Step |
Hyp |
Ref |
Expression |
1 |
|
xkoval.x |
⊢ 𝑋 = ∪ 𝑅 |
2 |
|
xkoval.k |
⊢ 𝐾 = { 𝑥 ∈ 𝒫 𝑋 ∣ ( 𝑅 ↾t 𝑥 ) ∈ Comp } |
3 |
|
xkoval.t |
⊢ 𝑇 = ( 𝑘 ∈ 𝐾 , 𝑣 ∈ 𝑆 ↦ { 𝑓 ∈ ( 𝑅 Cn 𝑆 ) ∣ ( 𝑓 “ 𝑘 ) ⊆ 𝑣 } ) |
4 |
|
simpr |
⊢ ( ( 𝑠 = 𝑆 ∧ 𝑟 = 𝑅 ) → 𝑟 = 𝑅 ) |
5 |
4
|
unieqd |
⊢ ( ( 𝑠 = 𝑆 ∧ 𝑟 = 𝑅 ) → ∪ 𝑟 = ∪ 𝑅 ) |
6 |
5 1
|
eqtr4di |
⊢ ( ( 𝑠 = 𝑆 ∧ 𝑟 = 𝑅 ) → ∪ 𝑟 = 𝑋 ) |
7 |
6
|
pweqd |
⊢ ( ( 𝑠 = 𝑆 ∧ 𝑟 = 𝑅 ) → 𝒫 ∪ 𝑟 = 𝒫 𝑋 ) |
8 |
4
|
oveq1d |
⊢ ( ( 𝑠 = 𝑆 ∧ 𝑟 = 𝑅 ) → ( 𝑟 ↾t 𝑥 ) = ( 𝑅 ↾t 𝑥 ) ) |
9 |
8
|
eleq1d |
⊢ ( ( 𝑠 = 𝑆 ∧ 𝑟 = 𝑅 ) → ( ( 𝑟 ↾t 𝑥 ) ∈ Comp ↔ ( 𝑅 ↾t 𝑥 ) ∈ Comp ) ) |
10 |
7 9
|
rabeqbidv |
⊢ ( ( 𝑠 = 𝑆 ∧ 𝑟 = 𝑅 ) → { 𝑥 ∈ 𝒫 ∪ 𝑟 ∣ ( 𝑟 ↾t 𝑥 ) ∈ Comp } = { 𝑥 ∈ 𝒫 𝑋 ∣ ( 𝑅 ↾t 𝑥 ) ∈ Comp } ) |
11 |
10 2
|
eqtr4di |
⊢ ( ( 𝑠 = 𝑆 ∧ 𝑟 = 𝑅 ) → { 𝑥 ∈ 𝒫 ∪ 𝑟 ∣ ( 𝑟 ↾t 𝑥 ) ∈ Comp } = 𝐾 ) |
12 |
|
simpl |
⊢ ( ( 𝑠 = 𝑆 ∧ 𝑟 = 𝑅 ) → 𝑠 = 𝑆 ) |
13 |
4 12
|
oveq12d |
⊢ ( ( 𝑠 = 𝑆 ∧ 𝑟 = 𝑅 ) → ( 𝑟 Cn 𝑠 ) = ( 𝑅 Cn 𝑆 ) ) |
14 |
13
|
rabeqdv |
⊢ ( ( 𝑠 = 𝑆 ∧ 𝑟 = 𝑅 ) → { 𝑓 ∈ ( 𝑟 Cn 𝑠 ) ∣ ( 𝑓 “ 𝑘 ) ⊆ 𝑣 } = { 𝑓 ∈ ( 𝑅 Cn 𝑆 ) ∣ ( 𝑓 “ 𝑘 ) ⊆ 𝑣 } ) |
15 |
11 12 14
|
mpoeq123dv |
⊢ ( ( 𝑠 = 𝑆 ∧ 𝑟 = 𝑅 ) → ( 𝑘 ∈ { 𝑥 ∈ 𝒫 ∪ 𝑟 ∣ ( 𝑟 ↾t 𝑥 ) ∈ Comp } , 𝑣 ∈ 𝑠 ↦ { 𝑓 ∈ ( 𝑟 Cn 𝑠 ) ∣ ( 𝑓 “ 𝑘 ) ⊆ 𝑣 } ) = ( 𝑘 ∈ 𝐾 , 𝑣 ∈ 𝑆 ↦ { 𝑓 ∈ ( 𝑅 Cn 𝑆 ) ∣ ( 𝑓 “ 𝑘 ) ⊆ 𝑣 } ) ) |
16 |
15 3
|
eqtr4di |
⊢ ( ( 𝑠 = 𝑆 ∧ 𝑟 = 𝑅 ) → ( 𝑘 ∈ { 𝑥 ∈ 𝒫 ∪ 𝑟 ∣ ( 𝑟 ↾t 𝑥 ) ∈ Comp } , 𝑣 ∈ 𝑠 ↦ { 𝑓 ∈ ( 𝑟 Cn 𝑠 ) ∣ ( 𝑓 “ 𝑘 ) ⊆ 𝑣 } ) = 𝑇 ) |
17 |
16
|
rneqd |
⊢ ( ( 𝑠 = 𝑆 ∧ 𝑟 = 𝑅 ) → ran ( 𝑘 ∈ { 𝑥 ∈ 𝒫 ∪ 𝑟 ∣ ( 𝑟 ↾t 𝑥 ) ∈ Comp } , 𝑣 ∈ 𝑠 ↦ { 𝑓 ∈ ( 𝑟 Cn 𝑠 ) ∣ ( 𝑓 “ 𝑘 ) ⊆ 𝑣 } ) = ran 𝑇 ) |
18 |
17
|
fveq2d |
⊢ ( ( 𝑠 = 𝑆 ∧ 𝑟 = 𝑅 ) → ( fi ‘ ran ( 𝑘 ∈ { 𝑥 ∈ 𝒫 ∪ 𝑟 ∣ ( 𝑟 ↾t 𝑥 ) ∈ Comp } , 𝑣 ∈ 𝑠 ↦ { 𝑓 ∈ ( 𝑟 Cn 𝑠 ) ∣ ( 𝑓 “ 𝑘 ) ⊆ 𝑣 } ) ) = ( fi ‘ ran 𝑇 ) ) |
19 |
18
|
fveq2d |
⊢ ( ( 𝑠 = 𝑆 ∧ 𝑟 = 𝑅 ) → ( topGen ‘ ( fi ‘ ran ( 𝑘 ∈ { 𝑥 ∈ 𝒫 ∪ 𝑟 ∣ ( 𝑟 ↾t 𝑥 ) ∈ Comp } , 𝑣 ∈ 𝑠 ↦ { 𝑓 ∈ ( 𝑟 Cn 𝑠 ) ∣ ( 𝑓 “ 𝑘 ) ⊆ 𝑣 } ) ) ) = ( topGen ‘ ( fi ‘ ran 𝑇 ) ) ) |
20 |
|
df-xko |
⊢ ↑ko = ( 𝑠 ∈ Top , 𝑟 ∈ Top ↦ ( topGen ‘ ( fi ‘ ran ( 𝑘 ∈ { 𝑥 ∈ 𝒫 ∪ 𝑟 ∣ ( 𝑟 ↾t 𝑥 ) ∈ Comp } , 𝑣 ∈ 𝑠 ↦ { 𝑓 ∈ ( 𝑟 Cn 𝑠 ) ∣ ( 𝑓 “ 𝑘 ) ⊆ 𝑣 } ) ) ) ) |
21 |
|
fvex |
⊢ ( topGen ‘ ( fi ‘ ran 𝑇 ) ) ∈ V |
22 |
19 20 21
|
ovmpoa |
⊢ ( ( 𝑆 ∈ Top ∧ 𝑅 ∈ Top ) → ( 𝑆 ↑ko 𝑅 ) = ( topGen ‘ ( fi ‘ ran 𝑇 ) ) ) |
23 |
22
|
ancoms |
⊢ ( ( 𝑅 ∈ Top ∧ 𝑆 ∈ Top ) → ( 𝑆 ↑ko 𝑅 ) = ( topGen ‘ ( fi ‘ ran 𝑇 ) ) ) |