Metamath Proof Explorer


Theorem xkotopon

Description: The base set of the compact-open topology. (Contributed by Mario Carneiro, 22-Aug-2015)

Ref Expression
Hypothesis xkouni.1 𝐽 = ( 𝑆ko 𝑅 )
Assertion xkotopon ( ( 𝑅 ∈ Top ∧ 𝑆 ∈ Top ) → 𝐽 ∈ ( TopOn ‘ ( 𝑅 Cn 𝑆 ) ) )

Proof

Step Hyp Ref Expression
1 xkouni.1 𝐽 = ( 𝑆ko 𝑅 )
2 xkotop ( ( 𝑅 ∈ Top ∧ 𝑆 ∈ Top ) → ( 𝑆ko 𝑅 ) ∈ Top )
3 1 2 eqeltrid ( ( 𝑅 ∈ Top ∧ 𝑆 ∈ Top ) → 𝐽 ∈ Top )
4 1 xkouni ( ( 𝑅 ∈ Top ∧ 𝑆 ∈ Top ) → ( 𝑅 Cn 𝑆 ) = 𝐽 )
5 istopon ( 𝐽 ∈ ( TopOn ‘ ( 𝑅 Cn 𝑆 ) ) ↔ ( 𝐽 ∈ Top ∧ ( 𝑅 Cn 𝑆 ) = 𝐽 ) )
6 3 4 5 sylanbrc ( ( 𝑅 ∈ Top ∧ 𝑆 ∈ Top ) → 𝐽 ∈ ( TopOn ‘ ( 𝑅 Cn 𝑆 ) ) )