Description: Adding both side of two inequalities. (Contributed by Glauco Siliprandi, 17-Aug-2020)
Ref | Expression | ||
---|---|---|---|
Hypotheses | xle2addd.1 | ⊢ ( 𝜑 → 𝐴 ∈ ℝ* ) | |
xle2addd.2 | ⊢ ( 𝜑 → 𝐵 ∈ ℝ* ) | ||
xle2addd.3 | ⊢ ( 𝜑 → 𝐶 ∈ ℝ* ) | ||
xle2addd.4 | ⊢ ( 𝜑 → 𝐷 ∈ ℝ* ) | ||
xle2addd.5 | ⊢ ( 𝜑 → 𝐴 ≤ 𝐶 ) | ||
xrle2addd.6 | ⊢ ( 𝜑 → 𝐵 ≤ 𝐷 ) | ||
Assertion | xle2addd | ⊢ ( 𝜑 → ( 𝐴 +𝑒 𝐵 ) ≤ ( 𝐶 +𝑒 𝐷 ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | xle2addd.1 | ⊢ ( 𝜑 → 𝐴 ∈ ℝ* ) | |
2 | xle2addd.2 | ⊢ ( 𝜑 → 𝐵 ∈ ℝ* ) | |
3 | xle2addd.3 | ⊢ ( 𝜑 → 𝐶 ∈ ℝ* ) | |
4 | xle2addd.4 | ⊢ ( 𝜑 → 𝐷 ∈ ℝ* ) | |
5 | xle2addd.5 | ⊢ ( 𝜑 → 𝐴 ≤ 𝐶 ) | |
6 | xrle2addd.6 | ⊢ ( 𝜑 → 𝐵 ≤ 𝐷 ) | |
7 | 1 2 | xaddcld | ⊢ ( 𝜑 → ( 𝐴 +𝑒 𝐵 ) ∈ ℝ* ) |
8 | 1 4 | xaddcld | ⊢ ( 𝜑 → ( 𝐴 +𝑒 𝐷 ) ∈ ℝ* ) |
9 | 3 4 | xaddcld | ⊢ ( 𝜑 → ( 𝐶 +𝑒 𝐷 ) ∈ ℝ* ) |
10 | 2 4 1 6 | xleadd2d | ⊢ ( 𝜑 → ( 𝐴 +𝑒 𝐵 ) ≤ ( 𝐴 +𝑒 𝐷 ) ) |
11 | 1 3 4 5 | xleadd1d | ⊢ ( 𝜑 → ( 𝐴 +𝑒 𝐷 ) ≤ ( 𝐶 +𝑒 𝐷 ) ) |
12 | 7 8 9 10 11 | xrletrd | ⊢ ( 𝜑 → ( 𝐴 +𝑒 𝐵 ) ≤ ( 𝐶 +𝑒 𝐷 ) ) |