| Step | Hyp | Ref | Expression | 
						
							| 1 |  | xkoptsub.x | ⊢ 𝑋  =  ∪  𝑅 | 
						
							| 2 |  | xkoptsub.j | ⊢ 𝐽  =  ( ∏t ‘ ( 𝑋  ×  { 𝑆 } ) ) | 
						
							| 3 | 1 | topopn | ⊢ ( 𝑅  ∈  Top  →  𝑋  ∈  𝑅 ) | 
						
							| 4 | 3 | adantr | ⊢ ( ( 𝑅  ∈  Top  ∧  𝑆  ∈  Top )  →  𝑋  ∈  𝑅 ) | 
						
							| 5 |  | fconstg | ⊢ ( 𝑆  ∈  Top  →  ( 𝑋  ×  { 𝑆 } ) : 𝑋 ⟶ { 𝑆 } ) | 
						
							| 6 | 5 | adantl | ⊢ ( ( 𝑅  ∈  Top  ∧  𝑆  ∈  Top )  →  ( 𝑋  ×  { 𝑆 } ) : 𝑋 ⟶ { 𝑆 } ) | 
						
							| 7 | 6 | ffnd | ⊢ ( ( 𝑅  ∈  Top  ∧  𝑆  ∈  Top )  →  ( 𝑋  ×  { 𝑆 } )  Fn  𝑋 ) | 
						
							| 8 |  | eqid | ⊢ { 𝑥  ∣  ∃ 𝑔 ( ( 𝑔  Fn  𝑋  ∧  ∀ 𝑦  ∈  𝑋 ( 𝑔 ‘ 𝑦 )  ∈  ( ( 𝑋  ×  { 𝑆 } ) ‘ 𝑦 )  ∧  ∃ 𝑧  ∈  Fin ∀ 𝑦  ∈  ( 𝑋  ∖  𝑧 ) ( 𝑔 ‘ 𝑦 )  =  ∪  ( ( 𝑋  ×  { 𝑆 } ) ‘ 𝑦 ) )  ∧  𝑥  =  X 𝑦  ∈  𝑋 ( 𝑔 ‘ 𝑦 ) ) }  =  { 𝑥  ∣  ∃ 𝑔 ( ( 𝑔  Fn  𝑋  ∧  ∀ 𝑦  ∈  𝑋 ( 𝑔 ‘ 𝑦 )  ∈  ( ( 𝑋  ×  { 𝑆 } ) ‘ 𝑦 )  ∧  ∃ 𝑧  ∈  Fin ∀ 𝑦  ∈  ( 𝑋  ∖  𝑧 ) ( 𝑔 ‘ 𝑦 )  =  ∪  ( ( 𝑋  ×  { 𝑆 } ) ‘ 𝑦 ) )  ∧  𝑥  =  X 𝑦  ∈  𝑋 ( 𝑔 ‘ 𝑦 ) ) } | 
						
							| 9 | 8 | ptval | ⊢ ( ( 𝑋  ∈  𝑅  ∧  ( 𝑋  ×  { 𝑆 } )  Fn  𝑋 )  →  ( ∏t ‘ ( 𝑋  ×  { 𝑆 } ) )  =  ( topGen ‘ { 𝑥  ∣  ∃ 𝑔 ( ( 𝑔  Fn  𝑋  ∧  ∀ 𝑦  ∈  𝑋 ( 𝑔 ‘ 𝑦 )  ∈  ( ( 𝑋  ×  { 𝑆 } ) ‘ 𝑦 )  ∧  ∃ 𝑧  ∈  Fin ∀ 𝑦  ∈  ( 𝑋  ∖  𝑧 ) ( 𝑔 ‘ 𝑦 )  =  ∪  ( ( 𝑋  ×  { 𝑆 } ) ‘ 𝑦 ) )  ∧  𝑥  =  X 𝑦  ∈  𝑋 ( 𝑔 ‘ 𝑦 ) ) } ) ) | 
						
							| 10 | 4 7 9 | syl2anc | ⊢ ( ( 𝑅  ∈  Top  ∧  𝑆  ∈  Top )  →  ( ∏t ‘ ( 𝑋  ×  { 𝑆 } ) )  =  ( topGen ‘ { 𝑥  ∣  ∃ 𝑔 ( ( 𝑔  Fn  𝑋  ∧  ∀ 𝑦  ∈  𝑋 ( 𝑔 ‘ 𝑦 )  ∈  ( ( 𝑋  ×  { 𝑆 } ) ‘ 𝑦 )  ∧  ∃ 𝑧  ∈  Fin ∀ 𝑦  ∈  ( 𝑋  ∖  𝑧 ) ( 𝑔 ‘ 𝑦 )  =  ∪  ( ( 𝑋  ×  { 𝑆 } ) ‘ 𝑦 ) )  ∧  𝑥  =  X 𝑦  ∈  𝑋 ( 𝑔 ‘ 𝑦 ) ) } ) ) | 
						
							| 11 |  | simpr | ⊢ ( ( 𝑅  ∈  Top  ∧  𝑆  ∈  Top )  →  𝑆  ∈  Top ) | 
						
							| 12 | 11 | snssd | ⊢ ( ( 𝑅  ∈  Top  ∧  𝑆  ∈  Top )  →  { 𝑆 }  ⊆  Top ) | 
						
							| 13 | 6 12 | fssd | ⊢ ( ( 𝑅  ∈  Top  ∧  𝑆  ∈  Top )  →  ( 𝑋  ×  { 𝑆 } ) : 𝑋 ⟶ Top ) | 
						
							| 14 |  | eqid | ⊢ X 𝑛  ∈  𝑋 ∪  ( ( 𝑋  ×  { 𝑆 } ) ‘ 𝑛 )  =  X 𝑛  ∈  𝑋 ∪  ( ( 𝑋  ×  { 𝑆 } ) ‘ 𝑛 ) | 
						
							| 15 | 8 14 | ptbasfi | ⊢ ( ( 𝑋  ∈  𝑅  ∧  ( 𝑋  ×  { 𝑆 } ) : 𝑋 ⟶ Top )  →  { 𝑥  ∣  ∃ 𝑔 ( ( 𝑔  Fn  𝑋  ∧  ∀ 𝑦  ∈  𝑋 ( 𝑔 ‘ 𝑦 )  ∈  ( ( 𝑋  ×  { 𝑆 } ) ‘ 𝑦 )  ∧  ∃ 𝑧  ∈  Fin ∀ 𝑦  ∈  ( 𝑋  ∖  𝑧 ) ( 𝑔 ‘ 𝑦 )  =  ∪  ( ( 𝑋  ×  { 𝑆 } ) ‘ 𝑦 ) )  ∧  𝑥  =  X 𝑦  ∈  𝑋 ( 𝑔 ‘ 𝑦 ) ) }  =  ( fi ‘ ( { X 𝑛  ∈  𝑋 ∪  ( ( 𝑋  ×  { 𝑆 } ) ‘ 𝑛 ) }  ∪  ran  ( 𝑘  ∈  𝑋 ,  𝑢  ∈  ( ( 𝑋  ×  { 𝑆 } ) ‘ 𝑘 )  ↦  ( ◡ ( 𝑤  ∈  X 𝑛  ∈  𝑋 ∪  ( ( 𝑋  ×  { 𝑆 } ) ‘ 𝑛 )  ↦  ( 𝑤 ‘ 𝑘 ) )  “  𝑢 ) ) ) ) ) | 
						
							| 16 | 4 13 15 | syl2anc | ⊢ ( ( 𝑅  ∈  Top  ∧  𝑆  ∈  Top )  →  { 𝑥  ∣  ∃ 𝑔 ( ( 𝑔  Fn  𝑋  ∧  ∀ 𝑦  ∈  𝑋 ( 𝑔 ‘ 𝑦 )  ∈  ( ( 𝑋  ×  { 𝑆 } ) ‘ 𝑦 )  ∧  ∃ 𝑧  ∈  Fin ∀ 𝑦  ∈  ( 𝑋  ∖  𝑧 ) ( 𝑔 ‘ 𝑦 )  =  ∪  ( ( 𝑋  ×  { 𝑆 } ) ‘ 𝑦 ) )  ∧  𝑥  =  X 𝑦  ∈  𝑋 ( 𝑔 ‘ 𝑦 ) ) }  =  ( fi ‘ ( { X 𝑛  ∈  𝑋 ∪  ( ( 𝑋  ×  { 𝑆 } ) ‘ 𝑛 ) }  ∪  ran  ( 𝑘  ∈  𝑋 ,  𝑢  ∈  ( ( 𝑋  ×  { 𝑆 } ) ‘ 𝑘 )  ↦  ( ◡ ( 𝑤  ∈  X 𝑛  ∈  𝑋 ∪  ( ( 𝑋  ×  { 𝑆 } ) ‘ 𝑛 )  ↦  ( 𝑤 ‘ 𝑘 ) )  “  𝑢 ) ) ) ) ) | 
						
							| 17 |  | fvconst2g | ⊢ ( ( 𝑆  ∈  Top  ∧  𝑛  ∈  𝑋 )  →  ( ( 𝑋  ×  { 𝑆 } ) ‘ 𝑛 )  =  𝑆 ) | 
						
							| 18 | 17 | adantll | ⊢ ( ( ( 𝑅  ∈  Top  ∧  𝑆  ∈  Top )  ∧  𝑛  ∈  𝑋 )  →  ( ( 𝑋  ×  { 𝑆 } ) ‘ 𝑛 )  =  𝑆 ) | 
						
							| 19 | 18 | unieqd | ⊢ ( ( ( 𝑅  ∈  Top  ∧  𝑆  ∈  Top )  ∧  𝑛  ∈  𝑋 )  →  ∪  ( ( 𝑋  ×  { 𝑆 } ) ‘ 𝑛 )  =  ∪  𝑆 ) | 
						
							| 20 | 19 | ixpeq2dva | ⊢ ( ( 𝑅  ∈  Top  ∧  𝑆  ∈  Top )  →  X 𝑛  ∈  𝑋 ∪  ( ( 𝑋  ×  { 𝑆 } ) ‘ 𝑛 )  =  X 𝑛  ∈  𝑋 ∪  𝑆 ) | 
						
							| 21 |  | eqid | ⊢ ∪  𝑆  =  ∪  𝑆 | 
						
							| 22 | 21 | topopn | ⊢ ( 𝑆  ∈  Top  →  ∪  𝑆  ∈  𝑆 ) | 
						
							| 23 |  | ixpconstg | ⊢ ( ( 𝑋  ∈  𝑅  ∧  ∪  𝑆  ∈  𝑆 )  →  X 𝑛  ∈  𝑋 ∪  𝑆  =  ( ∪  𝑆  ↑m  𝑋 ) ) | 
						
							| 24 | 3 22 23 | syl2an | ⊢ ( ( 𝑅  ∈  Top  ∧  𝑆  ∈  Top )  →  X 𝑛  ∈  𝑋 ∪  𝑆  =  ( ∪  𝑆  ↑m  𝑋 ) ) | 
						
							| 25 | 20 24 | eqtrd | ⊢ ( ( 𝑅  ∈  Top  ∧  𝑆  ∈  Top )  →  X 𝑛  ∈  𝑋 ∪  ( ( 𝑋  ×  { 𝑆 } ) ‘ 𝑛 )  =  ( ∪  𝑆  ↑m  𝑋 ) ) | 
						
							| 26 | 25 | sneqd | ⊢ ( ( 𝑅  ∈  Top  ∧  𝑆  ∈  Top )  →  { X 𝑛  ∈  𝑋 ∪  ( ( 𝑋  ×  { 𝑆 } ) ‘ 𝑛 ) }  =  { ( ∪  𝑆  ↑m  𝑋 ) } ) | 
						
							| 27 |  | eqid | ⊢ 𝑋  =  𝑋 | 
						
							| 28 |  | fvconst2g | ⊢ ( ( 𝑆  ∈  Top  ∧  𝑘  ∈  𝑋 )  →  ( ( 𝑋  ×  { 𝑆 } ) ‘ 𝑘 )  =  𝑆 ) | 
						
							| 29 | 28 | adantll | ⊢ ( ( ( 𝑅  ∈  Top  ∧  𝑆  ∈  Top )  ∧  𝑘  ∈  𝑋 )  →  ( ( 𝑋  ×  { 𝑆 } ) ‘ 𝑘 )  =  𝑆 ) | 
						
							| 30 | 25 | adantr | ⊢ ( ( ( 𝑅  ∈  Top  ∧  𝑆  ∈  Top )  ∧  𝑘  ∈  𝑋 )  →  X 𝑛  ∈  𝑋 ∪  ( ( 𝑋  ×  { 𝑆 } ) ‘ 𝑛 )  =  ( ∪  𝑆  ↑m  𝑋 ) ) | 
						
							| 31 | 30 | mpteq1d | ⊢ ( ( ( 𝑅  ∈  Top  ∧  𝑆  ∈  Top )  ∧  𝑘  ∈  𝑋 )  →  ( 𝑤  ∈  X 𝑛  ∈  𝑋 ∪  ( ( 𝑋  ×  { 𝑆 } ) ‘ 𝑛 )  ↦  ( 𝑤 ‘ 𝑘 ) )  =  ( 𝑤  ∈  ( ∪  𝑆  ↑m  𝑋 )  ↦  ( 𝑤 ‘ 𝑘 ) ) ) | 
						
							| 32 | 31 | cnveqd | ⊢ ( ( ( 𝑅  ∈  Top  ∧  𝑆  ∈  Top )  ∧  𝑘  ∈  𝑋 )  →  ◡ ( 𝑤  ∈  X 𝑛  ∈  𝑋 ∪  ( ( 𝑋  ×  { 𝑆 } ) ‘ 𝑛 )  ↦  ( 𝑤 ‘ 𝑘 ) )  =  ◡ ( 𝑤  ∈  ( ∪  𝑆  ↑m  𝑋 )  ↦  ( 𝑤 ‘ 𝑘 ) ) ) | 
						
							| 33 | 32 | imaeq1d | ⊢ ( ( ( 𝑅  ∈  Top  ∧  𝑆  ∈  Top )  ∧  𝑘  ∈  𝑋 )  →  ( ◡ ( 𝑤  ∈  X 𝑛  ∈  𝑋 ∪  ( ( 𝑋  ×  { 𝑆 } ) ‘ 𝑛 )  ↦  ( 𝑤 ‘ 𝑘 ) )  “  𝑢 )  =  ( ◡ ( 𝑤  ∈  ( ∪  𝑆  ↑m  𝑋 )  ↦  ( 𝑤 ‘ 𝑘 ) )  “  𝑢 ) ) | 
						
							| 34 | 33 | ralrimivw | ⊢ ( ( ( 𝑅  ∈  Top  ∧  𝑆  ∈  Top )  ∧  𝑘  ∈  𝑋 )  →  ∀ 𝑢  ∈  ( ( 𝑋  ×  { 𝑆 } ) ‘ 𝑘 ) ( ◡ ( 𝑤  ∈  X 𝑛  ∈  𝑋 ∪  ( ( 𝑋  ×  { 𝑆 } ) ‘ 𝑛 )  ↦  ( 𝑤 ‘ 𝑘 ) )  “  𝑢 )  =  ( ◡ ( 𝑤  ∈  ( ∪  𝑆  ↑m  𝑋 )  ↦  ( 𝑤 ‘ 𝑘 ) )  “  𝑢 ) ) | 
						
							| 35 | 29 34 | jca | ⊢ ( ( ( 𝑅  ∈  Top  ∧  𝑆  ∈  Top )  ∧  𝑘  ∈  𝑋 )  →  ( ( ( 𝑋  ×  { 𝑆 } ) ‘ 𝑘 )  =  𝑆  ∧  ∀ 𝑢  ∈  ( ( 𝑋  ×  { 𝑆 } ) ‘ 𝑘 ) ( ◡ ( 𝑤  ∈  X 𝑛  ∈  𝑋 ∪  ( ( 𝑋  ×  { 𝑆 } ) ‘ 𝑛 )  ↦  ( 𝑤 ‘ 𝑘 ) )  “  𝑢 )  =  ( ◡ ( 𝑤  ∈  ( ∪  𝑆  ↑m  𝑋 )  ↦  ( 𝑤 ‘ 𝑘 ) )  “  𝑢 ) ) ) | 
						
							| 36 | 35 | ralrimiva | ⊢ ( ( 𝑅  ∈  Top  ∧  𝑆  ∈  Top )  →  ∀ 𝑘  ∈  𝑋 ( ( ( 𝑋  ×  { 𝑆 } ) ‘ 𝑘 )  =  𝑆  ∧  ∀ 𝑢  ∈  ( ( 𝑋  ×  { 𝑆 } ) ‘ 𝑘 ) ( ◡ ( 𝑤  ∈  X 𝑛  ∈  𝑋 ∪  ( ( 𝑋  ×  { 𝑆 } ) ‘ 𝑛 )  ↦  ( 𝑤 ‘ 𝑘 ) )  “  𝑢 )  =  ( ◡ ( 𝑤  ∈  ( ∪  𝑆  ↑m  𝑋 )  ↦  ( 𝑤 ‘ 𝑘 ) )  “  𝑢 ) ) ) | 
						
							| 37 |  | mpoeq123 | ⊢ ( ( 𝑋  =  𝑋  ∧  ∀ 𝑘  ∈  𝑋 ( ( ( 𝑋  ×  { 𝑆 } ) ‘ 𝑘 )  =  𝑆  ∧  ∀ 𝑢  ∈  ( ( 𝑋  ×  { 𝑆 } ) ‘ 𝑘 ) ( ◡ ( 𝑤  ∈  X 𝑛  ∈  𝑋 ∪  ( ( 𝑋  ×  { 𝑆 } ) ‘ 𝑛 )  ↦  ( 𝑤 ‘ 𝑘 ) )  “  𝑢 )  =  ( ◡ ( 𝑤  ∈  ( ∪  𝑆  ↑m  𝑋 )  ↦  ( 𝑤 ‘ 𝑘 ) )  “  𝑢 ) ) )  →  ( 𝑘  ∈  𝑋 ,  𝑢  ∈  ( ( 𝑋  ×  { 𝑆 } ) ‘ 𝑘 )  ↦  ( ◡ ( 𝑤  ∈  X 𝑛  ∈  𝑋 ∪  ( ( 𝑋  ×  { 𝑆 } ) ‘ 𝑛 )  ↦  ( 𝑤 ‘ 𝑘 ) )  “  𝑢 ) )  =  ( 𝑘  ∈  𝑋 ,  𝑢  ∈  𝑆  ↦  ( ◡ ( 𝑤  ∈  ( ∪  𝑆  ↑m  𝑋 )  ↦  ( 𝑤 ‘ 𝑘 ) )  “  𝑢 ) ) ) | 
						
							| 38 | 27 36 37 | sylancr | ⊢ ( ( 𝑅  ∈  Top  ∧  𝑆  ∈  Top )  →  ( 𝑘  ∈  𝑋 ,  𝑢  ∈  ( ( 𝑋  ×  { 𝑆 } ) ‘ 𝑘 )  ↦  ( ◡ ( 𝑤  ∈  X 𝑛  ∈  𝑋 ∪  ( ( 𝑋  ×  { 𝑆 } ) ‘ 𝑛 )  ↦  ( 𝑤 ‘ 𝑘 ) )  “  𝑢 ) )  =  ( 𝑘  ∈  𝑋 ,  𝑢  ∈  𝑆  ↦  ( ◡ ( 𝑤  ∈  ( ∪  𝑆  ↑m  𝑋 )  ↦  ( 𝑤 ‘ 𝑘 ) )  “  𝑢 ) ) ) | 
						
							| 39 | 38 | rneqd | ⊢ ( ( 𝑅  ∈  Top  ∧  𝑆  ∈  Top )  →  ran  ( 𝑘  ∈  𝑋 ,  𝑢  ∈  ( ( 𝑋  ×  { 𝑆 } ) ‘ 𝑘 )  ↦  ( ◡ ( 𝑤  ∈  X 𝑛  ∈  𝑋 ∪  ( ( 𝑋  ×  { 𝑆 } ) ‘ 𝑛 )  ↦  ( 𝑤 ‘ 𝑘 ) )  “  𝑢 ) )  =  ran  ( 𝑘  ∈  𝑋 ,  𝑢  ∈  𝑆  ↦  ( ◡ ( 𝑤  ∈  ( ∪  𝑆  ↑m  𝑋 )  ↦  ( 𝑤 ‘ 𝑘 ) )  “  𝑢 ) ) ) | 
						
							| 40 | 26 39 | uneq12d | ⊢ ( ( 𝑅  ∈  Top  ∧  𝑆  ∈  Top )  →  ( { X 𝑛  ∈  𝑋 ∪  ( ( 𝑋  ×  { 𝑆 } ) ‘ 𝑛 ) }  ∪  ran  ( 𝑘  ∈  𝑋 ,  𝑢  ∈  ( ( 𝑋  ×  { 𝑆 } ) ‘ 𝑘 )  ↦  ( ◡ ( 𝑤  ∈  X 𝑛  ∈  𝑋 ∪  ( ( 𝑋  ×  { 𝑆 } ) ‘ 𝑛 )  ↦  ( 𝑤 ‘ 𝑘 ) )  “  𝑢 ) ) )  =  ( { ( ∪  𝑆  ↑m  𝑋 ) }  ∪  ran  ( 𝑘  ∈  𝑋 ,  𝑢  ∈  𝑆  ↦  ( ◡ ( 𝑤  ∈  ( ∪  𝑆  ↑m  𝑋 )  ↦  ( 𝑤 ‘ 𝑘 ) )  “  𝑢 ) ) ) ) | 
						
							| 41 | 40 | fveq2d | ⊢ ( ( 𝑅  ∈  Top  ∧  𝑆  ∈  Top )  →  ( fi ‘ ( { X 𝑛  ∈  𝑋 ∪  ( ( 𝑋  ×  { 𝑆 } ) ‘ 𝑛 ) }  ∪  ran  ( 𝑘  ∈  𝑋 ,  𝑢  ∈  ( ( 𝑋  ×  { 𝑆 } ) ‘ 𝑘 )  ↦  ( ◡ ( 𝑤  ∈  X 𝑛  ∈  𝑋 ∪  ( ( 𝑋  ×  { 𝑆 } ) ‘ 𝑛 )  ↦  ( 𝑤 ‘ 𝑘 ) )  “  𝑢 ) ) ) )  =  ( fi ‘ ( { ( ∪  𝑆  ↑m  𝑋 ) }  ∪  ran  ( 𝑘  ∈  𝑋 ,  𝑢  ∈  𝑆  ↦  ( ◡ ( 𝑤  ∈  ( ∪  𝑆  ↑m  𝑋 )  ↦  ( 𝑤 ‘ 𝑘 ) )  “  𝑢 ) ) ) ) ) | 
						
							| 42 | 16 41 | eqtrd | ⊢ ( ( 𝑅  ∈  Top  ∧  𝑆  ∈  Top )  →  { 𝑥  ∣  ∃ 𝑔 ( ( 𝑔  Fn  𝑋  ∧  ∀ 𝑦  ∈  𝑋 ( 𝑔 ‘ 𝑦 )  ∈  ( ( 𝑋  ×  { 𝑆 } ) ‘ 𝑦 )  ∧  ∃ 𝑧  ∈  Fin ∀ 𝑦  ∈  ( 𝑋  ∖  𝑧 ) ( 𝑔 ‘ 𝑦 )  =  ∪  ( ( 𝑋  ×  { 𝑆 } ) ‘ 𝑦 ) )  ∧  𝑥  =  X 𝑦  ∈  𝑋 ( 𝑔 ‘ 𝑦 ) ) }  =  ( fi ‘ ( { ( ∪  𝑆  ↑m  𝑋 ) }  ∪  ran  ( 𝑘  ∈  𝑋 ,  𝑢  ∈  𝑆  ↦  ( ◡ ( 𝑤  ∈  ( ∪  𝑆  ↑m  𝑋 )  ↦  ( 𝑤 ‘ 𝑘 ) )  “  𝑢 ) ) ) ) ) | 
						
							| 43 | 42 | fveq2d | ⊢ ( ( 𝑅  ∈  Top  ∧  𝑆  ∈  Top )  →  ( topGen ‘ { 𝑥  ∣  ∃ 𝑔 ( ( 𝑔  Fn  𝑋  ∧  ∀ 𝑦  ∈  𝑋 ( 𝑔 ‘ 𝑦 )  ∈  ( ( 𝑋  ×  { 𝑆 } ) ‘ 𝑦 )  ∧  ∃ 𝑧  ∈  Fin ∀ 𝑦  ∈  ( 𝑋  ∖  𝑧 ) ( 𝑔 ‘ 𝑦 )  =  ∪  ( ( 𝑋  ×  { 𝑆 } ) ‘ 𝑦 ) )  ∧  𝑥  =  X 𝑦  ∈  𝑋 ( 𝑔 ‘ 𝑦 ) ) } )  =  ( topGen ‘ ( fi ‘ ( { ( ∪  𝑆  ↑m  𝑋 ) }  ∪  ran  ( 𝑘  ∈  𝑋 ,  𝑢  ∈  𝑆  ↦  ( ◡ ( 𝑤  ∈  ( ∪  𝑆  ↑m  𝑋 )  ↦  ( 𝑤 ‘ 𝑘 ) )  “  𝑢 ) ) ) ) ) ) | 
						
							| 44 | 10 43 | eqtrd | ⊢ ( ( 𝑅  ∈  Top  ∧  𝑆  ∈  Top )  →  ( ∏t ‘ ( 𝑋  ×  { 𝑆 } ) )  =  ( topGen ‘ ( fi ‘ ( { ( ∪  𝑆  ↑m  𝑋 ) }  ∪  ran  ( 𝑘  ∈  𝑋 ,  𝑢  ∈  𝑆  ↦  ( ◡ ( 𝑤  ∈  ( ∪  𝑆  ↑m  𝑋 )  ↦  ( 𝑤 ‘ 𝑘 ) )  “  𝑢 ) ) ) ) ) ) | 
						
							| 45 | 2 44 | eqtrid | ⊢ ( ( 𝑅  ∈  Top  ∧  𝑆  ∈  Top )  →  𝐽  =  ( topGen ‘ ( fi ‘ ( { ( ∪  𝑆  ↑m  𝑋 ) }  ∪  ran  ( 𝑘  ∈  𝑋 ,  𝑢  ∈  𝑆  ↦  ( ◡ ( 𝑤  ∈  ( ∪  𝑆  ↑m  𝑋 )  ↦  ( 𝑤 ‘ 𝑘 ) )  “  𝑢 ) ) ) ) ) ) | 
						
							| 46 | 45 | oveq1d | ⊢ ( ( 𝑅  ∈  Top  ∧  𝑆  ∈  Top )  →  ( 𝐽  ↾t  ( 𝑅  Cn  𝑆 ) )  =  ( ( topGen ‘ ( fi ‘ ( { ( ∪  𝑆  ↑m  𝑋 ) }  ∪  ran  ( 𝑘  ∈  𝑋 ,  𝑢  ∈  𝑆  ↦  ( ◡ ( 𝑤  ∈  ( ∪  𝑆  ↑m  𝑋 )  ↦  ( 𝑤 ‘ 𝑘 ) )  “  𝑢 ) ) ) ) )  ↾t  ( 𝑅  Cn  𝑆 ) ) ) | 
						
							| 47 |  | firest | ⊢ ( fi ‘ ( ( { ( ∪  𝑆  ↑m  𝑋 ) }  ∪  ran  ( 𝑘  ∈  𝑋 ,  𝑢  ∈  𝑆  ↦  ( ◡ ( 𝑤  ∈  ( ∪  𝑆  ↑m  𝑋 )  ↦  ( 𝑤 ‘ 𝑘 ) )  “  𝑢 ) ) )  ↾t  ( 𝑅  Cn  𝑆 ) ) )  =  ( ( fi ‘ ( { ( ∪  𝑆  ↑m  𝑋 ) }  ∪  ran  ( 𝑘  ∈  𝑋 ,  𝑢  ∈  𝑆  ↦  ( ◡ ( 𝑤  ∈  ( ∪  𝑆  ↑m  𝑋 )  ↦  ( 𝑤 ‘ 𝑘 ) )  “  𝑢 ) ) ) )  ↾t  ( 𝑅  Cn  𝑆 ) ) | 
						
							| 48 | 47 | fveq2i | ⊢ ( topGen ‘ ( fi ‘ ( ( { ( ∪  𝑆  ↑m  𝑋 ) }  ∪  ran  ( 𝑘  ∈  𝑋 ,  𝑢  ∈  𝑆  ↦  ( ◡ ( 𝑤  ∈  ( ∪  𝑆  ↑m  𝑋 )  ↦  ( 𝑤 ‘ 𝑘 ) )  “  𝑢 ) ) )  ↾t  ( 𝑅  Cn  𝑆 ) ) ) )  =  ( topGen ‘ ( ( fi ‘ ( { ( ∪  𝑆  ↑m  𝑋 ) }  ∪  ran  ( 𝑘  ∈  𝑋 ,  𝑢  ∈  𝑆  ↦  ( ◡ ( 𝑤  ∈  ( ∪  𝑆  ↑m  𝑋 )  ↦  ( 𝑤 ‘ 𝑘 ) )  “  𝑢 ) ) ) )  ↾t  ( 𝑅  Cn  𝑆 ) ) ) | 
						
							| 49 |  | fvex | ⊢ ( fi ‘ ( { ( ∪  𝑆  ↑m  𝑋 ) }  ∪  ran  ( 𝑘  ∈  𝑋 ,  𝑢  ∈  𝑆  ↦  ( ◡ ( 𝑤  ∈  ( ∪  𝑆  ↑m  𝑋 )  ↦  ( 𝑤 ‘ 𝑘 ) )  “  𝑢 ) ) ) )  ∈  V | 
						
							| 50 |  | ovex | ⊢ ( 𝑅  Cn  𝑆 )  ∈  V | 
						
							| 51 |  | tgrest | ⊢ ( ( ( fi ‘ ( { ( ∪  𝑆  ↑m  𝑋 ) }  ∪  ran  ( 𝑘  ∈  𝑋 ,  𝑢  ∈  𝑆  ↦  ( ◡ ( 𝑤  ∈  ( ∪  𝑆  ↑m  𝑋 )  ↦  ( 𝑤 ‘ 𝑘 ) )  “  𝑢 ) ) ) )  ∈  V  ∧  ( 𝑅  Cn  𝑆 )  ∈  V )  →  ( topGen ‘ ( ( fi ‘ ( { ( ∪  𝑆  ↑m  𝑋 ) }  ∪  ran  ( 𝑘  ∈  𝑋 ,  𝑢  ∈  𝑆  ↦  ( ◡ ( 𝑤  ∈  ( ∪  𝑆  ↑m  𝑋 )  ↦  ( 𝑤 ‘ 𝑘 ) )  “  𝑢 ) ) ) )  ↾t  ( 𝑅  Cn  𝑆 ) ) )  =  ( ( topGen ‘ ( fi ‘ ( { ( ∪  𝑆  ↑m  𝑋 ) }  ∪  ran  ( 𝑘  ∈  𝑋 ,  𝑢  ∈  𝑆  ↦  ( ◡ ( 𝑤  ∈  ( ∪  𝑆  ↑m  𝑋 )  ↦  ( 𝑤 ‘ 𝑘 ) )  “  𝑢 ) ) ) ) )  ↾t  ( 𝑅  Cn  𝑆 ) ) ) | 
						
							| 52 | 49 50 51 | mp2an | ⊢ ( topGen ‘ ( ( fi ‘ ( { ( ∪  𝑆  ↑m  𝑋 ) }  ∪  ran  ( 𝑘  ∈  𝑋 ,  𝑢  ∈  𝑆  ↦  ( ◡ ( 𝑤  ∈  ( ∪  𝑆  ↑m  𝑋 )  ↦  ( 𝑤 ‘ 𝑘 ) )  “  𝑢 ) ) ) )  ↾t  ( 𝑅  Cn  𝑆 ) ) )  =  ( ( topGen ‘ ( fi ‘ ( { ( ∪  𝑆  ↑m  𝑋 ) }  ∪  ran  ( 𝑘  ∈  𝑋 ,  𝑢  ∈  𝑆  ↦  ( ◡ ( 𝑤  ∈  ( ∪  𝑆  ↑m  𝑋 )  ↦  ( 𝑤 ‘ 𝑘 ) )  “  𝑢 ) ) ) ) )  ↾t  ( 𝑅  Cn  𝑆 ) ) | 
						
							| 53 | 48 52 | eqtri | ⊢ ( topGen ‘ ( fi ‘ ( ( { ( ∪  𝑆  ↑m  𝑋 ) }  ∪  ran  ( 𝑘  ∈  𝑋 ,  𝑢  ∈  𝑆  ↦  ( ◡ ( 𝑤  ∈  ( ∪  𝑆  ↑m  𝑋 )  ↦  ( 𝑤 ‘ 𝑘 ) )  “  𝑢 ) ) )  ↾t  ( 𝑅  Cn  𝑆 ) ) ) )  =  ( ( topGen ‘ ( fi ‘ ( { ( ∪  𝑆  ↑m  𝑋 ) }  ∪  ran  ( 𝑘  ∈  𝑋 ,  𝑢  ∈  𝑆  ↦  ( ◡ ( 𝑤  ∈  ( ∪  𝑆  ↑m  𝑋 )  ↦  ( 𝑤 ‘ 𝑘 ) )  “  𝑢 ) ) ) ) )  ↾t  ( 𝑅  Cn  𝑆 ) ) | 
						
							| 54 | 46 53 | eqtr4di | ⊢ ( ( 𝑅  ∈  Top  ∧  𝑆  ∈  Top )  →  ( 𝐽  ↾t  ( 𝑅  Cn  𝑆 ) )  =  ( topGen ‘ ( fi ‘ ( ( { ( ∪  𝑆  ↑m  𝑋 ) }  ∪  ran  ( 𝑘  ∈  𝑋 ,  𝑢  ∈  𝑆  ↦  ( ◡ ( 𝑤  ∈  ( ∪  𝑆  ↑m  𝑋 )  ↦  ( 𝑤 ‘ 𝑘 ) )  “  𝑢 ) ) )  ↾t  ( 𝑅  Cn  𝑆 ) ) ) ) ) | 
						
							| 55 |  | xkotop | ⊢ ( ( 𝑅  ∈  Top  ∧  𝑆  ∈  Top )  →  ( 𝑆  ↑ko  𝑅 )  ∈  Top ) | 
						
							| 56 |  | snex | ⊢ { ( ∪  𝑆  ↑m  𝑋 ) }  ∈  V | 
						
							| 57 |  | mpoexga | ⊢ ( ( 𝑋  ∈  𝑅  ∧  𝑆  ∈  Top )  →  ( 𝑘  ∈  𝑋 ,  𝑢  ∈  𝑆  ↦  ( ◡ ( 𝑤  ∈  ( ∪  𝑆  ↑m  𝑋 )  ↦  ( 𝑤 ‘ 𝑘 ) )  “  𝑢 ) )  ∈  V ) | 
						
							| 58 | 3 57 | sylan | ⊢ ( ( 𝑅  ∈  Top  ∧  𝑆  ∈  Top )  →  ( 𝑘  ∈  𝑋 ,  𝑢  ∈  𝑆  ↦  ( ◡ ( 𝑤  ∈  ( ∪  𝑆  ↑m  𝑋 )  ↦  ( 𝑤 ‘ 𝑘 ) )  “  𝑢 ) )  ∈  V ) | 
						
							| 59 |  | rnexg | ⊢ ( ( 𝑘  ∈  𝑋 ,  𝑢  ∈  𝑆  ↦  ( ◡ ( 𝑤  ∈  ( ∪  𝑆  ↑m  𝑋 )  ↦  ( 𝑤 ‘ 𝑘 ) )  “  𝑢 ) )  ∈  V  →  ran  ( 𝑘  ∈  𝑋 ,  𝑢  ∈  𝑆  ↦  ( ◡ ( 𝑤  ∈  ( ∪  𝑆  ↑m  𝑋 )  ↦  ( 𝑤 ‘ 𝑘 ) )  “  𝑢 ) )  ∈  V ) | 
						
							| 60 | 58 59 | syl | ⊢ ( ( 𝑅  ∈  Top  ∧  𝑆  ∈  Top )  →  ran  ( 𝑘  ∈  𝑋 ,  𝑢  ∈  𝑆  ↦  ( ◡ ( 𝑤  ∈  ( ∪  𝑆  ↑m  𝑋 )  ↦  ( 𝑤 ‘ 𝑘 ) )  “  𝑢 ) )  ∈  V ) | 
						
							| 61 |  | unexg | ⊢ ( ( { ( ∪  𝑆  ↑m  𝑋 ) }  ∈  V  ∧  ran  ( 𝑘  ∈  𝑋 ,  𝑢  ∈  𝑆  ↦  ( ◡ ( 𝑤  ∈  ( ∪  𝑆  ↑m  𝑋 )  ↦  ( 𝑤 ‘ 𝑘 ) )  “  𝑢 ) )  ∈  V )  →  ( { ( ∪  𝑆  ↑m  𝑋 ) }  ∪  ran  ( 𝑘  ∈  𝑋 ,  𝑢  ∈  𝑆  ↦  ( ◡ ( 𝑤  ∈  ( ∪  𝑆  ↑m  𝑋 )  ↦  ( 𝑤 ‘ 𝑘 ) )  “  𝑢 ) ) )  ∈  V ) | 
						
							| 62 | 56 60 61 | sylancr | ⊢ ( ( 𝑅  ∈  Top  ∧  𝑆  ∈  Top )  →  ( { ( ∪  𝑆  ↑m  𝑋 ) }  ∪  ran  ( 𝑘  ∈  𝑋 ,  𝑢  ∈  𝑆  ↦  ( ◡ ( 𝑤  ∈  ( ∪  𝑆  ↑m  𝑋 )  ↦  ( 𝑤 ‘ 𝑘 ) )  “  𝑢 ) ) )  ∈  V ) | 
						
							| 63 |  | restval | ⊢ ( ( ( { ( ∪  𝑆  ↑m  𝑋 ) }  ∪  ran  ( 𝑘  ∈  𝑋 ,  𝑢  ∈  𝑆  ↦  ( ◡ ( 𝑤  ∈  ( ∪  𝑆  ↑m  𝑋 )  ↦  ( 𝑤 ‘ 𝑘 ) )  “  𝑢 ) ) )  ∈  V  ∧  ( 𝑅  Cn  𝑆 )  ∈  V )  →  ( ( { ( ∪  𝑆  ↑m  𝑋 ) }  ∪  ran  ( 𝑘  ∈  𝑋 ,  𝑢  ∈  𝑆  ↦  ( ◡ ( 𝑤  ∈  ( ∪  𝑆  ↑m  𝑋 )  ↦  ( 𝑤 ‘ 𝑘 ) )  “  𝑢 ) ) )  ↾t  ( 𝑅  Cn  𝑆 ) )  =  ran  ( 𝑥  ∈  ( { ( ∪  𝑆  ↑m  𝑋 ) }  ∪  ran  ( 𝑘  ∈  𝑋 ,  𝑢  ∈  𝑆  ↦  ( ◡ ( 𝑤  ∈  ( ∪  𝑆  ↑m  𝑋 )  ↦  ( 𝑤 ‘ 𝑘 ) )  “  𝑢 ) ) )  ↦  ( 𝑥  ∩  ( 𝑅  Cn  𝑆 ) ) ) ) | 
						
							| 64 | 62 50 63 | sylancl | ⊢ ( ( 𝑅  ∈  Top  ∧  𝑆  ∈  Top )  →  ( ( { ( ∪  𝑆  ↑m  𝑋 ) }  ∪  ran  ( 𝑘  ∈  𝑋 ,  𝑢  ∈  𝑆  ↦  ( ◡ ( 𝑤  ∈  ( ∪  𝑆  ↑m  𝑋 )  ↦  ( 𝑤 ‘ 𝑘 ) )  “  𝑢 ) ) )  ↾t  ( 𝑅  Cn  𝑆 ) )  =  ran  ( 𝑥  ∈  ( { ( ∪  𝑆  ↑m  𝑋 ) }  ∪  ran  ( 𝑘  ∈  𝑋 ,  𝑢  ∈  𝑆  ↦  ( ◡ ( 𝑤  ∈  ( ∪  𝑆  ↑m  𝑋 )  ↦  ( 𝑤 ‘ 𝑘 ) )  “  𝑢 ) ) )  ↦  ( 𝑥  ∩  ( 𝑅  Cn  𝑆 ) ) ) ) | 
						
							| 65 |  | elun | ⊢ ( 𝑥  ∈  ( { ( ∪  𝑆  ↑m  𝑋 ) }  ∪  ran  ( 𝑘  ∈  𝑋 ,  𝑢  ∈  𝑆  ↦  ( ◡ ( 𝑤  ∈  ( ∪  𝑆  ↑m  𝑋 )  ↦  ( 𝑤 ‘ 𝑘 ) )  “  𝑢 ) ) )  ↔  ( 𝑥  ∈  { ( ∪  𝑆  ↑m  𝑋 ) }  ∨  𝑥  ∈  ran  ( 𝑘  ∈  𝑋 ,  𝑢  ∈  𝑆  ↦  ( ◡ ( 𝑤  ∈  ( ∪  𝑆  ↑m  𝑋 )  ↦  ( 𝑤 ‘ 𝑘 ) )  “  𝑢 ) ) ) ) | 
						
							| 66 | 1 21 | cnf | ⊢ ( 𝑥  ∈  ( 𝑅  Cn  𝑆 )  →  𝑥 : 𝑋 ⟶ ∪  𝑆 ) | 
						
							| 67 |  | elmapg | ⊢ ( ( ∪  𝑆  ∈  𝑆  ∧  𝑋  ∈  𝑅 )  →  ( 𝑥  ∈  ( ∪  𝑆  ↑m  𝑋 )  ↔  𝑥 : 𝑋 ⟶ ∪  𝑆 ) ) | 
						
							| 68 | 22 3 67 | syl2anr | ⊢ ( ( 𝑅  ∈  Top  ∧  𝑆  ∈  Top )  →  ( 𝑥  ∈  ( ∪  𝑆  ↑m  𝑋 )  ↔  𝑥 : 𝑋 ⟶ ∪  𝑆 ) ) | 
						
							| 69 | 66 68 | imbitrrid | ⊢ ( ( 𝑅  ∈  Top  ∧  𝑆  ∈  Top )  →  ( 𝑥  ∈  ( 𝑅  Cn  𝑆 )  →  𝑥  ∈  ( ∪  𝑆  ↑m  𝑋 ) ) ) | 
						
							| 70 | 69 | ssrdv | ⊢ ( ( 𝑅  ∈  Top  ∧  𝑆  ∈  Top )  →  ( 𝑅  Cn  𝑆 )  ⊆  ( ∪  𝑆  ↑m  𝑋 ) ) | 
						
							| 71 | 70 | adantr | ⊢ ( ( ( 𝑅  ∈  Top  ∧  𝑆  ∈  Top )  ∧  𝑥  ∈  { ( ∪  𝑆  ↑m  𝑋 ) } )  →  ( 𝑅  Cn  𝑆 )  ⊆  ( ∪  𝑆  ↑m  𝑋 ) ) | 
						
							| 72 |  | elsni | ⊢ ( 𝑥  ∈  { ( ∪  𝑆  ↑m  𝑋 ) }  →  𝑥  =  ( ∪  𝑆  ↑m  𝑋 ) ) | 
						
							| 73 | 72 | adantl | ⊢ ( ( ( 𝑅  ∈  Top  ∧  𝑆  ∈  Top )  ∧  𝑥  ∈  { ( ∪  𝑆  ↑m  𝑋 ) } )  →  𝑥  =  ( ∪  𝑆  ↑m  𝑋 ) ) | 
						
							| 74 | 71 73 | sseqtrrd | ⊢ ( ( ( 𝑅  ∈  Top  ∧  𝑆  ∈  Top )  ∧  𝑥  ∈  { ( ∪  𝑆  ↑m  𝑋 ) } )  →  ( 𝑅  Cn  𝑆 )  ⊆  𝑥 ) | 
						
							| 75 |  | sseqin2 | ⊢ ( ( 𝑅  Cn  𝑆 )  ⊆  𝑥  ↔  ( 𝑥  ∩  ( 𝑅  Cn  𝑆 ) )  =  ( 𝑅  Cn  𝑆 ) ) | 
						
							| 76 | 74 75 | sylib | ⊢ ( ( ( 𝑅  ∈  Top  ∧  𝑆  ∈  Top )  ∧  𝑥  ∈  { ( ∪  𝑆  ↑m  𝑋 ) } )  →  ( 𝑥  ∩  ( 𝑅  Cn  𝑆 ) )  =  ( 𝑅  Cn  𝑆 ) ) | 
						
							| 77 |  | eqid | ⊢ ( 𝑆  ↑ko  𝑅 )  =  ( 𝑆  ↑ko  𝑅 ) | 
						
							| 78 | 77 | xkouni | ⊢ ( ( 𝑅  ∈  Top  ∧  𝑆  ∈  Top )  →  ( 𝑅  Cn  𝑆 )  =  ∪  ( 𝑆  ↑ko  𝑅 ) ) | 
						
							| 79 |  | eqid | ⊢ ∪  ( 𝑆  ↑ko  𝑅 )  =  ∪  ( 𝑆  ↑ko  𝑅 ) | 
						
							| 80 | 79 | topopn | ⊢ ( ( 𝑆  ↑ko  𝑅 )  ∈  Top  →  ∪  ( 𝑆  ↑ko  𝑅 )  ∈  ( 𝑆  ↑ko  𝑅 ) ) | 
						
							| 81 | 55 80 | syl | ⊢ ( ( 𝑅  ∈  Top  ∧  𝑆  ∈  Top )  →  ∪  ( 𝑆  ↑ko  𝑅 )  ∈  ( 𝑆  ↑ko  𝑅 ) ) | 
						
							| 82 | 78 81 | eqeltrd | ⊢ ( ( 𝑅  ∈  Top  ∧  𝑆  ∈  Top )  →  ( 𝑅  Cn  𝑆 )  ∈  ( 𝑆  ↑ko  𝑅 ) ) | 
						
							| 83 | 82 | adantr | ⊢ ( ( ( 𝑅  ∈  Top  ∧  𝑆  ∈  Top )  ∧  𝑥  ∈  { ( ∪  𝑆  ↑m  𝑋 ) } )  →  ( 𝑅  Cn  𝑆 )  ∈  ( 𝑆  ↑ko  𝑅 ) ) | 
						
							| 84 | 76 83 | eqeltrd | ⊢ ( ( ( 𝑅  ∈  Top  ∧  𝑆  ∈  Top )  ∧  𝑥  ∈  { ( ∪  𝑆  ↑m  𝑋 ) } )  →  ( 𝑥  ∩  ( 𝑅  Cn  𝑆 ) )  ∈  ( 𝑆  ↑ko  𝑅 ) ) | 
						
							| 85 |  | eqid | ⊢ ( 𝑘  ∈  𝑋 ,  𝑢  ∈  𝑆  ↦  ( ◡ ( 𝑤  ∈  ( ∪  𝑆  ↑m  𝑋 )  ↦  ( 𝑤 ‘ 𝑘 ) )  “  𝑢 ) )  =  ( 𝑘  ∈  𝑋 ,  𝑢  ∈  𝑆  ↦  ( ◡ ( 𝑤  ∈  ( ∪  𝑆  ↑m  𝑋 )  ↦  ( 𝑤 ‘ 𝑘 ) )  “  𝑢 ) ) | 
						
							| 86 | 85 | rnmpo | ⊢ ran  ( 𝑘  ∈  𝑋 ,  𝑢  ∈  𝑆  ↦  ( ◡ ( 𝑤  ∈  ( ∪  𝑆  ↑m  𝑋 )  ↦  ( 𝑤 ‘ 𝑘 ) )  “  𝑢 ) )  =  { 𝑥  ∣  ∃ 𝑘  ∈  𝑋 ∃ 𝑢  ∈  𝑆 𝑥  =  ( ◡ ( 𝑤  ∈  ( ∪  𝑆  ↑m  𝑋 )  ↦  ( 𝑤 ‘ 𝑘 ) )  “  𝑢 ) } | 
						
							| 87 | 86 | eqabri | ⊢ ( 𝑥  ∈  ran  ( 𝑘  ∈  𝑋 ,  𝑢  ∈  𝑆  ↦  ( ◡ ( 𝑤  ∈  ( ∪  𝑆  ↑m  𝑋 )  ↦  ( 𝑤 ‘ 𝑘 ) )  “  𝑢 ) )  ↔  ∃ 𝑘  ∈  𝑋 ∃ 𝑢  ∈  𝑆 𝑥  =  ( ◡ ( 𝑤  ∈  ( ∪  𝑆  ↑m  𝑋 )  ↦  ( 𝑤 ‘ 𝑘 ) )  “  𝑢 ) ) | 
						
							| 88 |  | cnvresima | ⊢ ( ◡ ( ( 𝑤  ∈  ( ∪  𝑆  ↑m  𝑋 )  ↦  ( 𝑤 ‘ 𝑘 ) )  ↾  ( 𝑅  Cn  𝑆 ) )  “  𝑢 )  =  ( ( ◡ ( 𝑤  ∈  ( ∪  𝑆  ↑m  𝑋 )  ↦  ( 𝑤 ‘ 𝑘 ) )  “  𝑢 )  ∩  ( 𝑅  Cn  𝑆 ) ) | 
						
							| 89 | 70 | adantr | ⊢ ( ( ( 𝑅  ∈  Top  ∧  𝑆  ∈  Top )  ∧  ( 𝑘  ∈  𝑋  ∧  𝑢  ∈  𝑆 ) )  →  ( 𝑅  Cn  𝑆 )  ⊆  ( ∪  𝑆  ↑m  𝑋 ) ) | 
						
							| 90 | 89 | resmptd | ⊢ ( ( ( 𝑅  ∈  Top  ∧  𝑆  ∈  Top )  ∧  ( 𝑘  ∈  𝑋  ∧  𝑢  ∈  𝑆 ) )  →  ( ( 𝑤  ∈  ( ∪  𝑆  ↑m  𝑋 )  ↦  ( 𝑤 ‘ 𝑘 ) )  ↾  ( 𝑅  Cn  𝑆 ) )  =  ( 𝑤  ∈  ( 𝑅  Cn  𝑆 )  ↦  ( 𝑤 ‘ 𝑘 ) ) ) | 
						
							| 91 | 90 | cnveqd | ⊢ ( ( ( 𝑅  ∈  Top  ∧  𝑆  ∈  Top )  ∧  ( 𝑘  ∈  𝑋  ∧  𝑢  ∈  𝑆 ) )  →  ◡ ( ( 𝑤  ∈  ( ∪  𝑆  ↑m  𝑋 )  ↦  ( 𝑤 ‘ 𝑘 ) )  ↾  ( 𝑅  Cn  𝑆 ) )  =  ◡ ( 𝑤  ∈  ( 𝑅  Cn  𝑆 )  ↦  ( 𝑤 ‘ 𝑘 ) ) ) | 
						
							| 92 | 91 | imaeq1d | ⊢ ( ( ( 𝑅  ∈  Top  ∧  𝑆  ∈  Top )  ∧  ( 𝑘  ∈  𝑋  ∧  𝑢  ∈  𝑆 ) )  →  ( ◡ ( ( 𝑤  ∈  ( ∪  𝑆  ↑m  𝑋 )  ↦  ( 𝑤 ‘ 𝑘 ) )  ↾  ( 𝑅  Cn  𝑆 ) )  “  𝑢 )  =  ( ◡ ( 𝑤  ∈  ( 𝑅  Cn  𝑆 )  ↦  ( 𝑤 ‘ 𝑘 ) )  “  𝑢 ) ) | 
						
							| 93 | 88 92 | eqtr3id | ⊢ ( ( ( 𝑅  ∈  Top  ∧  𝑆  ∈  Top )  ∧  ( 𝑘  ∈  𝑋  ∧  𝑢  ∈  𝑆 ) )  →  ( ( ◡ ( 𝑤  ∈  ( ∪  𝑆  ↑m  𝑋 )  ↦  ( 𝑤 ‘ 𝑘 ) )  “  𝑢 )  ∩  ( 𝑅  Cn  𝑆 ) )  =  ( ◡ ( 𝑤  ∈  ( 𝑅  Cn  𝑆 )  ↦  ( 𝑤 ‘ 𝑘 ) )  “  𝑢 ) ) | 
						
							| 94 |  | fvex | ⊢ ( 𝑤 ‘ 𝑘 )  ∈  V | 
						
							| 95 | 94 | rgenw | ⊢ ∀ 𝑤  ∈  ( 𝑅  Cn  𝑆 ) ( 𝑤 ‘ 𝑘 )  ∈  V | 
						
							| 96 |  | eqid | ⊢ ( 𝑤  ∈  ( 𝑅  Cn  𝑆 )  ↦  ( 𝑤 ‘ 𝑘 ) )  =  ( 𝑤  ∈  ( 𝑅  Cn  𝑆 )  ↦  ( 𝑤 ‘ 𝑘 ) ) | 
						
							| 97 | 96 | fnmpt | ⊢ ( ∀ 𝑤  ∈  ( 𝑅  Cn  𝑆 ) ( 𝑤 ‘ 𝑘 )  ∈  V  →  ( 𝑤  ∈  ( 𝑅  Cn  𝑆 )  ↦  ( 𝑤 ‘ 𝑘 ) )  Fn  ( 𝑅  Cn  𝑆 ) ) | 
						
							| 98 | 95 97 | mp1i | ⊢ ( ( ( 𝑅  ∈  Top  ∧  𝑆  ∈  Top )  ∧  ( 𝑘  ∈  𝑋  ∧  𝑢  ∈  𝑆 ) )  →  ( 𝑤  ∈  ( 𝑅  Cn  𝑆 )  ↦  ( 𝑤 ‘ 𝑘 ) )  Fn  ( 𝑅  Cn  𝑆 ) ) | 
						
							| 99 |  | elpreima | ⊢ ( ( 𝑤  ∈  ( 𝑅  Cn  𝑆 )  ↦  ( 𝑤 ‘ 𝑘 ) )  Fn  ( 𝑅  Cn  𝑆 )  →  ( 𝑓  ∈  ( ◡ ( 𝑤  ∈  ( 𝑅  Cn  𝑆 )  ↦  ( 𝑤 ‘ 𝑘 ) )  “  𝑢 )  ↔  ( 𝑓  ∈  ( 𝑅  Cn  𝑆 )  ∧  ( ( 𝑤  ∈  ( 𝑅  Cn  𝑆 )  ↦  ( 𝑤 ‘ 𝑘 ) ) ‘ 𝑓 )  ∈  𝑢 ) ) ) | 
						
							| 100 | 98 99 | syl | ⊢ ( ( ( 𝑅  ∈  Top  ∧  𝑆  ∈  Top )  ∧  ( 𝑘  ∈  𝑋  ∧  𝑢  ∈  𝑆 ) )  →  ( 𝑓  ∈  ( ◡ ( 𝑤  ∈  ( 𝑅  Cn  𝑆 )  ↦  ( 𝑤 ‘ 𝑘 ) )  “  𝑢 )  ↔  ( 𝑓  ∈  ( 𝑅  Cn  𝑆 )  ∧  ( ( 𝑤  ∈  ( 𝑅  Cn  𝑆 )  ↦  ( 𝑤 ‘ 𝑘 ) ) ‘ 𝑓 )  ∈  𝑢 ) ) ) | 
						
							| 101 |  | fveq1 | ⊢ ( 𝑤  =  𝑓  →  ( 𝑤 ‘ 𝑘 )  =  ( 𝑓 ‘ 𝑘 ) ) | 
						
							| 102 |  | fvex | ⊢ ( 𝑓 ‘ 𝑘 )  ∈  V | 
						
							| 103 | 101 96 102 | fvmpt | ⊢ ( 𝑓  ∈  ( 𝑅  Cn  𝑆 )  →  ( ( 𝑤  ∈  ( 𝑅  Cn  𝑆 )  ↦  ( 𝑤 ‘ 𝑘 ) ) ‘ 𝑓 )  =  ( 𝑓 ‘ 𝑘 ) ) | 
						
							| 104 | 103 | adantl | ⊢ ( ( ( ( 𝑅  ∈  Top  ∧  𝑆  ∈  Top )  ∧  ( 𝑘  ∈  𝑋  ∧  𝑢  ∈  𝑆 ) )  ∧  𝑓  ∈  ( 𝑅  Cn  𝑆 ) )  →  ( ( 𝑤  ∈  ( 𝑅  Cn  𝑆 )  ↦  ( 𝑤 ‘ 𝑘 ) ) ‘ 𝑓 )  =  ( 𝑓 ‘ 𝑘 ) ) | 
						
							| 105 | 104 | eleq1d | ⊢ ( ( ( ( 𝑅  ∈  Top  ∧  𝑆  ∈  Top )  ∧  ( 𝑘  ∈  𝑋  ∧  𝑢  ∈  𝑆 ) )  ∧  𝑓  ∈  ( 𝑅  Cn  𝑆 ) )  →  ( ( ( 𝑤  ∈  ( 𝑅  Cn  𝑆 )  ↦  ( 𝑤 ‘ 𝑘 ) ) ‘ 𝑓 )  ∈  𝑢  ↔  ( 𝑓 ‘ 𝑘 )  ∈  𝑢 ) ) | 
						
							| 106 | 102 | snss | ⊢ ( ( 𝑓 ‘ 𝑘 )  ∈  𝑢  ↔  { ( 𝑓 ‘ 𝑘 ) }  ⊆  𝑢 ) | 
						
							| 107 | 89 | sselda | ⊢ ( ( ( ( 𝑅  ∈  Top  ∧  𝑆  ∈  Top )  ∧  ( 𝑘  ∈  𝑋  ∧  𝑢  ∈  𝑆 ) )  ∧  𝑓  ∈  ( 𝑅  Cn  𝑆 ) )  →  𝑓  ∈  ( ∪  𝑆  ↑m  𝑋 ) ) | 
						
							| 108 |  | elmapi | ⊢ ( 𝑓  ∈  ( ∪  𝑆  ↑m  𝑋 )  →  𝑓 : 𝑋 ⟶ ∪  𝑆 ) | 
						
							| 109 |  | ffn | ⊢ ( 𝑓 : 𝑋 ⟶ ∪  𝑆  →  𝑓  Fn  𝑋 ) | 
						
							| 110 | 107 108 109 | 3syl | ⊢ ( ( ( ( 𝑅  ∈  Top  ∧  𝑆  ∈  Top )  ∧  ( 𝑘  ∈  𝑋  ∧  𝑢  ∈  𝑆 ) )  ∧  𝑓  ∈  ( 𝑅  Cn  𝑆 ) )  →  𝑓  Fn  𝑋 ) | 
						
							| 111 |  | simplrl | ⊢ ( ( ( ( 𝑅  ∈  Top  ∧  𝑆  ∈  Top )  ∧  ( 𝑘  ∈  𝑋  ∧  𝑢  ∈  𝑆 ) )  ∧  𝑓  ∈  ( 𝑅  Cn  𝑆 ) )  →  𝑘  ∈  𝑋 ) | 
						
							| 112 |  | fnsnfv | ⊢ ( ( 𝑓  Fn  𝑋  ∧  𝑘  ∈  𝑋 )  →  { ( 𝑓 ‘ 𝑘 ) }  =  ( 𝑓  “  { 𝑘 } ) ) | 
						
							| 113 | 110 111 112 | syl2anc | ⊢ ( ( ( ( 𝑅  ∈  Top  ∧  𝑆  ∈  Top )  ∧  ( 𝑘  ∈  𝑋  ∧  𝑢  ∈  𝑆 ) )  ∧  𝑓  ∈  ( 𝑅  Cn  𝑆 ) )  →  { ( 𝑓 ‘ 𝑘 ) }  =  ( 𝑓  “  { 𝑘 } ) ) | 
						
							| 114 | 113 | sseq1d | ⊢ ( ( ( ( 𝑅  ∈  Top  ∧  𝑆  ∈  Top )  ∧  ( 𝑘  ∈  𝑋  ∧  𝑢  ∈  𝑆 ) )  ∧  𝑓  ∈  ( 𝑅  Cn  𝑆 ) )  →  ( { ( 𝑓 ‘ 𝑘 ) }  ⊆  𝑢  ↔  ( 𝑓  “  { 𝑘 } )  ⊆  𝑢 ) ) | 
						
							| 115 | 106 114 | bitrid | ⊢ ( ( ( ( 𝑅  ∈  Top  ∧  𝑆  ∈  Top )  ∧  ( 𝑘  ∈  𝑋  ∧  𝑢  ∈  𝑆 ) )  ∧  𝑓  ∈  ( 𝑅  Cn  𝑆 ) )  →  ( ( 𝑓 ‘ 𝑘 )  ∈  𝑢  ↔  ( 𝑓  “  { 𝑘 } )  ⊆  𝑢 ) ) | 
						
							| 116 | 105 115 | bitrd | ⊢ ( ( ( ( 𝑅  ∈  Top  ∧  𝑆  ∈  Top )  ∧  ( 𝑘  ∈  𝑋  ∧  𝑢  ∈  𝑆 ) )  ∧  𝑓  ∈  ( 𝑅  Cn  𝑆 ) )  →  ( ( ( 𝑤  ∈  ( 𝑅  Cn  𝑆 )  ↦  ( 𝑤 ‘ 𝑘 ) ) ‘ 𝑓 )  ∈  𝑢  ↔  ( 𝑓  “  { 𝑘 } )  ⊆  𝑢 ) ) | 
						
							| 117 | 116 | pm5.32da | ⊢ ( ( ( 𝑅  ∈  Top  ∧  𝑆  ∈  Top )  ∧  ( 𝑘  ∈  𝑋  ∧  𝑢  ∈  𝑆 ) )  →  ( ( 𝑓  ∈  ( 𝑅  Cn  𝑆 )  ∧  ( ( 𝑤  ∈  ( 𝑅  Cn  𝑆 )  ↦  ( 𝑤 ‘ 𝑘 ) ) ‘ 𝑓 )  ∈  𝑢 )  ↔  ( 𝑓  ∈  ( 𝑅  Cn  𝑆 )  ∧  ( 𝑓  “  { 𝑘 } )  ⊆  𝑢 ) ) ) | 
						
							| 118 | 100 117 | bitrd | ⊢ ( ( ( 𝑅  ∈  Top  ∧  𝑆  ∈  Top )  ∧  ( 𝑘  ∈  𝑋  ∧  𝑢  ∈  𝑆 ) )  →  ( 𝑓  ∈  ( ◡ ( 𝑤  ∈  ( 𝑅  Cn  𝑆 )  ↦  ( 𝑤 ‘ 𝑘 ) )  “  𝑢 )  ↔  ( 𝑓  ∈  ( 𝑅  Cn  𝑆 )  ∧  ( 𝑓  “  { 𝑘 } )  ⊆  𝑢 ) ) ) | 
						
							| 119 | 118 | eqabdv | ⊢ ( ( ( 𝑅  ∈  Top  ∧  𝑆  ∈  Top )  ∧  ( 𝑘  ∈  𝑋  ∧  𝑢  ∈  𝑆 ) )  →  ( ◡ ( 𝑤  ∈  ( 𝑅  Cn  𝑆 )  ↦  ( 𝑤 ‘ 𝑘 ) )  “  𝑢 )  =  { 𝑓  ∣  ( 𝑓  ∈  ( 𝑅  Cn  𝑆 )  ∧  ( 𝑓  “  { 𝑘 } )  ⊆  𝑢 ) } ) | 
						
							| 120 |  | df-rab | ⊢ { 𝑓  ∈  ( 𝑅  Cn  𝑆 )  ∣  ( 𝑓  “  { 𝑘 } )  ⊆  𝑢 }  =  { 𝑓  ∣  ( 𝑓  ∈  ( 𝑅  Cn  𝑆 )  ∧  ( 𝑓  “  { 𝑘 } )  ⊆  𝑢 ) } | 
						
							| 121 | 119 120 | eqtr4di | ⊢ ( ( ( 𝑅  ∈  Top  ∧  𝑆  ∈  Top )  ∧  ( 𝑘  ∈  𝑋  ∧  𝑢  ∈  𝑆 ) )  →  ( ◡ ( 𝑤  ∈  ( 𝑅  Cn  𝑆 )  ↦  ( 𝑤 ‘ 𝑘 ) )  “  𝑢 )  =  { 𝑓  ∈  ( 𝑅  Cn  𝑆 )  ∣  ( 𝑓  “  { 𝑘 } )  ⊆  𝑢 } ) | 
						
							| 122 | 93 121 | eqtrd | ⊢ ( ( ( 𝑅  ∈  Top  ∧  𝑆  ∈  Top )  ∧  ( 𝑘  ∈  𝑋  ∧  𝑢  ∈  𝑆 ) )  →  ( ( ◡ ( 𝑤  ∈  ( ∪  𝑆  ↑m  𝑋 )  ↦  ( 𝑤 ‘ 𝑘 ) )  “  𝑢 )  ∩  ( 𝑅  Cn  𝑆 ) )  =  { 𝑓  ∈  ( 𝑅  Cn  𝑆 )  ∣  ( 𝑓  “  { 𝑘 } )  ⊆  𝑢 } ) | 
						
							| 123 |  | simpll | ⊢ ( ( ( 𝑅  ∈  Top  ∧  𝑆  ∈  Top )  ∧  ( 𝑘  ∈  𝑋  ∧  𝑢  ∈  𝑆 ) )  →  𝑅  ∈  Top ) | 
						
							| 124 | 11 | adantr | ⊢ ( ( ( 𝑅  ∈  Top  ∧  𝑆  ∈  Top )  ∧  ( 𝑘  ∈  𝑋  ∧  𝑢  ∈  𝑆 ) )  →  𝑆  ∈  Top ) | 
						
							| 125 |  | simprl | ⊢ ( ( ( 𝑅  ∈  Top  ∧  𝑆  ∈  Top )  ∧  ( 𝑘  ∈  𝑋  ∧  𝑢  ∈  𝑆 ) )  →  𝑘  ∈  𝑋 ) | 
						
							| 126 | 125 | snssd | ⊢ ( ( ( 𝑅  ∈  Top  ∧  𝑆  ∈  Top )  ∧  ( 𝑘  ∈  𝑋  ∧  𝑢  ∈  𝑆 ) )  →  { 𝑘 }  ⊆  𝑋 ) | 
						
							| 127 | 1 | toptopon | ⊢ ( 𝑅  ∈  Top  ↔  𝑅  ∈  ( TopOn ‘ 𝑋 ) ) | 
						
							| 128 | 123 127 | sylib | ⊢ ( ( ( 𝑅  ∈  Top  ∧  𝑆  ∈  Top )  ∧  ( 𝑘  ∈  𝑋  ∧  𝑢  ∈  𝑆 ) )  →  𝑅  ∈  ( TopOn ‘ 𝑋 ) ) | 
						
							| 129 |  | restsn2 | ⊢ ( ( 𝑅  ∈  ( TopOn ‘ 𝑋 )  ∧  𝑘  ∈  𝑋 )  →  ( 𝑅  ↾t  { 𝑘 } )  =  𝒫  { 𝑘 } ) | 
						
							| 130 | 128 125 129 | syl2anc | ⊢ ( ( ( 𝑅  ∈  Top  ∧  𝑆  ∈  Top )  ∧  ( 𝑘  ∈  𝑋  ∧  𝑢  ∈  𝑆 ) )  →  ( 𝑅  ↾t  { 𝑘 } )  =  𝒫  { 𝑘 } ) | 
						
							| 131 |  | snfi | ⊢ { 𝑘 }  ∈  Fin | 
						
							| 132 |  | discmp | ⊢ ( { 𝑘 }  ∈  Fin  ↔  𝒫  { 𝑘 }  ∈  Comp ) | 
						
							| 133 | 131 132 | mpbi | ⊢ 𝒫  { 𝑘 }  ∈  Comp | 
						
							| 134 | 130 133 | eqeltrdi | ⊢ ( ( ( 𝑅  ∈  Top  ∧  𝑆  ∈  Top )  ∧  ( 𝑘  ∈  𝑋  ∧  𝑢  ∈  𝑆 ) )  →  ( 𝑅  ↾t  { 𝑘 } )  ∈  Comp ) | 
						
							| 135 |  | simprr | ⊢ ( ( ( 𝑅  ∈  Top  ∧  𝑆  ∈  Top )  ∧  ( 𝑘  ∈  𝑋  ∧  𝑢  ∈  𝑆 ) )  →  𝑢  ∈  𝑆 ) | 
						
							| 136 | 1 123 124 126 134 135 | xkoopn | ⊢ ( ( ( 𝑅  ∈  Top  ∧  𝑆  ∈  Top )  ∧  ( 𝑘  ∈  𝑋  ∧  𝑢  ∈  𝑆 ) )  →  { 𝑓  ∈  ( 𝑅  Cn  𝑆 )  ∣  ( 𝑓  “  { 𝑘 } )  ⊆  𝑢 }  ∈  ( 𝑆  ↑ko  𝑅 ) ) | 
						
							| 137 | 122 136 | eqeltrd | ⊢ ( ( ( 𝑅  ∈  Top  ∧  𝑆  ∈  Top )  ∧  ( 𝑘  ∈  𝑋  ∧  𝑢  ∈  𝑆 ) )  →  ( ( ◡ ( 𝑤  ∈  ( ∪  𝑆  ↑m  𝑋 )  ↦  ( 𝑤 ‘ 𝑘 ) )  “  𝑢 )  ∩  ( 𝑅  Cn  𝑆 ) )  ∈  ( 𝑆  ↑ko  𝑅 ) ) | 
						
							| 138 |  | ineq1 | ⊢ ( 𝑥  =  ( ◡ ( 𝑤  ∈  ( ∪  𝑆  ↑m  𝑋 )  ↦  ( 𝑤 ‘ 𝑘 ) )  “  𝑢 )  →  ( 𝑥  ∩  ( 𝑅  Cn  𝑆 ) )  =  ( ( ◡ ( 𝑤  ∈  ( ∪  𝑆  ↑m  𝑋 )  ↦  ( 𝑤 ‘ 𝑘 ) )  “  𝑢 )  ∩  ( 𝑅  Cn  𝑆 ) ) ) | 
						
							| 139 | 138 | eleq1d | ⊢ ( 𝑥  =  ( ◡ ( 𝑤  ∈  ( ∪  𝑆  ↑m  𝑋 )  ↦  ( 𝑤 ‘ 𝑘 ) )  “  𝑢 )  →  ( ( 𝑥  ∩  ( 𝑅  Cn  𝑆 ) )  ∈  ( 𝑆  ↑ko  𝑅 )  ↔  ( ( ◡ ( 𝑤  ∈  ( ∪  𝑆  ↑m  𝑋 )  ↦  ( 𝑤 ‘ 𝑘 ) )  “  𝑢 )  ∩  ( 𝑅  Cn  𝑆 ) )  ∈  ( 𝑆  ↑ko  𝑅 ) ) ) | 
						
							| 140 | 137 139 | syl5ibrcom | ⊢ ( ( ( 𝑅  ∈  Top  ∧  𝑆  ∈  Top )  ∧  ( 𝑘  ∈  𝑋  ∧  𝑢  ∈  𝑆 ) )  →  ( 𝑥  =  ( ◡ ( 𝑤  ∈  ( ∪  𝑆  ↑m  𝑋 )  ↦  ( 𝑤 ‘ 𝑘 ) )  “  𝑢 )  →  ( 𝑥  ∩  ( 𝑅  Cn  𝑆 ) )  ∈  ( 𝑆  ↑ko  𝑅 ) ) ) | 
						
							| 141 | 140 | rexlimdvva | ⊢ ( ( 𝑅  ∈  Top  ∧  𝑆  ∈  Top )  →  ( ∃ 𝑘  ∈  𝑋 ∃ 𝑢  ∈  𝑆 𝑥  =  ( ◡ ( 𝑤  ∈  ( ∪  𝑆  ↑m  𝑋 )  ↦  ( 𝑤 ‘ 𝑘 ) )  “  𝑢 )  →  ( 𝑥  ∩  ( 𝑅  Cn  𝑆 ) )  ∈  ( 𝑆  ↑ko  𝑅 ) ) ) | 
						
							| 142 | 141 | imp | ⊢ ( ( ( 𝑅  ∈  Top  ∧  𝑆  ∈  Top )  ∧  ∃ 𝑘  ∈  𝑋 ∃ 𝑢  ∈  𝑆 𝑥  =  ( ◡ ( 𝑤  ∈  ( ∪  𝑆  ↑m  𝑋 )  ↦  ( 𝑤 ‘ 𝑘 ) )  “  𝑢 ) )  →  ( 𝑥  ∩  ( 𝑅  Cn  𝑆 ) )  ∈  ( 𝑆  ↑ko  𝑅 ) ) | 
						
							| 143 | 87 142 | sylan2b | ⊢ ( ( ( 𝑅  ∈  Top  ∧  𝑆  ∈  Top )  ∧  𝑥  ∈  ran  ( 𝑘  ∈  𝑋 ,  𝑢  ∈  𝑆  ↦  ( ◡ ( 𝑤  ∈  ( ∪  𝑆  ↑m  𝑋 )  ↦  ( 𝑤 ‘ 𝑘 ) )  “  𝑢 ) ) )  →  ( 𝑥  ∩  ( 𝑅  Cn  𝑆 ) )  ∈  ( 𝑆  ↑ko  𝑅 ) ) | 
						
							| 144 | 84 143 | jaodan | ⊢ ( ( ( 𝑅  ∈  Top  ∧  𝑆  ∈  Top )  ∧  ( 𝑥  ∈  { ( ∪  𝑆  ↑m  𝑋 ) }  ∨  𝑥  ∈  ran  ( 𝑘  ∈  𝑋 ,  𝑢  ∈  𝑆  ↦  ( ◡ ( 𝑤  ∈  ( ∪  𝑆  ↑m  𝑋 )  ↦  ( 𝑤 ‘ 𝑘 ) )  “  𝑢 ) ) ) )  →  ( 𝑥  ∩  ( 𝑅  Cn  𝑆 ) )  ∈  ( 𝑆  ↑ko  𝑅 ) ) | 
						
							| 145 | 65 144 | sylan2b | ⊢ ( ( ( 𝑅  ∈  Top  ∧  𝑆  ∈  Top )  ∧  𝑥  ∈  ( { ( ∪  𝑆  ↑m  𝑋 ) }  ∪  ran  ( 𝑘  ∈  𝑋 ,  𝑢  ∈  𝑆  ↦  ( ◡ ( 𝑤  ∈  ( ∪  𝑆  ↑m  𝑋 )  ↦  ( 𝑤 ‘ 𝑘 ) )  “  𝑢 ) ) ) )  →  ( 𝑥  ∩  ( 𝑅  Cn  𝑆 ) )  ∈  ( 𝑆  ↑ko  𝑅 ) ) | 
						
							| 146 | 145 | fmpttd | ⊢ ( ( 𝑅  ∈  Top  ∧  𝑆  ∈  Top )  →  ( 𝑥  ∈  ( { ( ∪  𝑆  ↑m  𝑋 ) }  ∪  ran  ( 𝑘  ∈  𝑋 ,  𝑢  ∈  𝑆  ↦  ( ◡ ( 𝑤  ∈  ( ∪  𝑆  ↑m  𝑋 )  ↦  ( 𝑤 ‘ 𝑘 ) )  “  𝑢 ) ) )  ↦  ( 𝑥  ∩  ( 𝑅  Cn  𝑆 ) ) ) : ( { ( ∪  𝑆  ↑m  𝑋 ) }  ∪  ran  ( 𝑘  ∈  𝑋 ,  𝑢  ∈  𝑆  ↦  ( ◡ ( 𝑤  ∈  ( ∪  𝑆  ↑m  𝑋 )  ↦  ( 𝑤 ‘ 𝑘 ) )  “  𝑢 ) ) ) ⟶ ( 𝑆  ↑ko  𝑅 ) ) | 
						
							| 147 | 146 | frnd | ⊢ ( ( 𝑅  ∈  Top  ∧  𝑆  ∈  Top )  →  ran  ( 𝑥  ∈  ( { ( ∪  𝑆  ↑m  𝑋 ) }  ∪  ran  ( 𝑘  ∈  𝑋 ,  𝑢  ∈  𝑆  ↦  ( ◡ ( 𝑤  ∈  ( ∪  𝑆  ↑m  𝑋 )  ↦  ( 𝑤 ‘ 𝑘 ) )  “  𝑢 ) ) )  ↦  ( 𝑥  ∩  ( 𝑅  Cn  𝑆 ) ) )  ⊆  ( 𝑆  ↑ko  𝑅 ) ) | 
						
							| 148 | 64 147 | eqsstrd | ⊢ ( ( 𝑅  ∈  Top  ∧  𝑆  ∈  Top )  →  ( ( { ( ∪  𝑆  ↑m  𝑋 ) }  ∪  ran  ( 𝑘  ∈  𝑋 ,  𝑢  ∈  𝑆  ↦  ( ◡ ( 𝑤  ∈  ( ∪  𝑆  ↑m  𝑋 )  ↦  ( 𝑤 ‘ 𝑘 ) )  “  𝑢 ) ) )  ↾t  ( 𝑅  Cn  𝑆 ) )  ⊆  ( 𝑆  ↑ko  𝑅 ) ) | 
						
							| 149 |  | tgfiss | ⊢ ( ( ( 𝑆  ↑ko  𝑅 )  ∈  Top  ∧  ( ( { ( ∪  𝑆  ↑m  𝑋 ) }  ∪  ran  ( 𝑘  ∈  𝑋 ,  𝑢  ∈  𝑆  ↦  ( ◡ ( 𝑤  ∈  ( ∪  𝑆  ↑m  𝑋 )  ↦  ( 𝑤 ‘ 𝑘 ) )  “  𝑢 ) ) )  ↾t  ( 𝑅  Cn  𝑆 ) )  ⊆  ( 𝑆  ↑ko  𝑅 ) )  →  ( topGen ‘ ( fi ‘ ( ( { ( ∪  𝑆  ↑m  𝑋 ) }  ∪  ran  ( 𝑘  ∈  𝑋 ,  𝑢  ∈  𝑆  ↦  ( ◡ ( 𝑤  ∈  ( ∪  𝑆  ↑m  𝑋 )  ↦  ( 𝑤 ‘ 𝑘 ) )  “  𝑢 ) ) )  ↾t  ( 𝑅  Cn  𝑆 ) ) ) )  ⊆  ( 𝑆  ↑ko  𝑅 ) ) | 
						
							| 150 | 55 148 149 | syl2anc | ⊢ ( ( 𝑅  ∈  Top  ∧  𝑆  ∈  Top )  →  ( topGen ‘ ( fi ‘ ( ( { ( ∪  𝑆  ↑m  𝑋 ) }  ∪  ran  ( 𝑘  ∈  𝑋 ,  𝑢  ∈  𝑆  ↦  ( ◡ ( 𝑤  ∈  ( ∪  𝑆  ↑m  𝑋 )  ↦  ( 𝑤 ‘ 𝑘 ) )  “  𝑢 ) ) )  ↾t  ( 𝑅  Cn  𝑆 ) ) ) )  ⊆  ( 𝑆  ↑ko  𝑅 ) ) | 
						
							| 151 | 54 150 | eqsstrd | ⊢ ( ( 𝑅  ∈  Top  ∧  𝑆  ∈  Top )  →  ( 𝐽  ↾t  ( 𝑅  Cn  𝑆 ) )  ⊆  ( 𝑆  ↑ko  𝑅 ) ) |