Description: The base set of the compact-open topology. (Contributed by Mario Carneiro, 22-Aug-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | xkouni.1 | ⊢ 𝐽 = ( 𝑆 ↑ko 𝑅 ) | |
| Assertion | xkotopon | ⊢ ( ( 𝑅 ∈ Top ∧ 𝑆 ∈ Top ) → 𝐽 ∈ ( TopOn ‘ ( 𝑅 Cn 𝑆 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | xkouni.1 | ⊢ 𝐽 = ( 𝑆 ↑ko 𝑅 ) | |
| 2 | xkotop | ⊢ ( ( 𝑅 ∈ Top ∧ 𝑆 ∈ Top ) → ( 𝑆 ↑ko 𝑅 ) ∈ Top ) | |
| 3 | 1 2 | eqeltrid | ⊢ ( ( 𝑅 ∈ Top ∧ 𝑆 ∈ Top ) → 𝐽 ∈ Top ) |
| 4 | 1 | xkouni | ⊢ ( ( 𝑅 ∈ Top ∧ 𝑆 ∈ Top ) → ( 𝑅 Cn 𝑆 ) = ∪ 𝐽 ) |
| 5 | istopon | ⊢ ( 𝐽 ∈ ( TopOn ‘ ( 𝑅 Cn 𝑆 ) ) ↔ ( 𝐽 ∈ Top ∧ ( 𝑅 Cn 𝑆 ) = ∪ 𝐽 ) ) | |
| 6 | 3 4 5 | sylanbrc | ⊢ ( ( 𝑅 ∈ Top ∧ 𝑆 ∈ Top ) → 𝐽 ∈ ( TopOn ‘ ( 𝑅 Cn 𝑆 ) ) ) |