Metamath Proof Explorer


Theorem xle2addd

Description: Adding both side of two inequalities. (Contributed by Glauco Siliprandi, 17-Aug-2020)

Ref Expression
Hypotheses xle2addd.1 ( 𝜑𝐴 ∈ ℝ* )
xle2addd.2 ( 𝜑𝐵 ∈ ℝ* )
xle2addd.3 ( 𝜑𝐶 ∈ ℝ* )
xle2addd.4 ( 𝜑𝐷 ∈ ℝ* )
xle2addd.5 ( 𝜑𝐴𝐶 )
xrle2addd.6 ( 𝜑𝐵𝐷 )
Assertion xle2addd ( 𝜑 → ( 𝐴 +𝑒 𝐵 ) ≤ ( 𝐶 +𝑒 𝐷 ) )

Proof

Step Hyp Ref Expression
1 xle2addd.1 ( 𝜑𝐴 ∈ ℝ* )
2 xle2addd.2 ( 𝜑𝐵 ∈ ℝ* )
3 xle2addd.3 ( 𝜑𝐶 ∈ ℝ* )
4 xle2addd.4 ( 𝜑𝐷 ∈ ℝ* )
5 xle2addd.5 ( 𝜑𝐴𝐶 )
6 xrle2addd.6 ( 𝜑𝐵𝐷 )
7 1 2 xaddcld ( 𝜑 → ( 𝐴 +𝑒 𝐵 ) ∈ ℝ* )
8 1 4 xaddcld ( 𝜑 → ( 𝐴 +𝑒 𝐷 ) ∈ ℝ* )
9 3 4 xaddcld ( 𝜑 → ( 𝐶 +𝑒 𝐷 ) ∈ ℝ* )
10 2 4 1 6 xleadd2d ( 𝜑 → ( 𝐴 +𝑒 𝐵 ) ≤ ( 𝐴 +𝑒 𝐷 ) )
11 1 3 4 5 xleadd1d ( 𝜑 → ( 𝐴 +𝑒 𝐷 ) ≤ ( 𝐶 +𝑒 𝐷 ) )
12 7 8 9 10 11 xrletrd ( 𝜑 → ( 𝐴 +𝑒 𝐵 ) ≤ ( 𝐶 +𝑒 𝐷 ) )