| Step |
Hyp |
Ref |
Expression |
| 1 |
|
xkouni.1 |
⊢ 𝐽 = ( 𝑆 ↑ko 𝑅 ) |
| 2 |
|
ima0 |
⊢ ( 𝑓 “ ∅ ) = ∅ |
| 3 |
|
0ss |
⊢ ∅ ⊆ ∪ 𝑆 |
| 4 |
2 3
|
eqsstri |
⊢ ( 𝑓 “ ∅ ) ⊆ ∪ 𝑆 |
| 5 |
4
|
a1i |
⊢ ( ( ( 𝑅 ∈ Top ∧ 𝑆 ∈ Top ) ∧ 𝑓 ∈ ( 𝑅 Cn 𝑆 ) ) → ( 𝑓 “ ∅ ) ⊆ ∪ 𝑆 ) |
| 6 |
5
|
ralrimiva |
⊢ ( ( 𝑅 ∈ Top ∧ 𝑆 ∈ Top ) → ∀ 𝑓 ∈ ( 𝑅 Cn 𝑆 ) ( 𝑓 “ ∅ ) ⊆ ∪ 𝑆 ) |
| 7 |
|
rabid2 |
⊢ ( ( 𝑅 Cn 𝑆 ) = { 𝑓 ∈ ( 𝑅 Cn 𝑆 ) ∣ ( 𝑓 “ ∅ ) ⊆ ∪ 𝑆 } ↔ ∀ 𝑓 ∈ ( 𝑅 Cn 𝑆 ) ( 𝑓 “ ∅ ) ⊆ ∪ 𝑆 ) |
| 8 |
6 7
|
sylibr |
⊢ ( ( 𝑅 ∈ Top ∧ 𝑆 ∈ Top ) → ( 𝑅 Cn 𝑆 ) = { 𝑓 ∈ ( 𝑅 Cn 𝑆 ) ∣ ( 𝑓 “ ∅ ) ⊆ ∪ 𝑆 } ) |
| 9 |
|
eqid |
⊢ ∪ 𝑅 = ∪ 𝑅 |
| 10 |
|
simpl |
⊢ ( ( 𝑅 ∈ Top ∧ 𝑆 ∈ Top ) → 𝑅 ∈ Top ) |
| 11 |
|
simpr |
⊢ ( ( 𝑅 ∈ Top ∧ 𝑆 ∈ Top ) → 𝑆 ∈ Top ) |
| 12 |
|
0ss |
⊢ ∅ ⊆ ∪ 𝑅 |
| 13 |
12
|
a1i |
⊢ ( ( 𝑅 ∈ Top ∧ 𝑆 ∈ Top ) → ∅ ⊆ ∪ 𝑅 ) |
| 14 |
|
rest0 |
⊢ ( 𝑅 ∈ Top → ( 𝑅 ↾t ∅ ) = { ∅ } ) |
| 15 |
14
|
adantr |
⊢ ( ( 𝑅 ∈ Top ∧ 𝑆 ∈ Top ) → ( 𝑅 ↾t ∅ ) = { ∅ } ) |
| 16 |
|
0cmp |
⊢ { ∅ } ∈ Comp |
| 17 |
15 16
|
eqeltrdi |
⊢ ( ( 𝑅 ∈ Top ∧ 𝑆 ∈ Top ) → ( 𝑅 ↾t ∅ ) ∈ Comp ) |
| 18 |
|
eqid |
⊢ ∪ 𝑆 = ∪ 𝑆 |
| 19 |
18
|
topopn |
⊢ ( 𝑆 ∈ Top → ∪ 𝑆 ∈ 𝑆 ) |
| 20 |
19
|
adantl |
⊢ ( ( 𝑅 ∈ Top ∧ 𝑆 ∈ Top ) → ∪ 𝑆 ∈ 𝑆 ) |
| 21 |
9 10 11 13 17 20
|
xkoopn |
⊢ ( ( 𝑅 ∈ Top ∧ 𝑆 ∈ Top ) → { 𝑓 ∈ ( 𝑅 Cn 𝑆 ) ∣ ( 𝑓 “ ∅ ) ⊆ ∪ 𝑆 } ∈ ( 𝑆 ↑ko 𝑅 ) ) |
| 22 |
8 21
|
eqeltrd |
⊢ ( ( 𝑅 ∈ Top ∧ 𝑆 ∈ Top ) → ( 𝑅 Cn 𝑆 ) ∈ ( 𝑆 ↑ko 𝑅 ) ) |
| 23 |
22 1
|
eleqtrrdi |
⊢ ( ( 𝑅 ∈ Top ∧ 𝑆 ∈ Top ) → ( 𝑅 Cn 𝑆 ) ∈ 𝐽 ) |
| 24 |
|
elssuni |
⊢ ( ( 𝑅 Cn 𝑆 ) ∈ 𝐽 → ( 𝑅 Cn 𝑆 ) ⊆ ∪ 𝐽 ) |
| 25 |
23 24
|
syl |
⊢ ( ( 𝑅 ∈ Top ∧ 𝑆 ∈ Top ) → ( 𝑅 Cn 𝑆 ) ⊆ ∪ 𝐽 ) |
| 26 |
|
eqid |
⊢ { 𝑥 ∈ 𝒫 ∪ 𝑅 ∣ ( 𝑅 ↾t 𝑥 ) ∈ Comp } = { 𝑥 ∈ 𝒫 ∪ 𝑅 ∣ ( 𝑅 ↾t 𝑥 ) ∈ Comp } |
| 27 |
|
eqid |
⊢ ( 𝑘 ∈ { 𝑥 ∈ 𝒫 ∪ 𝑅 ∣ ( 𝑅 ↾t 𝑥 ) ∈ Comp } , 𝑣 ∈ 𝑆 ↦ { 𝑓 ∈ ( 𝑅 Cn 𝑆 ) ∣ ( 𝑓 “ 𝑘 ) ⊆ 𝑣 } ) = ( 𝑘 ∈ { 𝑥 ∈ 𝒫 ∪ 𝑅 ∣ ( 𝑅 ↾t 𝑥 ) ∈ Comp } , 𝑣 ∈ 𝑆 ↦ { 𝑓 ∈ ( 𝑅 Cn 𝑆 ) ∣ ( 𝑓 “ 𝑘 ) ⊆ 𝑣 } ) |
| 28 |
9 26 27
|
xkoval |
⊢ ( ( 𝑅 ∈ Top ∧ 𝑆 ∈ Top ) → ( 𝑆 ↑ko 𝑅 ) = ( topGen ‘ ( fi ‘ ran ( 𝑘 ∈ { 𝑥 ∈ 𝒫 ∪ 𝑅 ∣ ( 𝑅 ↾t 𝑥 ) ∈ Comp } , 𝑣 ∈ 𝑆 ↦ { 𝑓 ∈ ( 𝑅 Cn 𝑆 ) ∣ ( 𝑓 “ 𝑘 ) ⊆ 𝑣 } ) ) ) ) |
| 29 |
28
|
unieqd |
⊢ ( ( 𝑅 ∈ Top ∧ 𝑆 ∈ Top ) → ∪ ( 𝑆 ↑ko 𝑅 ) = ∪ ( topGen ‘ ( fi ‘ ran ( 𝑘 ∈ { 𝑥 ∈ 𝒫 ∪ 𝑅 ∣ ( 𝑅 ↾t 𝑥 ) ∈ Comp } , 𝑣 ∈ 𝑆 ↦ { 𝑓 ∈ ( 𝑅 Cn 𝑆 ) ∣ ( 𝑓 “ 𝑘 ) ⊆ 𝑣 } ) ) ) ) |
| 30 |
1
|
unieqi |
⊢ ∪ 𝐽 = ∪ ( 𝑆 ↑ko 𝑅 ) |
| 31 |
|
ovex |
⊢ ( 𝑅 Cn 𝑆 ) ∈ V |
| 32 |
31
|
pwex |
⊢ 𝒫 ( 𝑅 Cn 𝑆 ) ∈ V |
| 33 |
9 26 27
|
xkotf |
⊢ ( 𝑘 ∈ { 𝑥 ∈ 𝒫 ∪ 𝑅 ∣ ( 𝑅 ↾t 𝑥 ) ∈ Comp } , 𝑣 ∈ 𝑆 ↦ { 𝑓 ∈ ( 𝑅 Cn 𝑆 ) ∣ ( 𝑓 “ 𝑘 ) ⊆ 𝑣 } ) : ( { 𝑥 ∈ 𝒫 ∪ 𝑅 ∣ ( 𝑅 ↾t 𝑥 ) ∈ Comp } × 𝑆 ) ⟶ 𝒫 ( 𝑅 Cn 𝑆 ) |
| 34 |
|
frn |
⊢ ( ( 𝑘 ∈ { 𝑥 ∈ 𝒫 ∪ 𝑅 ∣ ( 𝑅 ↾t 𝑥 ) ∈ Comp } , 𝑣 ∈ 𝑆 ↦ { 𝑓 ∈ ( 𝑅 Cn 𝑆 ) ∣ ( 𝑓 “ 𝑘 ) ⊆ 𝑣 } ) : ( { 𝑥 ∈ 𝒫 ∪ 𝑅 ∣ ( 𝑅 ↾t 𝑥 ) ∈ Comp } × 𝑆 ) ⟶ 𝒫 ( 𝑅 Cn 𝑆 ) → ran ( 𝑘 ∈ { 𝑥 ∈ 𝒫 ∪ 𝑅 ∣ ( 𝑅 ↾t 𝑥 ) ∈ Comp } , 𝑣 ∈ 𝑆 ↦ { 𝑓 ∈ ( 𝑅 Cn 𝑆 ) ∣ ( 𝑓 “ 𝑘 ) ⊆ 𝑣 } ) ⊆ 𝒫 ( 𝑅 Cn 𝑆 ) ) |
| 35 |
33 34
|
ax-mp |
⊢ ran ( 𝑘 ∈ { 𝑥 ∈ 𝒫 ∪ 𝑅 ∣ ( 𝑅 ↾t 𝑥 ) ∈ Comp } , 𝑣 ∈ 𝑆 ↦ { 𝑓 ∈ ( 𝑅 Cn 𝑆 ) ∣ ( 𝑓 “ 𝑘 ) ⊆ 𝑣 } ) ⊆ 𝒫 ( 𝑅 Cn 𝑆 ) |
| 36 |
32 35
|
ssexi |
⊢ ran ( 𝑘 ∈ { 𝑥 ∈ 𝒫 ∪ 𝑅 ∣ ( 𝑅 ↾t 𝑥 ) ∈ Comp } , 𝑣 ∈ 𝑆 ↦ { 𝑓 ∈ ( 𝑅 Cn 𝑆 ) ∣ ( 𝑓 “ 𝑘 ) ⊆ 𝑣 } ) ∈ V |
| 37 |
|
fiuni |
⊢ ( ran ( 𝑘 ∈ { 𝑥 ∈ 𝒫 ∪ 𝑅 ∣ ( 𝑅 ↾t 𝑥 ) ∈ Comp } , 𝑣 ∈ 𝑆 ↦ { 𝑓 ∈ ( 𝑅 Cn 𝑆 ) ∣ ( 𝑓 “ 𝑘 ) ⊆ 𝑣 } ) ∈ V → ∪ ran ( 𝑘 ∈ { 𝑥 ∈ 𝒫 ∪ 𝑅 ∣ ( 𝑅 ↾t 𝑥 ) ∈ Comp } , 𝑣 ∈ 𝑆 ↦ { 𝑓 ∈ ( 𝑅 Cn 𝑆 ) ∣ ( 𝑓 “ 𝑘 ) ⊆ 𝑣 } ) = ∪ ( fi ‘ ran ( 𝑘 ∈ { 𝑥 ∈ 𝒫 ∪ 𝑅 ∣ ( 𝑅 ↾t 𝑥 ) ∈ Comp } , 𝑣 ∈ 𝑆 ↦ { 𝑓 ∈ ( 𝑅 Cn 𝑆 ) ∣ ( 𝑓 “ 𝑘 ) ⊆ 𝑣 } ) ) ) |
| 38 |
36 37
|
ax-mp |
⊢ ∪ ran ( 𝑘 ∈ { 𝑥 ∈ 𝒫 ∪ 𝑅 ∣ ( 𝑅 ↾t 𝑥 ) ∈ Comp } , 𝑣 ∈ 𝑆 ↦ { 𝑓 ∈ ( 𝑅 Cn 𝑆 ) ∣ ( 𝑓 “ 𝑘 ) ⊆ 𝑣 } ) = ∪ ( fi ‘ ran ( 𝑘 ∈ { 𝑥 ∈ 𝒫 ∪ 𝑅 ∣ ( 𝑅 ↾t 𝑥 ) ∈ Comp } , 𝑣 ∈ 𝑆 ↦ { 𝑓 ∈ ( 𝑅 Cn 𝑆 ) ∣ ( 𝑓 “ 𝑘 ) ⊆ 𝑣 } ) ) |
| 39 |
|
fvex |
⊢ ( fi ‘ ran ( 𝑘 ∈ { 𝑥 ∈ 𝒫 ∪ 𝑅 ∣ ( 𝑅 ↾t 𝑥 ) ∈ Comp } , 𝑣 ∈ 𝑆 ↦ { 𝑓 ∈ ( 𝑅 Cn 𝑆 ) ∣ ( 𝑓 “ 𝑘 ) ⊆ 𝑣 } ) ) ∈ V |
| 40 |
|
unitg |
⊢ ( ( fi ‘ ran ( 𝑘 ∈ { 𝑥 ∈ 𝒫 ∪ 𝑅 ∣ ( 𝑅 ↾t 𝑥 ) ∈ Comp } , 𝑣 ∈ 𝑆 ↦ { 𝑓 ∈ ( 𝑅 Cn 𝑆 ) ∣ ( 𝑓 “ 𝑘 ) ⊆ 𝑣 } ) ) ∈ V → ∪ ( topGen ‘ ( fi ‘ ran ( 𝑘 ∈ { 𝑥 ∈ 𝒫 ∪ 𝑅 ∣ ( 𝑅 ↾t 𝑥 ) ∈ Comp } , 𝑣 ∈ 𝑆 ↦ { 𝑓 ∈ ( 𝑅 Cn 𝑆 ) ∣ ( 𝑓 “ 𝑘 ) ⊆ 𝑣 } ) ) ) = ∪ ( fi ‘ ran ( 𝑘 ∈ { 𝑥 ∈ 𝒫 ∪ 𝑅 ∣ ( 𝑅 ↾t 𝑥 ) ∈ Comp } , 𝑣 ∈ 𝑆 ↦ { 𝑓 ∈ ( 𝑅 Cn 𝑆 ) ∣ ( 𝑓 “ 𝑘 ) ⊆ 𝑣 } ) ) ) |
| 41 |
39 40
|
ax-mp |
⊢ ∪ ( topGen ‘ ( fi ‘ ran ( 𝑘 ∈ { 𝑥 ∈ 𝒫 ∪ 𝑅 ∣ ( 𝑅 ↾t 𝑥 ) ∈ Comp } , 𝑣 ∈ 𝑆 ↦ { 𝑓 ∈ ( 𝑅 Cn 𝑆 ) ∣ ( 𝑓 “ 𝑘 ) ⊆ 𝑣 } ) ) ) = ∪ ( fi ‘ ran ( 𝑘 ∈ { 𝑥 ∈ 𝒫 ∪ 𝑅 ∣ ( 𝑅 ↾t 𝑥 ) ∈ Comp } , 𝑣 ∈ 𝑆 ↦ { 𝑓 ∈ ( 𝑅 Cn 𝑆 ) ∣ ( 𝑓 “ 𝑘 ) ⊆ 𝑣 } ) ) |
| 42 |
38 41
|
eqtr4i |
⊢ ∪ ran ( 𝑘 ∈ { 𝑥 ∈ 𝒫 ∪ 𝑅 ∣ ( 𝑅 ↾t 𝑥 ) ∈ Comp } , 𝑣 ∈ 𝑆 ↦ { 𝑓 ∈ ( 𝑅 Cn 𝑆 ) ∣ ( 𝑓 “ 𝑘 ) ⊆ 𝑣 } ) = ∪ ( topGen ‘ ( fi ‘ ran ( 𝑘 ∈ { 𝑥 ∈ 𝒫 ∪ 𝑅 ∣ ( 𝑅 ↾t 𝑥 ) ∈ Comp } , 𝑣 ∈ 𝑆 ↦ { 𝑓 ∈ ( 𝑅 Cn 𝑆 ) ∣ ( 𝑓 “ 𝑘 ) ⊆ 𝑣 } ) ) ) |
| 43 |
29 30 42
|
3eqtr4g |
⊢ ( ( 𝑅 ∈ Top ∧ 𝑆 ∈ Top ) → ∪ 𝐽 = ∪ ran ( 𝑘 ∈ { 𝑥 ∈ 𝒫 ∪ 𝑅 ∣ ( 𝑅 ↾t 𝑥 ) ∈ Comp } , 𝑣 ∈ 𝑆 ↦ { 𝑓 ∈ ( 𝑅 Cn 𝑆 ) ∣ ( 𝑓 “ 𝑘 ) ⊆ 𝑣 } ) ) |
| 44 |
35
|
a1i |
⊢ ( ( 𝑅 ∈ Top ∧ 𝑆 ∈ Top ) → ran ( 𝑘 ∈ { 𝑥 ∈ 𝒫 ∪ 𝑅 ∣ ( 𝑅 ↾t 𝑥 ) ∈ Comp } , 𝑣 ∈ 𝑆 ↦ { 𝑓 ∈ ( 𝑅 Cn 𝑆 ) ∣ ( 𝑓 “ 𝑘 ) ⊆ 𝑣 } ) ⊆ 𝒫 ( 𝑅 Cn 𝑆 ) ) |
| 45 |
|
sspwuni |
⊢ ( ran ( 𝑘 ∈ { 𝑥 ∈ 𝒫 ∪ 𝑅 ∣ ( 𝑅 ↾t 𝑥 ) ∈ Comp } , 𝑣 ∈ 𝑆 ↦ { 𝑓 ∈ ( 𝑅 Cn 𝑆 ) ∣ ( 𝑓 “ 𝑘 ) ⊆ 𝑣 } ) ⊆ 𝒫 ( 𝑅 Cn 𝑆 ) ↔ ∪ ran ( 𝑘 ∈ { 𝑥 ∈ 𝒫 ∪ 𝑅 ∣ ( 𝑅 ↾t 𝑥 ) ∈ Comp } , 𝑣 ∈ 𝑆 ↦ { 𝑓 ∈ ( 𝑅 Cn 𝑆 ) ∣ ( 𝑓 “ 𝑘 ) ⊆ 𝑣 } ) ⊆ ( 𝑅 Cn 𝑆 ) ) |
| 46 |
44 45
|
sylib |
⊢ ( ( 𝑅 ∈ Top ∧ 𝑆 ∈ Top ) → ∪ ran ( 𝑘 ∈ { 𝑥 ∈ 𝒫 ∪ 𝑅 ∣ ( 𝑅 ↾t 𝑥 ) ∈ Comp } , 𝑣 ∈ 𝑆 ↦ { 𝑓 ∈ ( 𝑅 Cn 𝑆 ) ∣ ( 𝑓 “ 𝑘 ) ⊆ 𝑣 } ) ⊆ ( 𝑅 Cn 𝑆 ) ) |
| 47 |
43 46
|
eqsstrd |
⊢ ( ( 𝑅 ∈ Top ∧ 𝑆 ∈ Top ) → ∪ 𝐽 ⊆ ( 𝑅 Cn 𝑆 ) ) |
| 48 |
25 47
|
eqssd |
⊢ ( ( 𝑅 ∈ Top ∧ 𝑆 ∈ Top ) → ( 𝑅 Cn 𝑆 ) = ∪ 𝐽 ) |