Step |
Hyp |
Ref |
Expression |
1 |
|
xkoval.x |
⊢ 𝑋 = ∪ 𝑅 |
2 |
|
xkoval.k |
⊢ 𝐾 = { 𝑥 ∈ 𝒫 𝑋 ∣ ( 𝑅 ↾t 𝑥 ) ∈ Comp } |
3 |
|
xkoval.t |
⊢ 𝑇 = ( 𝑘 ∈ 𝐾 , 𝑣 ∈ 𝑆 ↦ { 𝑓 ∈ ( 𝑅 Cn 𝑆 ) ∣ ( 𝑓 “ 𝑘 ) ⊆ 𝑣 } ) |
4 |
|
ovex |
⊢ ( 𝑅 Cn 𝑆 ) ∈ V |
5 |
|
ssrab2 |
⊢ { 𝑓 ∈ ( 𝑅 Cn 𝑆 ) ∣ ( 𝑓 “ 𝑘 ) ⊆ 𝑣 } ⊆ ( 𝑅 Cn 𝑆 ) |
6 |
4 5
|
elpwi2 |
⊢ { 𝑓 ∈ ( 𝑅 Cn 𝑆 ) ∣ ( 𝑓 “ 𝑘 ) ⊆ 𝑣 } ∈ 𝒫 ( 𝑅 Cn 𝑆 ) |
7 |
6
|
rgen2w |
⊢ ∀ 𝑘 ∈ 𝐾 ∀ 𝑣 ∈ 𝑆 { 𝑓 ∈ ( 𝑅 Cn 𝑆 ) ∣ ( 𝑓 “ 𝑘 ) ⊆ 𝑣 } ∈ 𝒫 ( 𝑅 Cn 𝑆 ) |
8 |
3
|
fmpo |
⊢ ( ∀ 𝑘 ∈ 𝐾 ∀ 𝑣 ∈ 𝑆 { 𝑓 ∈ ( 𝑅 Cn 𝑆 ) ∣ ( 𝑓 “ 𝑘 ) ⊆ 𝑣 } ∈ 𝒫 ( 𝑅 Cn 𝑆 ) ↔ 𝑇 : ( 𝐾 × 𝑆 ) ⟶ 𝒫 ( 𝑅 Cn 𝑆 ) ) |
9 |
7 8
|
mpbi |
⊢ 𝑇 : ( 𝐾 × 𝑆 ) ⟶ 𝒫 ( 𝑅 Cn 𝑆 ) |