Metamath Proof Explorer


Theorem xleadd1d

Description: Addition of extended reals preserves the "less than or equal to" relation, in the left slot. (Contributed by Glauco Siliprandi, 17-Aug-2020)

Ref Expression
Hypotheses xleadd1d.1 ( 𝜑𝐴 ∈ ℝ* )
xleadd1d.2 ( 𝜑𝐵 ∈ ℝ* )
xleadd1d.3 ( 𝜑𝐶 ∈ ℝ* )
xleadd1d.4 ( 𝜑𝐴𝐵 )
Assertion xleadd1d ( 𝜑 → ( 𝐴 +𝑒 𝐶 ) ≤ ( 𝐵 +𝑒 𝐶 ) )

Proof

Step Hyp Ref Expression
1 xleadd1d.1 ( 𝜑𝐴 ∈ ℝ* )
2 xleadd1d.2 ( 𝜑𝐵 ∈ ℝ* )
3 xleadd1d.3 ( 𝜑𝐶 ∈ ℝ* )
4 xleadd1d.4 ( 𝜑𝐴𝐵 )
5 xleadd1a ( ( ( 𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ* ) ∧ 𝐴𝐵 ) → ( 𝐴 +𝑒 𝐶 ) ≤ ( 𝐵 +𝑒 𝐶 ) )
6 1 2 3 4 5 syl31anc ( 𝜑 → ( 𝐴 +𝑒 𝐶 ) ≤ ( 𝐵 +𝑒 𝐶 ) )