ) = ran ( 𝑘 ∈ 𝑋 , 𝑢 ∈ 𝑆 ↦ ( ◡ ( 𝑤 ∈ ( ∪ 𝑆 ↑m 𝑋 ) ↦ ( 𝑤 ‘ 𝑘 ) ) “ 𝑢 ) ) ) |
40 |
26 39
|
uneq12d |
⊢ ( ( 𝑅 ∈ Top ∧ 𝑆 ∈ Top ) → ( { X 𝑛 ∈ 𝑋 ∪ ( ( 𝑋 × { 𝑆 } ) ‘ 𝑛 ) } ∪ ran ( 𝑘 ∈ 𝑋 , 𝑢 ∈ ( ( 𝑋 × { 𝑆 } ) ‘ 𝑘 ) ↦ ( ◡ ( 𝑤 ∈ X 𝑛 ∈ 𝑋 ∪ ( ( 𝑋 × { 𝑆 } ) ‘ 𝑛 ) ↦ ( 𝑤 ‘ 𝑘 ) ) “ 𝑢 ) ) ) = ( { ( ∪ 𝑆 ↑m 𝑋 ) } ∪ ran ( 𝑘 ∈ 𝑋 , 𝑢 ∈ 𝑆 ↦ ( ◡ ( 𝑤 ∈ ( ∪ 𝑆 ↑m 𝑋 ) ↦ ( 𝑤 ‘ 𝑘 ) ) “ 𝑢 ) ) ) ) |
41 |
40
|
fveq2d |
⊢ ( ( 𝑅 ∈ Top ∧ 𝑆 ∈ Top ) → ( fi ‘ ( { X 𝑛 ∈ 𝑋 ∪ ( ( 𝑋 × { 𝑆 } ) ‘ 𝑛 ) } ∪ ran ( 𝑘 ∈ 𝑋 , 𝑢 ∈ ( ( 𝑋 × { 𝑆 } ) ‘ 𝑘 ) ↦ ( ◡ ( 𝑤 ∈ X 𝑛 ∈ 𝑋 ∪ ( ( 𝑋 × { 𝑆 } ) ‘ 𝑛 ) ↦ ( 𝑤 ‘ 𝑘 ) ) “ 𝑢 ) ) ) ) = ( fi ‘ ( { ( ∪ 𝑆 ↑m 𝑋 ) } ∪ ran ( 𝑘 ∈ 𝑋 , 𝑢 ∈ 𝑆 ↦ ( ◡ ( 𝑤 ∈ ( ∪ 𝑆 ↑m 𝑋 ) ↦ ( 𝑤 ‘ 𝑘 ) ) “ 𝑢 ) ) ) ) ) |
42 |
16 41
|
eqtrd |
⊢ ( ( 𝑅 ∈ Top ∧ 𝑆 ∈ Top ) → { 𝑥 ∣ ∃ 𝑔 ( ( 𝑔 Fn 𝑋 ∧ ∀ 𝑦 ∈ 𝑋 ( 𝑔 ‘ 𝑦 ) ∈ ( ( 𝑋 × { 𝑆 } ) ‘ 𝑦 ) ∧ ∃ 𝑧 ∈ Fin ∀ 𝑦 ∈ ( 𝑋 ∖ 𝑧 ) ( 𝑔 ‘ 𝑦 ) = ∪ ( ( 𝑋 × { 𝑆 } ) ‘ 𝑦 ) ) ∧ 𝑥 = X 𝑦 ∈ 𝑋 ( 𝑔 ‘ 𝑦 ) ) } = ( fi ‘ ( { ( ∪ 𝑆 ↑m 𝑋 ) } ∪ ran ( 𝑘 ∈ 𝑋 , 𝑢 ∈ 𝑆 ↦ ( ◡ ( 𝑤 ∈ ( ∪ 𝑆 ↑m 𝑋 ) ↦ ( 𝑤 ‘ 𝑘 ) ) “ 𝑢 ) ) ) ) ) |
43 |
42
|
fveq2d |
⊢ ( ( 𝑅 ∈ Top ∧ 𝑆 ∈ Top ) → ( topGen ‘ { 𝑥 ∣ ∃ 𝑔 ( ( 𝑔 Fn 𝑋 ∧ ∀ 𝑦 ∈ 𝑋 ( 𝑔 ‘ 𝑦 ) ∈ ( ( 𝑋 × { 𝑆 } ) ‘ 𝑦 ) ∧ ∃ 𝑧 ∈ Fin ∀ 𝑦 ∈ ( 𝑋 ∖ 𝑧 ) ( 𝑔 ‘ 𝑦 ) = ∪ ( ( 𝑋 × { 𝑆 } ) ‘ 𝑦 ) ) ∧ 𝑥 = X 𝑦 ∈ 𝑋 ( 𝑔 ‘ 𝑦 ) ) } ) = ( topGen ‘ ( fi ‘ ( { ( ∪ 𝑆 ↑m 𝑋 ) } ∪ ran ( 𝑘 ∈ 𝑋 , 𝑢 ∈ 𝑆 ↦ ( ◡ ( 𝑤 ∈ ( ∪ 𝑆 ↑m 𝑋 ) ↦ ( 𝑤 ‘ 𝑘 ) ) “ 𝑢 ) ) ) ) ) ) |
44 |
10 43
|
eqtrd |
⊢ ( ( 𝑅 ∈ Top ∧ 𝑆 ∈ Top ) → ( ∏t ‘ ( 𝑋 × { 𝑆 } ) ) = ( topGen ‘ ( fi ‘ ( { ( ∪ 𝑆 ↑m 𝑋 ) } ∪ ran ( 𝑘 ∈ 𝑋 , 𝑢 ∈ 𝑆 ↦ ( ◡ ( 𝑤 ∈ ( ∪ 𝑆 ↑m 𝑋 ) ↦ ( 𝑤 ‘ 𝑘 ) ) “ 𝑢 ) ) ) ) ) ) |
45 |
2 44
|
syl5eq |
⊢ ( ( 𝑅 ∈ Top ∧ 𝑆 ∈ Top ) → 𝐽 = ( topGen ‘ ( fi ‘ ( { ( ∪ 𝑆 ↑m 𝑋 ) } ∪ ran ( 𝑘 ∈ 𝑋 , 𝑢 ∈ 𝑆 ↦ ( ◡ ( 𝑤 ∈ ( ∪ 𝑆 ↑m 𝑋 ) ↦ ( 𝑤 ‘ 𝑘 ) ) “ 𝑢 ) ) ) ) ) ) |
46 |
45
|
oveq1d |
⊢ ( ( 𝑅 ∈ Top ∧ 𝑆 ∈ Top ) → ( 𝐽 ↾t ( 𝑅 Cn 𝑆 ) ) = ( ( topGen ‘ ( fi ‘ ( { ( ∪ 𝑆 ↑m 𝑋 ) } ∪ ran ( 𝑘 ∈ 𝑋 , 𝑢 ∈ 𝑆 ↦ ( ◡ ( 𝑤 ∈ ( ∪ 𝑆 ↑m 𝑋 ) ↦ ( 𝑤 ‘ 𝑘 ) ) “ 𝑢 ) ) ) ) ) ↾t ( 𝑅 Cn 𝑆 ) ) ) |
47 |
|
firest |
⊢ ( fi ‘ ( ( { ( ∪ 𝑆 ↑m 𝑋 ) } ∪ ran ( 𝑘 ∈ 𝑋 , 𝑢 ∈ 𝑆 ↦ ( ◡ ( 𝑤 ∈ ( ∪ 𝑆 ↑m 𝑋 ) ↦ ( 𝑤 ‘ 𝑘 ) ) “ 𝑢 ) ) ) ↾t ( 𝑅 Cn 𝑆 ) ) ) = ( ( fi ‘ ( { ( ∪ 𝑆 ↑m 𝑋 ) } ∪ ran ( 𝑘 ∈ 𝑋 , 𝑢 ∈ 𝑆 ↦ ( ◡ ( 𝑤 ∈ ( ∪ 𝑆 ↑m 𝑋 ) ↦ ( 𝑤 ‘ 𝑘 ) ) “ 𝑢 ) ) ) ) ↾t ( 𝑅 Cn 𝑆 ) ) |
48 |
47
|
fveq2i |
⊢ ( topGen ‘ ( fi ‘ ( ( { ( ∪ 𝑆 ↑m 𝑋 ) } ∪ ran ( 𝑘 ∈ 𝑋 , 𝑢 ∈ 𝑆 ↦ ( ◡ ( 𝑤 ∈ ( ∪ 𝑆 ↑m 𝑋 ) ↦ ( 𝑤 ‘ 𝑘 ) ) “ 𝑢 ) ) ) ↾t ( 𝑅 Cn 𝑆 ) ) ) ) = ( topGen ‘ ( ( fi ‘ ( { ( ∪ 𝑆 ↑m 𝑋 ) } ∪ ran ( 𝑘 ∈ 𝑋 , 𝑢 ∈ 𝑆 ↦ ( ◡ ( 𝑤 ∈ ( ∪ 𝑆 ↑m 𝑋 ) ↦ ( 𝑤 ‘ 𝑘 ) ) “ 𝑢 ) ) ) ) ↾t ( 𝑅 Cn 𝑆 ) ) ) |
49 |
|
fvex |
⊢ ( fi ‘ ( { ( ∪ 𝑆 ↑m 𝑋 ) } ∪ ran ( 𝑘 ∈ 𝑋 , 𝑢 ∈ 𝑆 ↦ ( ◡ ( 𝑤 ∈ ( ∪ 𝑆 ↑m 𝑋 ) ↦ ( 𝑤 ‘ 𝑘 ) ) “ 𝑢 ) ) ) ) ∈ V |
50 |
|
ovex |
⊢ ( 𝑅 Cn 𝑆 ) ∈ V |
51 |
|
tgrest |
⊢ ( ( ( fi ‘ ( { ( ∪ 𝑆 ↑m 𝑋 ) } ∪ ran ( 𝑘 ∈ 𝑋 , 𝑢 ∈ 𝑆 ↦ ( ◡ ( 𝑤 ∈ ( ∪ 𝑆 ↑m 𝑋 ) ↦ ( 𝑤 ‘ 𝑘 ) ) “ 𝑢 ) ) ) ) ∈ V ∧ ( 𝑅 Cn 𝑆 ) ∈ V ) → ( topGen ‘ ( ( fi ‘ ( { ( ∪ 𝑆 ↑m 𝑋 ) } ∪ ran ( 𝑘 ∈ 𝑋 , 𝑢 ∈ 𝑆 ↦ ( ◡ ( 𝑤 ∈ ( ∪ 𝑆 ↑m 𝑋 ) ↦ ( 𝑤 ‘ 𝑘 ) ) “ 𝑢 ) ) ) ) ↾t ( 𝑅 Cn 𝑆 ) ) ) = ( ( topGen ‘ ( fi ‘ ( { ( ∪ 𝑆 ↑m 𝑋 ) } ∪ ran ( 𝑘 ∈ 𝑋 , 𝑢 ∈ 𝑆 ↦ ( ◡ ( 𝑤 ∈ ( ∪ 𝑆 ↑m 𝑋 ) ↦ ( 𝑤 ‘ 𝑘 ) ) “ 𝑢 ) ) ) ) ) ↾t ( 𝑅 Cn 𝑆 ) ) ) |
52 |
49 50 51
|
mp2an |
⊢ ( topGen ‘ ( ( fi ‘ ( { ( ∪ 𝑆 ↑m 𝑋 ) } ∪ ran ( 𝑘 ∈ 𝑋 , 𝑢 ∈ 𝑆 ↦ ( ◡ ( 𝑤 ∈ ( ∪ 𝑆 ↑m 𝑋 ) ↦ ( 𝑤 ‘ 𝑘 ) ) “ 𝑢 ) ) ) ) ↾t ( 𝑅 Cn 𝑆 ) ) ) = ( ( topGen ‘ ( fi ‘ ( { ( ∪ 𝑆 ↑m 𝑋 ) } ∪ ran ( 𝑘 ∈ 𝑋 , 𝑢 ∈ 𝑆 ↦ ( ◡ ( 𝑤 ∈ ( ∪ 𝑆 ↑m 𝑋 ) ↦ ( 𝑤 ‘ 𝑘 ) ) “ 𝑢 ) ) ) ) ) ↾t ( 𝑅 Cn 𝑆 ) ) |
53 |
48 52
|
eqtri |
⊢ ( topGen ‘ ( fi ‘ ( ( { ( ∪ 𝑆 ↑m 𝑋 ) } ∪ ran ( 𝑘 ∈ 𝑋 , 𝑢 ∈ 𝑆 ↦ ( ◡ ( 𝑤 ∈ ( ∪ 𝑆 ↑m 𝑋 ) ↦ ( 𝑤 ‘ 𝑘 ) ) “ 𝑢 ) ) ) ↾t ( 𝑅 Cn 𝑆 ) ) ) ) = ( ( topGen ‘ ( fi ‘ ( { ( ∪ 𝑆 ↑m 𝑋 ) } ∪ ran ( 𝑘 ∈ 𝑋 , 𝑢 ∈ 𝑆 ↦ ( ◡ ( 𝑤 ∈ ( ∪ 𝑆 ↑m 𝑋 ) ↦ ( 𝑤 ‘ 𝑘 ) ) “ 𝑢 ) ) ) ) ) ↾t ( 𝑅 Cn 𝑆 ) ) |
54 |
46 53
|
eqtr4di |
⊢ ( ( 𝑅 ∈ Top ∧ 𝑆 ∈ Top ) → ( 𝐽 ↾t ( 𝑅 Cn 𝑆 ) ) = ( topGen ‘ ( fi ‘ ( ( { ( ∪ 𝑆 ↑m 𝑋 ) } ∪ ran ( 𝑘 ∈ 𝑋 , 𝑢 ∈ 𝑆 ↦ ( ◡ ( 𝑤 ∈ ( ∪ 𝑆 ↑m 𝑋 ) ↦ ( 𝑤 ‘ 𝑘 ) ) “ 𝑢 ) ) ) ↾t ( 𝑅 Cn 𝑆 ) ) ) ) ) |
55 |
|
xkotop |
⊢ ( ( 𝑅 ∈ Top ∧ 𝑆 ∈ Top ) → ( 𝑆 ↑ko 𝑅 ) ∈ Top ) |
56 |
|
snex |
⊢ { ( ∪ 𝑆 ↑m 𝑋 ) } ∈ V |
57 |
|
mpoexga |
⊢ ( ( 𝑋 ∈ 𝑅 ∧ 𝑆 ∈ Top ) → ( 𝑘 ∈ 𝑋 , 𝑢 ∈ 𝑆 ↦ ( ◡ ( 𝑤 ∈ ( ∪ 𝑆 ↑m 𝑋 ) ↦ ( 𝑤 ‘ 𝑘 ) ) “ 𝑢 ) ) ∈ V ) |
58 |
3 57
|
sylan |
⊢ ( ( 𝑅 ∈ Top ∧ 𝑆 ∈ Top ) → ( 𝑘 ∈ 𝑋 , 𝑢 ∈ 𝑆 ↦ ( ◡ ( 𝑤 ∈ ( ∪ 𝑆 ↑m 𝑋 ) ↦ ( 𝑤 ‘ 𝑘 ) ) “ 𝑢 ) ) ∈ V ) |
59 |
|
rnexg |
⊢ ( ( 𝑘 ∈ 𝑋 , 𝑢 ∈ 𝑆 ↦ ( ◡ ( 𝑤 ∈ ( ∪ 𝑆 ↑m 𝑋 ) ↦ ( 𝑤 ‘ 𝑘 ) ) “ 𝑢 ) ) ∈ V → ran ( 𝑘 ∈ 𝑋 , 𝑢 ∈ 𝑆 ↦ ( ◡ ( 𝑤 ∈ ( ∪ 𝑆 ↑m 𝑋 ) ↦ ( 𝑤 ‘ 𝑘 ) ) “ 𝑢 ) ) ∈ V ) |
60 |
58 59
|
syl |
⊢ ( ( 𝑅 ∈ Top ∧ 𝑆 ∈ Top ) → ran ( 𝑘 ∈ 𝑋 , 𝑢 ∈ 𝑆 ↦ ( ◡ ( 𝑤 ∈ ( ∪ 𝑆 ↑m 𝑋 ) ↦ ( 𝑤 ‘ 𝑘 ) ) “ 𝑢 ) ) ∈ V ) |
61 |
|
unexg |
⊢ ( ( { ( ∪ 𝑆 ↑m 𝑋 ) } ∈ V ∧ ran ( 𝑘 ∈ 𝑋 , 𝑢 ∈ 𝑆 ↦ ( ◡ ( 𝑤 ∈ ( ∪ 𝑆 ↑m 𝑋 ) ↦ ( 𝑤 ‘ 𝑘 ) ) “ 𝑢 ) ) ∈ V ) → ( { ( ∪ 𝑆 ↑m 𝑋 ) } ∪ ran ( 𝑘 ∈ 𝑋 , 𝑢 ∈ 𝑆 ↦ ( ◡ ( 𝑤 ∈ ( ∪ 𝑆 ↑m 𝑋 ) ↦ ( 𝑤 ‘ 𝑘 ) ) “ 𝑢 ) ) ) ∈ V ) |
62 |
56 60 61
|
sylancr |
⊢ ( ( 𝑅 ∈ Top ∧ 𝑆 ∈ Top ) → ( { ( ∪ 𝑆 ↑m 𝑋 ) } ∪ ran ( 𝑘 ∈ 𝑋 , 𝑢 ∈ 𝑆 ↦ ( ◡ ( 𝑤 ∈ ( ∪ 𝑆 ↑m 𝑋 ) ↦ ( 𝑤 ‘ 𝑘 ) ) “ 𝑢 ) ) ) ∈ V ) |
63 |
|
restval |
⊢ ( ( ( { ( ∪ 𝑆 ↑m 𝑋 ) } ∪ ran ( 𝑘 ∈ 𝑋 , 𝑢 ∈ 𝑆 ↦ ( ◡ ( 𝑤 ∈ ( ∪ 𝑆 ↑m 𝑋 ) ↦ ( 𝑤 ‘ 𝑘 ) ) “ 𝑢 ) ) ) ∈ V ∧ ( 𝑅 Cn 𝑆 ) ∈ V ) → ( ( { ( ∪ 𝑆 ↑m 𝑋 ) } ∪ ran ( 𝑘 ∈ 𝑋 , 𝑢 ∈ 𝑆 ↦ ( ◡ ( 𝑤 ∈ ( ∪ 𝑆 ↑m 𝑋 ) ↦ ( 𝑤 ‘ 𝑘 ) ) “ 𝑢 ) ) ) ↾t ( 𝑅 Cn 𝑆 ) ) = ran ( 𝑥 ∈ ( { ( ∪ 𝑆 ↑m 𝑋 ) } ∪ ran ( 𝑘 ∈ 𝑋 , 𝑢 ∈ 𝑆 ↦ ( ◡ ( 𝑤 ∈ ( ∪ 𝑆 ↑m 𝑋 ) ↦ ( 𝑤 ‘ 𝑘 ) ) “ 𝑢 ) ) ) ↦ ( 𝑥 ∩ ( 𝑅 Cn 𝑆 ) ) ) ) |
64 |
62 50 63
|
sylancl |
⊢ ( ( 𝑅 ∈ Top ∧ 𝑆 ∈ Top ) → ( ( { ( ∪ 𝑆 ↑m 𝑋 ) } ∪ ran ( 𝑘 ∈ 𝑋 , 𝑢 ∈ 𝑆 ↦ ( ◡ ( 𝑤 ∈ ( ∪ 𝑆 ↑m 𝑋 ) ↦ ( 𝑤 ‘ 𝑘 ) ) “ 𝑢 ) ) ) ↾t ( 𝑅 Cn 𝑆 ) ) = ran ( 𝑥 ∈ ( { ( ∪ 𝑆 ↑m 𝑋 ) } ∪ ran ( 𝑘 ∈ 𝑋 , 𝑢 ∈ 𝑆 ↦ ( ◡ ( 𝑤 ∈ ( ∪ 𝑆 ↑m 𝑋 ) ↦ ( 𝑤 ‘ 𝑘 ) ) “ 𝑢 ) ) ) ↦ ( 𝑥 ∩ ( 𝑅 Cn 𝑆 ) ) ) ) |
65 |
|
elun |
⊢ ( 𝑥 ∈ ( { ( ∪ 𝑆 ↑m 𝑋 ) } ∪ ran ( 𝑘 ∈ 𝑋 , 𝑢 ∈ 𝑆 ↦ ( ◡ ( 𝑤 ∈ ( ∪ 𝑆 ↑m 𝑋 ) ↦ ( 𝑤 ‘ 𝑘 ) ) “ 𝑢 ) ) ) ↔ ( 𝑥 ∈ { ( ∪ 𝑆 ↑m 𝑋 ) } ∨ 𝑥 ∈ ran ( 𝑘 ∈ 𝑋 , 𝑢 ∈ 𝑆 ↦ ( ◡ ( 𝑤 ∈ ( ∪ 𝑆 ↑m 𝑋 ) ↦ ( 𝑤 ‘ 𝑘 ) ) “ 𝑢 ) ) ) ) |
66 |
1 21
|
cnf |
⊢ ( 𝑥 ∈ ( 𝑅 Cn 𝑆 ) → 𝑥 : 𝑋 ⟶ ∪ 𝑆 ) |
67 |
|
elmapg |
⊢ ( ( ∪ 𝑆 ∈ 𝑆 ∧ 𝑋 ∈ 𝑅 ) → ( 𝑥 ∈ ( ∪ 𝑆 ↑m 𝑋 ) ↔ 𝑥 : 𝑋 ⟶ ∪ 𝑆 ) ) |
68 |
22 3 67
|
syl2anr |
⊢ ( ( 𝑅 ∈ Top ∧ 𝑆 ∈ Top ) → ( 𝑥 ∈ ( ∪ 𝑆 ↑m 𝑋 ) ↔ 𝑥 : 𝑋 ⟶ ∪ 𝑆 ) ) |
69 |
66 68
|
syl5ibr |
⊢ ( ( 𝑅 ∈ Top ∧ 𝑆 ∈ Top ) → ( 𝑥 ∈ ( 𝑅 Cn 𝑆 ) → 𝑥 ∈ ( ∪ 𝑆 ↑m 𝑋 ) ) ) |
70 |
69
|
ssrdv |
⊢ ( ( 𝑅 ∈ Top ∧ 𝑆 ∈ Top ) → ( 𝑅 Cn 𝑆 ) ⊆ ( ∪ 𝑆 ↑m 𝑋 ) ) |
71 |
70
|
adantr |
⊢ ( ( ( 𝑅 ∈ Top ∧ 𝑆 ∈ Top ) ∧ 𝑥 ∈ { ( ∪ 𝑆 ↑m 𝑋 ) } ) → ( 𝑅 Cn 𝑆 ) ⊆ ( ∪ 𝑆 ↑m 𝑋 ) ) |
72 |
|
elsni |
⊢ ( 𝑥 ∈ { ( ∪ 𝑆 ↑m 𝑋 ) } → 𝑥 = ( ∪ 𝑆 ↑m 𝑋 ) ) |
73 |
72
|
adantl |
⊢ ( ( ( 𝑅 ∈ Top ∧ 𝑆 ∈ Top ) ∧ 𝑥 ∈ { ( ∪ 𝑆 ↑m 𝑋 ) } ) → 𝑥 = ( ∪ 𝑆 ↑m 𝑋 ) ) |
74 |
71 73
|
sseqtrrd |
⊢ ( ( ( 𝑅 ∈ Top ∧ 𝑆 ∈ Top ) ∧ 𝑥 ∈ { ( ∪ 𝑆 ↑m 𝑋 ) } ) → ( 𝑅 Cn 𝑆 ) ⊆ 𝑥 ) |
75 |
|
sseqin2 |
⊢ ( ( 𝑅 Cn 𝑆 ) ⊆ 𝑥 ↔ ( 𝑥 ∩ ( 𝑅 Cn 𝑆 ) ) = ( 𝑅 Cn 𝑆 ) ) |
76 |
74 75
|
sylib |
⊢ ( ( ( 𝑅 ∈ Top ∧ 𝑆 ∈ Top ) ∧ 𝑥 ∈ { ( ∪ 𝑆 ↑m 𝑋 ) } ) → ( 𝑥 ∩ ( 𝑅 Cn 𝑆 ) ) = ( 𝑅 Cn 𝑆 ) ) |
77 |
|
eqid |
⊢ ( 𝑆 ↑ko 𝑅 ) = ( 𝑆 ↑ko 𝑅 ) |
78 |
77
|
xkouni |
⊢ ( ( 𝑅 ∈ Top ∧ 𝑆 ∈ Top ) → ( 𝑅 Cn 𝑆 ) = ∪ ( 𝑆 ↑ko 𝑅 ) ) |
79 |
|
eqid |
⊢ ∪ ( 𝑆 ↑ko 𝑅 ) = ∪ ( 𝑆 ↑ko 𝑅 ) |
80 |
79
|
topopn |
⊢ ( ( 𝑆 ↑ko 𝑅 ) ∈ Top → ∪ ( 𝑆 ↑ko 𝑅 ) ∈ ( 𝑆 ↑ko 𝑅 ) ) |
81 |
55 80
|
syl |
⊢ ( ( 𝑅 ∈ Top ∧ 𝑆 ∈ Top ) → ∪ ( 𝑆 ↑ko 𝑅 ) ∈ ( 𝑆 ↑ko 𝑅 ) ) |
82 |
78 81
|
eqeltrd |
⊢ ( ( 𝑅 ∈ Top ∧ 𝑆 ∈ Top ) → ( 𝑅 Cn 𝑆 ) ∈ ( 𝑆 ↑ko 𝑅 ) ) |
83 |
82
|
adantr |
⊢ ( ( ( 𝑅 ∈ Top ∧ 𝑆 ∈ Top ) ∧ 𝑥 ∈ { ( ∪ 𝑆 ↑m 𝑋 ) } ) → ( 𝑅 Cn 𝑆 ) ∈ ( 𝑆 ↑ko 𝑅 ) ) |
84 |
76 83
|
eqeltrd |
⊢ ( ( ( 𝑅 ∈ Top ∧ 𝑆 ∈ Top ) ∧ 𝑥 ∈ { ( ∪ 𝑆 ↑m 𝑋 ) } ) → ( 𝑥 ∩ ( 𝑅 Cn 𝑆 ) ) ∈ ( 𝑆 ↑ko 𝑅 ) ) |
85 |
|
eqid |
⊢ ( 𝑘 ∈ 𝑋 , 𝑢 ∈ 𝑆 ↦ ( ◡ ( 𝑤 ∈ ( ∪ 𝑆 ↑m 𝑋 ) ↦ ( 𝑤 ‘ 𝑘 ) ) “ 𝑢 ) ) = ( 𝑘 ∈ 𝑋 , 𝑢 ∈ 𝑆 ↦ ( ◡ ( 𝑤 ∈ ( ∪ 𝑆 ↑m 𝑋 ) ↦ ( 𝑤 ‘ 𝑘 ) ) “ 𝑢 ) ) |
86 |
85
|
rnmpo |
⊢ ran ( 𝑘 ∈ 𝑋 , 𝑢 ∈ 𝑆 ↦ ( ◡ ( 𝑤 ∈ ( ∪ 𝑆 ↑m 𝑋 ) ↦ ( 𝑤 ‘ 𝑘 ) ) “ 𝑢 ) ) = { 𝑥 ∣ ∃ 𝑘 ∈ 𝑋 ∃ 𝑢 ∈ 𝑆 𝑥 = ( ◡ ( 𝑤 ∈ ( ∪ 𝑆 ↑m 𝑋 ) ↦ ( 𝑤 ‘ 𝑘 ) ) “ 𝑢 ) } |
87 |
86
|
abeq2i |
⊢ ( 𝑥 ∈ ran ( 𝑘 ∈ 𝑋 , 𝑢 ∈ 𝑆 ↦ ( ◡ ( 𝑤 ∈ ( ∪ 𝑆 ↑m 𝑋 ) ↦ ( 𝑤 ‘ 𝑘 ) ) “ 𝑢 ) ) ↔ ∃ 𝑘 ∈ 𝑋 ∃ 𝑢 ∈ 𝑆 𝑥 = ( ◡ ( 𝑤 ∈ ( ∪ 𝑆 ↑m 𝑋 ) ↦ ( 𝑤 ‘ 𝑘 ) ) “ 𝑢 ) ) |
88 |
|
cnvresima |
⊢ ( ◡ ( ( 𝑤 ∈ ( ∪ 𝑆 ↑m 𝑋 ) ↦ ( 𝑤 ‘ 𝑘 ) ) ↾ ( 𝑅 Cn 𝑆 ) ) “ 𝑢 ) = ( ( ◡ ( 𝑤 ∈ ( ∪ 𝑆 ↑m 𝑋 ) ↦ ( 𝑤 ‘ 𝑘 ) ) “ 𝑢 ) ∩ ( 𝑅 Cn 𝑆 ) ) |
89 |
70
|
adantr |
⊢ ( ( ( 𝑅 ∈ Top ∧ 𝑆 ∈ Top ) ∧ ( 𝑘 ∈ 𝑋 ∧ 𝑢 ∈ 𝑆 ) ) → ( 𝑅 Cn 𝑆 ) ⊆ ( ∪ 𝑆 ↑m 𝑋 ) ) |
90 |
89
|
resmptd |
⊢ ( ( ( 𝑅 ∈ Top ∧ 𝑆 ∈ Top ) ∧ ( 𝑘 ∈ 𝑋 ∧ 𝑢 ∈ 𝑆 ) ) → ( ( 𝑤 ∈ ( ∪ 𝑆 ↑m 𝑋 ) ↦ ( 𝑤 ‘ 𝑘 ) ) ↾ ( 𝑅 Cn 𝑆 ) ) = ( 𝑤 ∈ ( 𝑅 Cn 𝑆 ) ↦ ( 𝑤 ‘ 𝑘 ) ) ) |
91 |
90
|
cnveqd |
⊢ ( ( ( 𝑅 ∈ Top ∧ 𝑆 ∈ Top ) ∧ ( 𝑘 ∈ 𝑋 ∧ 𝑢 ∈ 𝑆 ) ) → ◡ ( ( 𝑤 ∈ ( ∪ 𝑆 ↑m 𝑋 ) ↦ ( 𝑤 ‘ 𝑘 ) ) ↾ ( 𝑅 Cn 𝑆 ) ) = ◡ ( 𝑤 ∈ ( 𝑅 Cn 𝑆 ) ↦ ( 𝑤 ‘ 𝑘 ) ) ) |
92 |
91
|
imaeq1d |
⊢ ( ( ( 𝑅 ∈ Top ∧ 𝑆 ∈ Top ) ∧ ( 𝑘 ∈ 𝑋 ∧ 𝑢 ∈ 𝑆 ) ) → ( ◡ ( ( 𝑤 ∈ ( ∪ 𝑆 ↑m 𝑋 ) ↦ ( 𝑤 ‘ 𝑘 ) ) ↾ ( 𝑅 Cn 𝑆 ) ) “ 𝑢 ) = ( ◡ ( 𝑤 ∈ ( 𝑅 Cn 𝑆 ) ↦ ( 𝑤 ‘ 𝑘 ) ) “ 𝑢 ) ) |
93 |
88 92
|
eqtr3id |
⊢ ( ( ( 𝑅 ∈ Top ∧ 𝑆 ∈ Top ) ∧ ( 𝑘 ∈ 𝑋 ∧ 𝑢 ∈ 𝑆 ) ) → ( ( ◡ ( 𝑤 ∈ ( ∪ 𝑆 ↑m 𝑋 ) ↦ ( 𝑤 ‘ 𝑘 ) ) “ 𝑢 ) ∩ ( 𝑅 Cn 𝑆 ) ) = ( ◡ ( 𝑤 ∈ ( 𝑅 Cn 𝑆 ) ↦ ( 𝑤 ‘ 𝑘 ) ) “ 𝑢 ) ) |
94 |
|
fvex |
⊢ ( 𝑤 ‘ 𝑘 ) ∈ V |
95 |
94
|
rgenw |
⊢ ∀ 𝑤 ∈ ( 𝑅 Cn 𝑆 ) ( 𝑤 ‘ 𝑘 ) ∈ V |
96 |
|
eqid |
⊢ ( 𝑤 ∈ ( 𝑅 Cn 𝑆 ) ↦ ( 𝑤 ‘ 𝑘 ) ) = ( 𝑤 ∈ ( 𝑅 Cn 𝑆 ) ↦ ( 𝑤 ‘ 𝑘 ) ) |
97 |
96
|
fnmpt |
⊢ ( ∀ 𝑤 ∈ ( 𝑅 Cn 𝑆 ) ( 𝑤 ‘ 𝑘 ) ∈ V → ( 𝑤 ∈ ( 𝑅 Cn 𝑆 ) ↦ ( 𝑤 ‘ 𝑘 ) ) Fn ( 𝑅 Cn 𝑆 ) ) |
98 |
95 97
|
mp1i |
⊢ ( ( ( 𝑅 ∈ Top ∧ 𝑆 ∈ Top ) ∧ ( 𝑘 ∈ 𝑋 ∧ 𝑢 ∈ 𝑆 ) ) → ( 𝑤 ∈ ( 𝑅 Cn 𝑆 ) ↦ ( 𝑤 ‘ 𝑘 ) ) Fn ( 𝑅 Cn 𝑆 ) ) |
99 |
|
elpreima |
⊢ ( ( 𝑤 ∈ ( 𝑅 Cn 𝑆 ) ↦ ( 𝑤 ‘ 𝑘 ) ) Fn ( 𝑅 Cn 𝑆 ) → ( 𝑓 ∈ ( ◡ ( 𝑤 ∈ ( 𝑅 Cn 𝑆 ) ↦ ( 𝑤 ‘ 𝑘 ) ) “ 𝑢 ) ↔ ( 𝑓 ∈ ( 𝑅 Cn 𝑆 ) ∧ ( ( 𝑤 ∈ ( 𝑅 Cn 𝑆 ) ↦ ( 𝑤 ‘ 𝑘 ) ) ‘ 𝑓 ) ∈ 𝑢 ) ) ) |
100 |
98 99
|
syl |
⊢ ( ( ( 𝑅 ∈ Top ∧ 𝑆 ∈ Top ) ∧ ( 𝑘 ∈ 𝑋 ∧ 𝑢 ∈ 𝑆 ) ) → ( 𝑓 ∈ ( ◡ ( 𝑤 ∈ ( 𝑅 Cn 𝑆 ) ↦ ( 𝑤 ‘ 𝑘 ) ) “ 𝑢 ) ↔ ( 𝑓 ∈ ( 𝑅 Cn 𝑆 ) ∧ ( ( 𝑤 ∈ ( 𝑅 Cn 𝑆 ) ↦ ( 𝑤 ‘ 𝑘 ) ) ‘ 𝑓 ) ∈ 𝑢 ) ) ) |
101 |
|
fveq1 |
⊢ ( 𝑤 = 𝑓 → ( 𝑤 ‘ 𝑘 ) = ( 𝑓 ‘ 𝑘 ) ) |
102 |
|
fvex |
⊢ ( 𝑓 ‘ 𝑘 ) ∈ V |
103 |
101 96 102
|
fvmpt |
⊢ ( 𝑓 ∈ ( 𝑅 Cn 𝑆 ) → ( ( 𝑤 ∈ ( 𝑅 Cn 𝑆 ) ↦ ( 𝑤 ‘ 𝑘 ) ) ‘ 𝑓 ) = ( 𝑓 ‘ 𝑘 ) ) |
104 |
103
|
adantl |
⊢ ( ( ( ( 𝑅 ∈ Top ∧ 𝑆 ∈ Top ) ∧ ( 𝑘 ∈ 𝑋 ∧ 𝑢 ∈ 𝑆 ) ) ∧ 𝑓 ∈ ( 𝑅 Cn 𝑆 ) ) → ( ( 𝑤 ∈ ( 𝑅 Cn 𝑆 ) ↦ ( 𝑤 ‘ 𝑘 ) ) ‘ 𝑓 ) = ( 𝑓 ‘ 𝑘 ) ) |
105 |
104
|
eleq1d |
⊢ ( ( ( ( 𝑅 ∈ Top ∧ 𝑆 ∈ Top ) ∧ ( 𝑘 ∈ 𝑋 ∧ 𝑢 ∈ 𝑆 ) ) ∧ 𝑓 ∈ ( 𝑅 Cn 𝑆 ) ) → ( ( ( 𝑤 ∈ ( 𝑅 Cn 𝑆 ) ↦ ( 𝑤 ‘ 𝑘 ) ) ‘ 𝑓 ) ∈ 𝑢 ↔ ( 𝑓 ‘ 𝑘 ) ∈ 𝑢 ) ) |
106 |
102
|
snss |
⊢ ( ( 𝑓 ‘ 𝑘 ) ∈ 𝑢 ↔ { ( 𝑓 ‘ 𝑘 ) } ⊆ 𝑢 ) |
107 |
89
|
sselda |
⊢ ( ( ( ( 𝑅 ∈ Top ∧ 𝑆 ∈ Top ) ∧ ( 𝑘 ∈ 𝑋 ∧ 𝑢 ∈ 𝑆 ) ) ∧ 𝑓 ∈ ( 𝑅 Cn 𝑆 ) ) → 𝑓 ∈ ( ∪ 𝑆 ↑m 𝑋 ) ) |
108 |
|
elmapi |
⊢ ( 𝑓 ∈ ( ∪ 𝑆 ↑m 𝑋 ) → 𝑓 : 𝑋 ⟶ ∪ 𝑆 ) |
109 |
|
ffn |
⊢ ( 𝑓 : 𝑋 ⟶ ∪ 𝑆 → 𝑓 Fn 𝑋 ) |
110 |
107 108 109
|
3syl |
⊢ ( ( ( ( 𝑅 ∈ Top ∧ 𝑆 ∈ Top ) ∧ ( 𝑘 ∈ 𝑋 ∧ 𝑢 ∈ 𝑆 ) ) ∧ 𝑓 ∈ ( 𝑅 Cn 𝑆 ) ) → 𝑓 Fn 𝑋 ) |
111 |
|
simplrl |
⊢ ( ( ( ( 𝑅 ∈ Top ∧ 𝑆 ∈ Top ) ∧ ( 𝑘 ∈ 𝑋 ∧ 𝑢 ∈ 𝑆 ) ) ∧ 𝑓 ∈ ( 𝑅 Cn 𝑆 ) ) → 𝑘 ∈ 𝑋 ) |
112 |
|
fnsnfv |
⊢ ( ( 𝑓 Fn 𝑋 ∧ 𝑘 ∈ 𝑋 ) → { ( 𝑓 ‘ 𝑘 ) } = ( 𝑓 “ { 𝑘 } ) ) |
113 |
110 111 112
|
syl2anc |
⊢ ( ( ( ( 𝑅 ∈ Top ∧ 𝑆 ∈ Top ) ∧ ( 𝑘 ∈ 𝑋 ∧ 𝑢 ∈ 𝑆 ) ) ∧ 𝑓 ∈ ( 𝑅 Cn 𝑆 ) ) → { ( 𝑓 ‘ 𝑘 ) } = ( 𝑓 “ { 𝑘 } ) ) |
114 |
113
|
sseq1d |
⊢ ( ( ( ( 𝑅 ∈ Top ∧ 𝑆 ∈ Top ) ∧ ( 𝑘 ∈ 𝑋 ∧ 𝑢 ∈ 𝑆 ) ) ∧ 𝑓 ∈ ( 𝑅 Cn 𝑆 ) ) → ( { ( 𝑓 ‘ 𝑘 ) } ⊆ 𝑢 ↔ ( 𝑓 “ { 𝑘 } ) ⊆ 𝑢 ) ) |
115 |
106 114
|
syl5bb |
⊢ ( ( ( ( 𝑅 ∈ Top ∧ 𝑆 ∈ Top ) ∧ ( 𝑘 ∈ 𝑋 ∧ 𝑢 ∈ 𝑆 ) ) ∧ 𝑓 ∈ ( 𝑅 Cn 𝑆 ) ) → ( ( 𝑓 ‘ 𝑘 ) ∈ 𝑢 ↔ ( 𝑓 “ { 𝑘 } ) ⊆ 𝑢 ) ) |
116 |
105 115
|
bitrd |
⊢ ( ( ( ( 𝑅 ∈ Top ∧ 𝑆 ∈ Top ) ∧ ( 𝑘 ∈ 𝑋 ∧ 𝑢 ∈ 𝑆 ) ) ∧ 𝑓 ∈ ( 𝑅 Cn 𝑆 ) ) → ( ( ( 𝑤 ∈ ( 𝑅 Cn 𝑆 ) ↦ ( 𝑤 ‘ 𝑘 ) ) ‘ 𝑓 ) ∈ 𝑢 ↔ ( 𝑓 “ { 𝑘 } ) ⊆ 𝑢 ) ) |
117 |
116
|
pm5.32da |
⊢ ( ( ( 𝑅 ∈ Top ∧ 𝑆 ∈ Top ) ∧ ( 𝑘 ∈ 𝑋 ∧ 𝑢 ∈ 𝑆 ) ) → ( ( 𝑓 ∈ ( 𝑅 Cn 𝑆 ) ∧ ( ( 𝑤 ∈ ( 𝑅 Cn 𝑆 ) ↦ ( 𝑤 ‘ 𝑘 ) ) ‘ 𝑓 ) ∈ 𝑢 ) ↔ ( 𝑓 ∈ ( 𝑅 Cn 𝑆 ) ∧ ( 𝑓 “ { 𝑘 } ) ⊆ 𝑢 ) ) ) |
118 |
100 117
|
bitrd |
⊢ ( ( ( 𝑅 ∈ Top ∧ 𝑆 ∈ Top ) ∧ ( 𝑘 ∈ 𝑋 ∧ 𝑢 ∈ 𝑆 ) ) → ( 𝑓 ∈ ( ◡ ( 𝑤 ∈ ( 𝑅 Cn 𝑆 ) ↦ ( 𝑤 ‘ 𝑘 ) ) “ 𝑢 ) ↔ ( 𝑓 ∈ ( 𝑅 Cn 𝑆 ) ∧ ( 𝑓 “ { 𝑘 } ) ⊆ 𝑢 ) ) ) |
119 |
118
|
abbi2dv |
⊢ ( ( ( 𝑅 ∈ Top ∧ 𝑆 ∈ Top ) ∧ ( 𝑘 ∈ 𝑋 ∧ 𝑢 ∈ 𝑆 ) ) → ( ◡ ( 𝑤 ∈ ( 𝑅 Cn 𝑆 ) ↦ ( 𝑤 ‘ 𝑘 ) ) “ 𝑢 ) = { 𝑓 ∣ ( 𝑓 ∈ ( 𝑅 Cn 𝑆 ) ∧ ( 𝑓 “ { 𝑘 } ) ⊆ 𝑢 ) } ) |
120 |
|
df-rab |
⊢ { 𝑓 ∈ ( 𝑅 Cn 𝑆 ) ∣ ( 𝑓 “ { 𝑘 } ) ⊆ 𝑢 } = { 𝑓 ∣ ( 𝑓 ∈ ( 𝑅 Cn 𝑆 ) ∧ ( 𝑓 “ { 𝑘 } ) ⊆ 𝑢 ) } |
121 |
119 120
|
eqtr4di |
⊢ ( ( ( 𝑅 ∈ Top ∧ 𝑆 ∈ Top ) ∧ ( 𝑘 ∈ 𝑋 ∧ 𝑢 ∈ 𝑆 ) ) → ( ◡ ( 𝑤 ∈ ( 𝑅 Cn 𝑆 ) ↦ ( 𝑤 ‘ 𝑘 ) ) “ 𝑢 ) = { 𝑓 ∈ ( 𝑅 Cn 𝑆 ) ∣ ( 𝑓 “ { 𝑘 } ) ⊆ 𝑢 } ) |
122 |
93 121
|
eqtrd |
⊢ ( ( ( 𝑅 ∈ Top ∧ 𝑆 ∈ Top ) ∧ ( 𝑘 ∈ 𝑋 ∧ 𝑢 ∈ 𝑆 ) ) → ( ( ◡ ( 𝑤 ∈ ( ∪ 𝑆 ↑m 𝑋 ) ↦ ( 𝑤 ‘ 𝑘 ) ) “ 𝑢 ) ∩ ( 𝑅 Cn 𝑆 ) ) = { 𝑓 ∈ ( 𝑅 Cn 𝑆 ) ∣ ( 𝑓 “ { 𝑘 } ) ⊆ 𝑢 } ) |
123 |
|
simpll |
⊢ ( ( ( 𝑅 ∈ Top ∧ 𝑆 ∈ Top ) ∧ ( 𝑘 ∈ 𝑋 ∧ 𝑢 ∈ 𝑆 ) ) → 𝑅 ∈ Top ) |
124 |
11
|
adantr |
⊢ ( ( ( 𝑅 ∈ Top ∧ 𝑆 ∈ Top ) ∧ ( 𝑘 ∈ 𝑋 ∧ 𝑢 ∈ 𝑆 ) ) → 𝑆 ∈ Top ) |
125 |
|
simprl |
⊢ ( ( ( 𝑅 ∈ Top ∧ 𝑆 ∈ Top ) ∧ ( 𝑘 ∈ 𝑋 ∧ 𝑢 ∈ 𝑆 ) ) → 𝑘 ∈ 𝑋 ) |
126 |
125
|
snssd |
⊢ ( ( ( 𝑅 ∈ Top ∧ 𝑆 ∈ Top ) ∧ ( 𝑘 ∈ 𝑋 ∧ 𝑢 ∈ 𝑆 ) ) → { 𝑘 } ⊆ 𝑋 ) |
127 |
1
|
toptopon |
⊢ ( 𝑅 ∈ Top ↔ 𝑅 ∈ ( TopOn ‘ 𝑋 ) ) |
128 |
123 127
|
sylib |
⊢ ( ( ( 𝑅 ∈ Top ∧ 𝑆 ∈ Top ) ∧ ( 𝑘 ∈ 𝑋 ∧ 𝑢 ∈ 𝑆 ) ) → 𝑅 ∈ ( TopOn ‘ 𝑋 ) ) |
129 |
|
restsn2 |
⊢ ( ( 𝑅 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝑘 ∈ 𝑋 ) → ( 𝑅 ↾t { 𝑘 } ) = 𝒫 { 𝑘 } ) |
130 |
128 125 129
|
syl2anc |
⊢ ( ( ( 𝑅 ∈ Top ∧ 𝑆 ∈ Top ) ∧ ( 𝑘 ∈ 𝑋 ∧ 𝑢 ∈ 𝑆 ) ) → ( 𝑅 ↾t { 𝑘 } ) = 𝒫 { 𝑘 } ) |
131 |
|
snfi |
⊢ { 𝑘 } ∈ Fin |
132 |
|
discmp |
⊢ ( { 𝑘 } ∈ Fin ↔ 𝒫 { 𝑘 } ∈ Comp ) |
133 |
131 132
|
mpbi |
⊢ 𝒫 { 𝑘 } ∈ Comp |
134 |
130 133
|
eqeltrdi |
⊢ ( ( ( 𝑅 ∈ Top ∧ 𝑆 ∈ Top ) ∧ ( 𝑘 ∈ 𝑋 ∧ 𝑢 ∈ 𝑆 ) ) → ( 𝑅 ↾t { 𝑘 } ) ∈ Comp ) |
135 |
|
simprr |
⊢ ( ( ( 𝑅 ∈ Top ∧ 𝑆 ∈ Top ) ∧ ( 𝑘 ∈ 𝑋 ∧ 𝑢 ∈ 𝑆 ) ) → 𝑢 ∈ 𝑆 ) |
136 |
1 123 124 126 134 135
|
xkoopn |
⊢ ( ( ( 𝑅 ∈ Top ∧ 𝑆 ∈ Top ) ∧ ( 𝑘 ∈ 𝑋 ∧ 𝑢 ∈ 𝑆 ) ) → { 𝑓 ∈ ( 𝑅 Cn 𝑆 ) ∣ ( 𝑓 “ { 𝑘 } ) ⊆ 𝑢 } ∈ ( 𝑆 ↑ko 𝑅 ) ) |
137 |
122 136
|
eqeltrd |
⊢ ( ( ( 𝑅 ∈ Top ∧ 𝑆 ∈ Top ) ∧ ( 𝑘 ∈ 𝑋 ∧ 𝑢 ∈ 𝑆 ) ) → ( ( ◡ ( 𝑤 ∈ ( ∪ 𝑆 ↑m 𝑋 ) ↦ ( 𝑤 ‘ 𝑘 ) ) “ 𝑢 ) ∩ ( 𝑅 Cn 𝑆 ) ) ∈ ( 𝑆 ↑ko 𝑅 ) ) |
138 |
|
ineq1 |
⊢ ( 𝑥 = ( ◡ ( 𝑤 ∈ ( ∪ 𝑆 ↑m 𝑋 ) ↦ ( 𝑤 ‘ 𝑘 ) ) “ 𝑢 ) → ( 𝑥 ∩ ( 𝑅 Cn 𝑆 ) ) = ( ( ◡ ( 𝑤 ∈ ( ∪ 𝑆 ↑m 𝑋 ) ↦ ( 𝑤 ‘ 𝑘 ) ) “ 𝑢 ) ∩ ( 𝑅 Cn 𝑆 ) ) ) |
139 |
138
|
eleq1d |
⊢ ( 𝑥 = ( ◡ ( 𝑤 ∈ ( ∪ 𝑆 ↑m 𝑋 ) ↦ ( 𝑤 ‘ 𝑘 ) ) “ 𝑢 ) → ( ( 𝑥 ∩ ( 𝑅 Cn 𝑆 ) ) ∈ ( 𝑆 ↑ko 𝑅 ) ↔ ( ( ◡ ( 𝑤 ∈ ( ∪ 𝑆 ↑m 𝑋 ) ↦ ( 𝑤 ‘ 𝑘 ) ) “ 𝑢 ) ∩ ( 𝑅 Cn 𝑆 ) ) ∈ ( 𝑆 ↑ko 𝑅 ) ) ) |
140 |
137 139
|
syl5ibrcom |
⊢ ( ( ( 𝑅 ∈ Top ∧ 𝑆 ∈ Top ) ∧ ( 𝑘 ∈ 𝑋 ∧ 𝑢 ∈ 𝑆 ) ) → ( 𝑥 = ( ◡ ( 𝑤 ∈ ( ∪ 𝑆 ↑m 𝑋 ) ↦ ( 𝑤 ‘ 𝑘 ) ) “ 𝑢 ) → ( 𝑥 ∩ ( 𝑅 Cn 𝑆 ) ) ∈ ( 𝑆 ↑ko 𝑅 ) ) ) |
141 |
140
|
rexlimdvva |
⊢ ( ( 𝑅 ∈ Top ∧ 𝑆 ∈ Top ) → ( ∃ 𝑘 ∈ 𝑋 ∃ 𝑢 ∈ 𝑆 𝑥 = ( ◡ ( 𝑤 ∈ ( ∪ 𝑆 ↑m 𝑋 ) ↦ ( 𝑤 ‘ 𝑘 ) ) “ 𝑢 ) → ( 𝑥 ∩ ( 𝑅 Cn 𝑆 ) ) ∈ ( 𝑆 ↑ko 𝑅 ) ) ) |
142 |
141
|
imp |
⊢ ( ( ( 𝑅 ∈ Top ∧ 𝑆 ∈ Top ) ∧ ∃ 𝑘 ∈ 𝑋 ∃ 𝑢 ∈ 𝑆 𝑥 = ( ◡ ( 𝑤 ∈ ( ∪ 𝑆 ↑m 𝑋 ) ↦ ( 𝑤 ‘ 𝑘 ) ) “ 𝑢 ) ) → ( 𝑥 ∩ ( 𝑅 Cn 𝑆 ) ) ∈ ( 𝑆 ↑ko 𝑅 ) ) |
143 |
87 142
|
sylan2b |
⊢ ( ( ( 𝑅 ∈ Top ∧ 𝑆 ∈ Top ) ∧ 𝑥 ∈ ran ( 𝑘 ∈ 𝑋 , 𝑢 ∈ 𝑆 ↦ ( ◡ ( 𝑤 ∈ ( ∪ 𝑆 ↑m 𝑋 ) ↦ ( 𝑤 ‘ 𝑘 ) ) “ 𝑢 ) ) ) → ( 𝑥 ∩ ( 𝑅 Cn 𝑆 ) ) ∈ ( 𝑆 ↑ko 𝑅 ) ) |
144 |
84 143
|
jaodan |
⊢ ( ( ( 𝑅 ∈ Top ∧ 𝑆 ∈ Top ) ∧ ( 𝑥 ∈ { ( ∪ 𝑆 ↑m 𝑋 ) } ∨ 𝑥 ∈ ran ( 𝑘 ∈ 𝑋 , 𝑢 ∈ 𝑆 ↦ ( ◡ ( 𝑤 ∈ ( ∪ 𝑆 ↑m 𝑋 ) ↦ ( 𝑤 ‘ 𝑘 ) ) “ 𝑢 ) ) ) ) → ( 𝑥 ∩ ( 𝑅 Cn 𝑆 ) ) ∈ ( 𝑆 ↑ko 𝑅 ) ) |
145 |
65 144
|
sylan2b |
⊢ ( ( ( 𝑅 ∈ Top ∧ 𝑆 ∈ Top ) ∧ 𝑥 ∈ ( { ( ∪ 𝑆 ↑m 𝑋 ) } ∪ ran ( 𝑘 ∈ 𝑋 , 𝑢 ∈ 𝑆 ↦ ( ◡ ( 𝑤 ∈ ( ∪ 𝑆 ↑m 𝑋 ) ↦ ( 𝑤 ‘ 𝑘 ) ) “ 𝑢 ) ) ) ) → ( 𝑥 ∩ ( 𝑅 Cn 𝑆 ) ) ∈ ( 𝑆 ↑ko 𝑅 ) ) |
146 |
145
|
fmpttd |
⊢ ( ( 𝑅 ∈ Top ∧ 𝑆 ∈ Top ) → ( 𝑥 ∈ ( { ( ∪ 𝑆 ↑m 𝑋 ) } ∪ ran ( 𝑘 ∈ 𝑋 , 𝑢 ∈ 𝑆 ↦ ( ◡ ( 𝑤 ∈ ( ∪ 𝑆 ↑m 𝑋 ) ↦ ( 𝑤 ‘ 𝑘 ) ) “ 𝑢 ) ) ) ↦ ( 𝑥 ∩ ( 𝑅 Cn 𝑆 ) ) ) : ( { ( ∪ 𝑆 ↑m 𝑋 ) } ∪ ran ( 𝑘 ∈ 𝑋 , 𝑢 ∈ 𝑆 ↦ ( ◡ ( 𝑤 ∈ ( ∪ 𝑆 ↑m 𝑋 ) ↦ ( 𝑤 ‘ 𝑘 ) ) “ 𝑢 ) ) ) ⟶ ( 𝑆 ↑ko 𝑅 ) ) |
147 |
146
|
frnd |
⊢ ( ( 𝑅 ∈ Top ∧ 𝑆 ∈ Top ) → ran ( 𝑥 ∈ ( { ( ∪ 𝑆 ↑m 𝑋 ) } ∪ ran ( 𝑘 ∈ 𝑋 , 𝑢 ∈ 𝑆 ↦ ( ◡ ( 𝑤 ∈ ( ∪ 𝑆 ↑m 𝑋 ) ↦ ( 𝑤 ‘ 𝑘 ) ) “ 𝑢 ) ) ) ↦ ( 𝑥 ∩ ( 𝑅 Cn 𝑆 ) ) ) ⊆ ( 𝑆 ↑ko 𝑅 ) ) |
148 |
64 147
|
eqsstrd |
⊢ ( ( 𝑅 ∈ Top ∧ 𝑆 ∈ Top ) → ( ( { ( ∪ 𝑆 ↑m 𝑋 ) } ∪ ran ( 𝑘 ∈ 𝑋 , 𝑢 ∈ 𝑆 ↦ ( ◡ ( 𝑤 ∈ ( ∪ 𝑆 ↑m 𝑋 ) ↦ ( 𝑤 ‘ 𝑘 ) ) “ 𝑢 ) ) ) ↾t ( 𝑅 Cn 𝑆 ) ) ⊆ ( 𝑆 ↑ko 𝑅 ) ) |
149 |
|
tgfiss |
⊢ ( ( ( 𝑆 ↑ko 𝑅 ) ∈ Top ∧ ( ( { ( ∪ 𝑆 ↑m 𝑋 ) } ∪ ran ( 𝑘 ∈ 𝑋 , 𝑢 ∈ 𝑆 ↦ ( ◡ ( 𝑤 ∈ ( ∪ 𝑆 ↑m 𝑋 ) ↦ ( 𝑤 ‘ 𝑘 ) ) “ 𝑢 ) ) ) ↾t ( 𝑅 Cn 𝑆 ) ) ⊆ ( 𝑆 ↑ko 𝑅 ) ) → ( topGen ‘ ( fi ‘ ( ( { ( ∪ 𝑆 ↑m 𝑋 ) } ∪ ran ( 𝑘 ∈ 𝑋 , 𝑢 ∈ 𝑆 ↦ ( ◡ ( 𝑤 ∈ ( ∪ 𝑆 ↑m 𝑋 ) ↦ ( 𝑤 ‘ 𝑘 ) ) “ 𝑢 ) ) ) ↾t ( 𝑅 Cn 𝑆 ) ) ) ) ⊆ ( 𝑆 ↑ko 𝑅 ) ) |
150 |
55 148 149
|
syl2anc |
⊢ ( ( 𝑅 ∈ Top ∧ 𝑆 ∈ Top ) → ( topGen ‘ ( fi ‘ ( ( { ( ∪ 𝑆 ↑m 𝑋 ) } ∪ ran ( 𝑘 ∈ 𝑋 , 𝑢 ∈ 𝑆 ↦ ( ◡ ( 𝑤 ∈ ( ∪ 𝑆 ↑m 𝑋 ) ↦ ( 𝑤 ‘ 𝑘 ) ) “ 𝑢 ) ) ) ↾t ( 𝑅 Cn 𝑆 ) ) ) ) ⊆ ( 𝑆 ↑ko 𝑅 ) ) |
151 |
54 150
|
eqsstrd |
⊢ ( ( 𝑅 ∈ Top ∧ 𝑆 ∈ Top ) → ( 𝐽 ↾t ( 𝑅 Cn 𝑆 ) ) ⊆ ( 𝑆 ↑ko 𝑅 ) ) |