Step |
Hyp |
Ref |
Expression |
1 |
|
eqid |
⊢ ∪ 𝑅 = ∪ 𝑅 |
2 |
|
eqid |
⊢ { 𝑥 ∈ 𝒫 ∪ 𝑅 ∣ ( 𝑅 ↾t 𝑥 ) ∈ Comp } = { 𝑥 ∈ 𝒫 ∪ 𝑅 ∣ ( 𝑅 ↾t 𝑥 ) ∈ Comp } |
3 |
|
eqid |
⊢ ( 𝑘 ∈ { 𝑥 ∈ 𝒫 ∪ 𝑅 ∣ ( 𝑅 ↾t 𝑥 ) ∈ Comp } , 𝑣 ∈ 𝑆 ↦ { 𝑓 ∈ ( 𝑅 Cn 𝑆 ) ∣ ( 𝑓 “ 𝑘 ) ⊆ 𝑣 } ) = ( 𝑘 ∈ { 𝑥 ∈ 𝒫 ∪ 𝑅 ∣ ( 𝑅 ↾t 𝑥 ) ∈ Comp } , 𝑣 ∈ 𝑆 ↦ { 𝑓 ∈ ( 𝑅 Cn 𝑆 ) ∣ ( 𝑓 “ 𝑘 ) ⊆ 𝑣 } ) |
4 |
1 2 3
|
xkoval |
⊢ ( ( 𝑅 ∈ Top ∧ 𝑆 ∈ Top ) → ( 𝑆 ↑ko 𝑅 ) = ( topGen ‘ ( fi ‘ ran ( 𝑘 ∈ { 𝑥 ∈ 𝒫 ∪ 𝑅 ∣ ( 𝑅 ↾t 𝑥 ) ∈ Comp } , 𝑣 ∈ 𝑆 ↦ { 𝑓 ∈ ( 𝑅 Cn 𝑆 ) ∣ ( 𝑓 “ 𝑘 ) ⊆ 𝑣 } ) ) ) ) |
5 |
|
fibas |
⊢ ( fi ‘ ran ( 𝑘 ∈ { 𝑥 ∈ 𝒫 ∪ 𝑅 ∣ ( 𝑅 ↾t 𝑥 ) ∈ Comp } , 𝑣 ∈ 𝑆 ↦ { 𝑓 ∈ ( 𝑅 Cn 𝑆 ) ∣ ( 𝑓 “ 𝑘 ) ⊆ 𝑣 } ) ) ∈ TopBases |
6 |
|
tgcl |
⊢ ( ( fi ‘ ran ( 𝑘 ∈ { 𝑥 ∈ 𝒫 ∪ 𝑅 ∣ ( 𝑅 ↾t 𝑥 ) ∈ Comp } , 𝑣 ∈ 𝑆 ↦ { 𝑓 ∈ ( 𝑅 Cn 𝑆 ) ∣ ( 𝑓 “ 𝑘 ) ⊆ 𝑣 } ) ) ∈ TopBases → ( topGen ‘ ( fi ‘ ran ( 𝑘 ∈ { 𝑥 ∈ 𝒫 ∪ 𝑅 ∣ ( 𝑅 ↾t 𝑥 ) ∈ Comp } , 𝑣 ∈ 𝑆 ↦ { 𝑓 ∈ ( 𝑅 Cn 𝑆 ) ∣ ( 𝑓 “ 𝑘 ) ⊆ 𝑣 } ) ) ) ∈ Top ) |
7 |
5 6
|
ax-mp |
⊢ ( topGen ‘ ( fi ‘ ran ( 𝑘 ∈ { 𝑥 ∈ 𝒫 ∪ 𝑅 ∣ ( 𝑅 ↾t 𝑥 ) ∈ Comp } , 𝑣 ∈ 𝑆 ↦ { 𝑓 ∈ ( 𝑅 Cn 𝑆 ) ∣ ( 𝑓 “ 𝑘 ) ⊆ 𝑣 } ) ) ) ∈ Top |
8 |
4 7
|
eqeltrdi |
⊢ ( ( 𝑅 ∈ Top ∧ 𝑆 ∈ Top ) → ( 𝑆 ↑ko 𝑅 ) ∈ Top ) |