Metamath Proof Explorer


Theorem xleadd2d

Description: Addition of extended reals preserves the "less than or equal to" relation, in the right slot. (Contributed by Glauco Siliprandi, 17-Aug-2020)

Ref Expression
Hypotheses xleadd2d.1 ( 𝜑𝐴 ∈ ℝ* )
xleadd2d.2 ( 𝜑𝐵 ∈ ℝ* )
xleadd2d.3 ( 𝜑𝐶 ∈ ℝ* )
xleadd2d.4 ( 𝜑𝐴𝐵 )
Assertion xleadd2d ( 𝜑 → ( 𝐶 +𝑒 𝐴 ) ≤ ( 𝐶 +𝑒 𝐵 ) )

Proof

Step Hyp Ref Expression
1 xleadd2d.1 ( 𝜑𝐴 ∈ ℝ* )
2 xleadd2d.2 ( 𝜑𝐵 ∈ ℝ* )
3 xleadd2d.3 ( 𝜑𝐶 ∈ ℝ* )
4 xleadd2d.4 ( 𝜑𝐴𝐵 )
5 xleadd2a ( ( ( 𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ* ) ∧ 𝐴𝐵 ) → ( 𝐶 +𝑒 𝐴 ) ≤ ( 𝐶 +𝑒 𝐵 ) )
6 1 2 3 4 5 syl31anc ( 𝜑 → ( 𝐶 +𝑒 𝐴 ) ≤ ( 𝐶 +𝑒 𝐵 ) )