Metamath Proof Explorer


Theorem xkotf

Description: Functionality of function T . (Contributed by Mario Carneiro, 19-Mar-2015)

Ref Expression
Hypotheses xkoval.x 𝑋 = 𝑅
xkoval.k 𝐾 = { 𝑥 ∈ 𝒫 𝑋 ∣ ( 𝑅t 𝑥 ) ∈ Comp }
xkoval.t 𝑇 = ( 𝑘𝐾 , 𝑣𝑆 ↦ { 𝑓 ∈ ( 𝑅 Cn 𝑆 ) ∣ ( 𝑓𝑘 ) ⊆ 𝑣 } )
Assertion xkotf 𝑇 : ( 𝐾 × 𝑆 ) ⟶ 𝒫 ( 𝑅 Cn 𝑆 )

Proof

Step Hyp Ref Expression
1 xkoval.x 𝑋 = 𝑅
2 xkoval.k 𝐾 = { 𝑥 ∈ 𝒫 𝑋 ∣ ( 𝑅t 𝑥 ) ∈ Comp }
3 xkoval.t 𝑇 = ( 𝑘𝐾 , 𝑣𝑆 ↦ { 𝑓 ∈ ( 𝑅 Cn 𝑆 ) ∣ ( 𝑓𝑘 ) ⊆ 𝑣 } )
4 ovex ( 𝑅 Cn 𝑆 ) ∈ V
5 ssrab2 { 𝑓 ∈ ( 𝑅 Cn 𝑆 ) ∣ ( 𝑓𝑘 ) ⊆ 𝑣 } ⊆ ( 𝑅 Cn 𝑆 )
6 4 5 elpwi2 { 𝑓 ∈ ( 𝑅 Cn 𝑆 ) ∣ ( 𝑓𝑘 ) ⊆ 𝑣 } ∈ 𝒫 ( 𝑅 Cn 𝑆 )
7 6 rgen2w 𝑘𝐾𝑣𝑆 { 𝑓 ∈ ( 𝑅 Cn 𝑆 ) ∣ ( 𝑓𝑘 ) ⊆ 𝑣 } ∈ 𝒫 ( 𝑅 Cn 𝑆 )
8 3 fmpo ( ∀ 𝑘𝐾𝑣𝑆 { 𝑓 ∈ ( 𝑅 Cn 𝑆 ) ∣ ( 𝑓𝑘 ) ⊆ 𝑣 } ∈ 𝒫 ( 𝑅 Cn 𝑆 ) ↔ 𝑇 : ( 𝐾 × 𝑆 ) ⟶ 𝒫 ( 𝑅 Cn 𝑆 ) )
9 7 8 mpbi 𝑇 : ( 𝐾 × 𝑆 ) ⟶ 𝒫 ( 𝑅 Cn 𝑆 )