| Step | Hyp | Ref | Expression | 
						
							| 1 |  | xlebnum.j | ⊢ 𝐽  =  ( MetOpen ‘ 𝐷 ) | 
						
							| 2 |  | xlebnum.d | ⊢ ( 𝜑  →  𝐷  ∈  ( ∞Met ‘ 𝑋 ) ) | 
						
							| 3 |  | xlebnum.c | ⊢ ( 𝜑  →  𝐽  ∈  Comp ) | 
						
							| 4 |  | xlebnum.s | ⊢ ( 𝜑  →  𝑈  ⊆  𝐽 ) | 
						
							| 5 |  | xlebnum.u | ⊢ ( 𝜑  →  𝑋  =  ∪  𝑈 ) | 
						
							| 6 |  | eqid | ⊢ ( MetOpen ‘ ( 𝑦  ∈  𝑋 ,  𝑧  ∈  𝑋  ↦  if ( ( 𝑦 𝐷 𝑧 )  ≤  1 ,  ( 𝑦 𝐷 𝑧 ) ,  1 ) ) )  =  ( MetOpen ‘ ( 𝑦  ∈  𝑋 ,  𝑧  ∈  𝑋  ↦  if ( ( 𝑦 𝐷 𝑧 )  ≤  1 ,  ( 𝑦 𝐷 𝑧 ) ,  1 ) ) ) | 
						
							| 7 |  | 1rp | ⊢ 1  ∈  ℝ+ | 
						
							| 8 |  | eqid | ⊢ ( 𝑦  ∈  𝑋 ,  𝑧  ∈  𝑋  ↦  if ( ( 𝑦 𝐷 𝑧 )  ≤  1 ,  ( 𝑦 𝐷 𝑧 ) ,  1 ) )  =  ( 𝑦  ∈  𝑋 ,  𝑧  ∈  𝑋  ↦  if ( ( 𝑦 𝐷 𝑧 )  ≤  1 ,  ( 𝑦 𝐷 𝑧 ) ,  1 ) ) | 
						
							| 9 | 8 | stdbdmet | ⊢ ( ( 𝐷  ∈  ( ∞Met ‘ 𝑋 )  ∧  1  ∈  ℝ+ )  →  ( 𝑦  ∈  𝑋 ,  𝑧  ∈  𝑋  ↦  if ( ( 𝑦 𝐷 𝑧 )  ≤  1 ,  ( 𝑦 𝐷 𝑧 ) ,  1 ) )  ∈  ( Met ‘ 𝑋 ) ) | 
						
							| 10 | 2 7 9 | sylancl | ⊢ ( 𝜑  →  ( 𝑦  ∈  𝑋 ,  𝑧  ∈  𝑋  ↦  if ( ( 𝑦 𝐷 𝑧 )  ≤  1 ,  ( 𝑦 𝐷 𝑧 ) ,  1 ) )  ∈  ( Met ‘ 𝑋 ) ) | 
						
							| 11 |  | rpxr | ⊢ ( 1  ∈  ℝ+  →  1  ∈  ℝ* ) | 
						
							| 12 | 7 11 | mp1i | ⊢ ( 𝜑  →  1  ∈  ℝ* ) | 
						
							| 13 |  | 0lt1 | ⊢ 0  <  1 | 
						
							| 14 | 13 | a1i | ⊢ ( 𝜑  →  0  <  1 ) | 
						
							| 15 | 8 1 | stdbdmopn | ⊢ ( ( 𝐷  ∈  ( ∞Met ‘ 𝑋 )  ∧  1  ∈  ℝ*  ∧  0  <  1 )  →  𝐽  =  ( MetOpen ‘ ( 𝑦  ∈  𝑋 ,  𝑧  ∈  𝑋  ↦  if ( ( 𝑦 𝐷 𝑧 )  ≤  1 ,  ( 𝑦 𝐷 𝑧 ) ,  1 ) ) ) ) | 
						
							| 16 | 2 12 14 15 | syl3anc | ⊢ ( 𝜑  →  𝐽  =  ( MetOpen ‘ ( 𝑦  ∈  𝑋 ,  𝑧  ∈  𝑋  ↦  if ( ( 𝑦 𝐷 𝑧 )  ≤  1 ,  ( 𝑦 𝐷 𝑧 ) ,  1 ) ) ) ) | 
						
							| 17 | 16 3 | eqeltrrd | ⊢ ( 𝜑  →  ( MetOpen ‘ ( 𝑦  ∈  𝑋 ,  𝑧  ∈  𝑋  ↦  if ( ( 𝑦 𝐷 𝑧 )  ≤  1 ,  ( 𝑦 𝐷 𝑧 ) ,  1 ) ) )  ∈  Comp ) | 
						
							| 18 | 4 16 | sseqtrd | ⊢ ( 𝜑  →  𝑈  ⊆  ( MetOpen ‘ ( 𝑦  ∈  𝑋 ,  𝑧  ∈  𝑋  ↦  if ( ( 𝑦 𝐷 𝑧 )  ≤  1 ,  ( 𝑦 𝐷 𝑧 ) ,  1 ) ) ) ) | 
						
							| 19 | 6 10 17 18 5 | lebnum | ⊢ ( 𝜑  →  ∃ 𝑟  ∈  ℝ+ ∀ 𝑥  ∈  𝑋 ∃ 𝑢  ∈  𝑈 ( 𝑥 ( ball ‘ ( 𝑦  ∈  𝑋 ,  𝑧  ∈  𝑋  ↦  if ( ( 𝑦 𝐷 𝑧 )  ≤  1 ,  ( 𝑦 𝐷 𝑧 ) ,  1 ) ) ) 𝑟 )  ⊆  𝑢 ) | 
						
							| 20 |  | simpr | ⊢ ( ( 𝜑  ∧  𝑟  ∈  ℝ+ )  →  𝑟  ∈  ℝ+ ) | 
						
							| 21 |  | ifcl | ⊢ ( ( 𝑟  ∈  ℝ+  ∧  1  ∈  ℝ+ )  →  if ( 𝑟  ≤  1 ,  𝑟 ,  1 )  ∈  ℝ+ ) | 
						
							| 22 | 20 7 21 | sylancl | ⊢ ( ( 𝜑  ∧  𝑟  ∈  ℝ+ )  →  if ( 𝑟  ≤  1 ,  𝑟 ,  1 )  ∈  ℝ+ ) | 
						
							| 23 | 2 | ad2antrr | ⊢ ( ( ( 𝜑  ∧  𝑟  ∈  ℝ+ )  ∧  𝑥  ∈  𝑋 )  →  𝐷  ∈  ( ∞Met ‘ 𝑋 ) ) | 
						
							| 24 | 7 11 | mp1i | ⊢ ( ( ( 𝜑  ∧  𝑟  ∈  ℝ+ )  ∧  𝑥  ∈  𝑋 )  →  1  ∈  ℝ* ) | 
						
							| 25 | 13 | a1i | ⊢ ( ( ( 𝜑  ∧  𝑟  ∈  ℝ+ )  ∧  𝑥  ∈  𝑋 )  →  0  <  1 ) | 
						
							| 26 |  | simpr | ⊢ ( ( ( 𝜑  ∧  𝑟  ∈  ℝ+ )  ∧  𝑥  ∈  𝑋 )  →  𝑥  ∈  𝑋 ) | 
						
							| 27 | 22 | adantr | ⊢ ( ( ( 𝜑  ∧  𝑟  ∈  ℝ+ )  ∧  𝑥  ∈  𝑋 )  →  if ( 𝑟  ≤  1 ,  𝑟 ,  1 )  ∈  ℝ+ ) | 
						
							| 28 |  | rpxr | ⊢ ( if ( 𝑟  ≤  1 ,  𝑟 ,  1 )  ∈  ℝ+  →  if ( 𝑟  ≤  1 ,  𝑟 ,  1 )  ∈  ℝ* ) | 
						
							| 29 | 27 28 | syl | ⊢ ( ( ( 𝜑  ∧  𝑟  ∈  ℝ+ )  ∧  𝑥  ∈  𝑋 )  →  if ( 𝑟  ≤  1 ,  𝑟 ,  1 )  ∈  ℝ* ) | 
						
							| 30 |  | rpre | ⊢ ( 𝑟  ∈  ℝ+  →  𝑟  ∈  ℝ ) | 
						
							| 31 | 30 | ad2antlr | ⊢ ( ( ( 𝜑  ∧  𝑟  ∈  ℝ+ )  ∧  𝑥  ∈  𝑋 )  →  𝑟  ∈  ℝ ) | 
						
							| 32 |  | 1re | ⊢ 1  ∈  ℝ | 
						
							| 33 |  | min2 | ⊢ ( ( 𝑟  ∈  ℝ  ∧  1  ∈  ℝ )  →  if ( 𝑟  ≤  1 ,  𝑟 ,  1 )  ≤  1 ) | 
						
							| 34 | 31 32 33 | sylancl | ⊢ ( ( ( 𝜑  ∧  𝑟  ∈  ℝ+ )  ∧  𝑥  ∈  𝑋 )  →  if ( 𝑟  ≤  1 ,  𝑟 ,  1 )  ≤  1 ) | 
						
							| 35 | 8 | stdbdbl | ⊢ ( ( ( 𝐷  ∈  ( ∞Met ‘ 𝑋 )  ∧  1  ∈  ℝ*  ∧  0  <  1 )  ∧  ( 𝑥  ∈  𝑋  ∧  if ( 𝑟  ≤  1 ,  𝑟 ,  1 )  ∈  ℝ*  ∧  if ( 𝑟  ≤  1 ,  𝑟 ,  1 )  ≤  1 ) )  →  ( 𝑥 ( ball ‘ ( 𝑦  ∈  𝑋 ,  𝑧  ∈  𝑋  ↦  if ( ( 𝑦 𝐷 𝑧 )  ≤  1 ,  ( 𝑦 𝐷 𝑧 ) ,  1 ) ) ) if ( 𝑟  ≤  1 ,  𝑟 ,  1 ) )  =  ( 𝑥 ( ball ‘ 𝐷 ) if ( 𝑟  ≤  1 ,  𝑟 ,  1 ) ) ) | 
						
							| 36 | 23 24 25 26 29 34 35 | syl33anc | ⊢ ( ( ( 𝜑  ∧  𝑟  ∈  ℝ+ )  ∧  𝑥  ∈  𝑋 )  →  ( 𝑥 ( ball ‘ ( 𝑦  ∈  𝑋 ,  𝑧  ∈  𝑋  ↦  if ( ( 𝑦 𝐷 𝑧 )  ≤  1 ,  ( 𝑦 𝐷 𝑧 ) ,  1 ) ) ) if ( 𝑟  ≤  1 ,  𝑟 ,  1 ) )  =  ( 𝑥 ( ball ‘ 𝐷 ) if ( 𝑟  ≤  1 ,  𝑟 ,  1 ) ) ) | 
						
							| 37 | 10 | ad2antrr | ⊢ ( ( ( 𝜑  ∧  𝑟  ∈  ℝ+ )  ∧  𝑥  ∈  𝑋 )  →  ( 𝑦  ∈  𝑋 ,  𝑧  ∈  𝑋  ↦  if ( ( 𝑦 𝐷 𝑧 )  ≤  1 ,  ( 𝑦 𝐷 𝑧 ) ,  1 ) )  ∈  ( Met ‘ 𝑋 ) ) | 
						
							| 38 |  | metxmet | ⊢ ( ( 𝑦  ∈  𝑋 ,  𝑧  ∈  𝑋  ↦  if ( ( 𝑦 𝐷 𝑧 )  ≤  1 ,  ( 𝑦 𝐷 𝑧 ) ,  1 ) )  ∈  ( Met ‘ 𝑋 )  →  ( 𝑦  ∈  𝑋 ,  𝑧  ∈  𝑋  ↦  if ( ( 𝑦 𝐷 𝑧 )  ≤  1 ,  ( 𝑦 𝐷 𝑧 ) ,  1 ) )  ∈  ( ∞Met ‘ 𝑋 ) ) | 
						
							| 39 | 37 38 | syl | ⊢ ( ( ( 𝜑  ∧  𝑟  ∈  ℝ+ )  ∧  𝑥  ∈  𝑋 )  →  ( 𝑦  ∈  𝑋 ,  𝑧  ∈  𝑋  ↦  if ( ( 𝑦 𝐷 𝑧 )  ≤  1 ,  ( 𝑦 𝐷 𝑧 ) ,  1 ) )  ∈  ( ∞Met ‘ 𝑋 ) ) | 
						
							| 40 |  | rpxr | ⊢ ( 𝑟  ∈  ℝ+  →  𝑟  ∈  ℝ* ) | 
						
							| 41 | 40 | ad2antlr | ⊢ ( ( ( 𝜑  ∧  𝑟  ∈  ℝ+ )  ∧  𝑥  ∈  𝑋 )  →  𝑟  ∈  ℝ* ) | 
						
							| 42 |  | min1 | ⊢ ( ( 𝑟  ∈  ℝ  ∧  1  ∈  ℝ )  →  if ( 𝑟  ≤  1 ,  𝑟 ,  1 )  ≤  𝑟 ) | 
						
							| 43 | 31 32 42 | sylancl | ⊢ ( ( ( 𝜑  ∧  𝑟  ∈  ℝ+ )  ∧  𝑥  ∈  𝑋 )  →  if ( 𝑟  ≤  1 ,  𝑟 ,  1 )  ≤  𝑟 ) | 
						
							| 44 |  | ssbl | ⊢ ( ( ( ( 𝑦  ∈  𝑋 ,  𝑧  ∈  𝑋  ↦  if ( ( 𝑦 𝐷 𝑧 )  ≤  1 ,  ( 𝑦 𝐷 𝑧 ) ,  1 ) )  ∈  ( ∞Met ‘ 𝑋 )  ∧  𝑥  ∈  𝑋 )  ∧  ( if ( 𝑟  ≤  1 ,  𝑟 ,  1 )  ∈  ℝ*  ∧  𝑟  ∈  ℝ* )  ∧  if ( 𝑟  ≤  1 ,  𝑟 ,  1 )  ≤  𝑟 )  →  ( 𝑥 ( ball ‘ ( 𝑦  ∈  𝑋 ,  𝑧  ∈  𝑋  ↦  if ( ( 𝑦 𝐷 𝑧 )  ≤  1 ,  ( 𝑦 𝐷 𝑧 ) ,  1 ) ) ) if ( 𝑟  ≤  1 ,  𝑟 ,  1 ) )  ⊆  ( 𝑥 ( ball ‘ ( 𝑦  ∈  𝑋 ,  𝑧  ∈  𝑋  ↦  if ( ( 𝑦 𝐷 𝑧 )  ≤  1 ,  ( 𝑦 𝐷 𝑧 ) ,  1 ) ) ) 𝑟 ) ) | 
						
							| 45 | 39 26 29 41 43 44 | syl221anc | ⊢ ( ( ( 𝜑  ∧  𝑟  ∈  ℝ+ )  ∧  𝑥  ∈  𝑋 )  →  ( 𝑥 ( ball ‘ ( 𝑦  ∈  𝑋 ,  𝑧  ∈  𝑋  ↦  if ( ( 𝑦 𝐷 𝑧 )  ≤  1 ,  ( 𝑦 𝐷 𝑧 ) ,  1 ) ) ) if ( 𝑟  ≤  1 ,  𝑟 ,  1 ) )  ⊆  ( 𝑥 ( ball ‘ ( 𝑦  ∈  𝑋 ,  𝑧  ∈  𝑋  ↦  if ( ( 𝑦 𝐷 𝑧 )  ≤  1 ,  ( 𝑦 𝐷 𝑧 ) ,  1 ) ) ) 𝑟 ) ) | 
						
							| 46 | 36 45 | eqsstrrd | ⊢ ( ( ( 𝜑  ∧  𝑟  ∈  ℝ+ )  ∧  𝑥  ∈  𝑋 )  →  ( 𝑥 ( ball ‘ 𝐷 ) if ( 𝑟  ≤  1 ,  𝑟 ,  1 ) )  ⊆  ( 𝑥 ( ball ‘ ( 𝑦  ∈  𝑋 ,  𝑧  ∈  𝑋  ↦  if ( ( 𝑦 𝐷 𝑧 )  ≤  1 ,  ( 𝑦 𝐷 𝑧 ) ,  1 ) ) ) 𝑟 ) ) | 
						
							| 47 |  | sstr2 | ⊢ ( ( 𝑥 ( ball ‘ 𝐷 ) if ( 𝑟  ≤  1 ,  𝑟 ,  1 ) )  ⊆  ( 𝑥 ( ball ‘ ( 𝑦  ∈  𝑋 ,  𝑧  ∈  𝑋  ↦  if ( ( 𝑦 𝐷 𝑧 )  ≤  1 ,  ( 𝑦 𝐷 𝑧 ) ,  1 ) ) ) 𝑟 )  →  ( ( 𝑥 ( ball ‘ ( 𝑦  ∈  𝑋 ,  𝑧  ∈  𝑋  ↦  if ( ( 𝑦 𝐷 𝑧 )  ≤  1 ,  ( 𝑦 𝐷 𝑧 ) ,  1 ) ) ) 𝑟 )  ⊆  𝑢  →  ( 𝑥 ( ball ‘ 𝐷 ) if ( 𝑟  ≤  1 ,  𝑟 ,  1 ) )  ⊆  𝑢 ) ) | 
						
							| 48 | 46 47 | syl | ⊢ ( ( ( 𝜑  ∧  𝑟  ∈  ℝ+ )  ∧  𝑥  ∈  𝑋 )  →  ( ( 𝑥 ( ball ‘ ( 𝑦  ∈  𝑋 ,  𝑧  ∈  𝑋  ↦  if ( ( 𝑦 𝐷 𝑧 )  ≤  1 ,  ( 𝑦 𝐷 𝑧 ) ,  1 ) ) ) 𝑟 )  ⊆  𝑢  →  ( 𝑥 ( ball ‘ 𝐷 ) if ( 𝑟  ≤  1 ,  𝑟 ,  1 ) )  ⊆  𝑢 ) ) | 
						
							| 49 | 48 | reximdv | ⊢ ( ( ( 𝜑  ∧  𝑟  ∈  ℝ+ )  ∧  𝑥  ∈  𝑋 )  →  ( ∃ 𝑢  ∈  𝑈 ( 𝑥 ( ball ‘ ( 𝑦  ∈  𝑋 ,  𝑧  ∈  𝑋  ↦  if ( ( 𝑦 𝐷 𝑧 )  ≤  1 ,  ( 𝑦 𝐷 𝑧 ) ,  1 ) ) ) 𝑟 )  ⊆  𝑢  →  ∃ 𝑢  ∈  𝑈 ( 𝑥 ( ball ‘ 𝐷 ) if ( 𝑟  ≤  1 ,  𝑟 ,  1 ) )  ⊆  𝑢 ) ) | 
						
							| 50 | 49 | ralimdva | ⊢ ( ( 𝜑  ∧  𝑟  ∈  ℝ+ )  →  ( ∀ 𝑥  ∈  𝑋 ∃ 𝑢  ∈  𝑈 ( 𝑥 ( ball ‘ ( 𝑦  ∈  𝑋 ,  𝑧  ∈  𝑋  ↦  if ( ( 𝑦 𝐷 𝑧 )  ≤  1 ,  ( 𝑦 𝐷 𝑧 ) ,  1 ) ) ) 𝑟 )  ⊆  𝑢  →  ∀ 𝑥  ∈  𝑋 ∃ 𝑢  ∈  𝑈 ( 𝑥 ( ball ‘ 𝐷 ) if ( 𝑟  ≤  1 ,  𝑟 ,  1 ) )  ⊆  𝑢 ) ) | 
						
							| 51 |  | oveq2 | ⊢ ( 𝑑  =  if ( 𝑟  ≤  1 ,  𝑟 ,  1 )  →  ( 𝑥 ( ball ‘ 𝐷 ) 𝑑 )  =  ( 𝑥 ( ball ‘ 𝐷 ) if ( 𝑟  ≤  1 ,  𝑟 ,  1 ) ) ) | 
						
							| 52 | 51 | sseq1d | ⊢ ( 𝑑  =  if ( 𝑟  ≤  1 ,  𝑟 ,  1 )  →  ( ( 𝑥 ( ball ‘ 𝐷 ) 𝑑 )  ⊆  𝑢  ↔  ( 𝑥 ( ball ‘ 𝐷 ) if ( 𝑟  ≤  1 ,  𝑟 ,  1 ) )  ⊆  𝑢 ) ) | 
						
							| 53 | 52 | rexbidv | ⊢ ( 𝑑  =  if ( 𝑟  ≤  1 ,  𝑟 ,  1 )  →  ( ∃ 𝑢  ∈  𝑈 ( 𝑥 ( ball ‘ 𝐷 ) 𝑑 )  ⊆  𝑢  ↔  ∃ 𝑢  ∈  𝑈 ( 𝑥 ( ball ‘ 𝐷 ) if ( 𝑟  ≤  1 ,  𝑟 ,  1 ) )  ⊆  𝑢 ) ) | 
						
							| 54 | 53 | ralbidv | ⊢ ( 𝑑  =  if ( 𝑟  ≤  1 ,  𝑟 ,  1 )  →  ( ∀ 𝑥  ∈  𝑋 ∃ 𝑢  ∈  𝑈 ( 𝑥 ( ball ‘ 𝐷 ) 𝑑 )  ⊆  𝑢  ↔  ∀ 𝑥  ∈  𝑋 ∃ 𝑢  ∈  𝑈 ( 𝑥 ( ball ‘ 𝐷 ) if ( 𝑟  ≤  1 ,  𝑟 ,  1 ) )  ⊆  𝑢 ) ) | 
						
							| 55 | 54 | rspcev | ⊢ ( ( if ( 𝑟  ≤  1 ,  𝑟 ,  1 )  ∈  ℝ+  ∧  ∀ 𝑥  ∈  𝑋 ∃ 𝑢  ∈  𝑈 ( 𝑥 ( ball ‘ 𝐷 ) if ( 𝑟  ≤  1 ,  𝑟 ,  1 ) )  ⊆  𝑢 )  →  ∃ 𝑑  ∈  ℝ+ ∀ 𝑥  ∈  𝑋 ∃ 𝑢  ∈  𝑈 ( 𝑥 ( ball ‘ 𝐷 ) 𝑑 )  ⊆  𝑢 ) | 
						
							| 56 | 22 50 55 | syl6an | ⊢ ( ( 𝜑  ∧  𝑟  ∈  ℝ+ )  →  ( ∀ 𝑥  ∈  𝑋 ∃ 𝑢  ∈  𝑈 ( 𝑥 ( ball ‘ ( 𝑦  ∈  𝑋 ,  𝑧  ∈  𝑋  ↦  if ( ( 𝑦 𝐷 𝑧 )  ≤  1 ,  ( 𝑦 𝐷 𝑧 ) ,  1 ) ) ) 𝑟 )  ⊆  𝑢  →  ∃ 𝑑  ∈  ℝ+ ∀ 𝑥  ∈  𝑋 ∃ 𝑢  ∈  𝑈 ( 𝑥 ( ball ‘ 𝐷 ) 𝑑 )  ⊆  𝑢 ) ) | 
						
							| 57 | 56 | rexlimdva | ⊢ ( 𝜑  →  ( ∃ 𝑟  ∈  ℝ+ ∀ 𝑥  ∈  𝑋 ∃ 𝑢  ∈  𝑈 ( 𝑥 ( ball ‘ ( 𝑦  ∈  𝑋 ,  𝑧  ∈  𝑋  ↦  if ( ( 𝑦 𝐷 𝑧 )  ≤  1 ,  ( 𝑦 𝐷 𝑧 ) ,  1 ) ) ) 𝑟 )  ⊆  𝑢  →  ∃ 𝑑  ∈  ℝ+ ∀ 𝑥  ∈  𝑋 ∃ 𝑢  ∈  𝑈 ( 𝑥 ( ball ‘ 𝐷 ) 𝑑 )  ⊆  𝑢 ) ) | 
						
							| 58 | 19 57 | mpd | ⊢ ( 𝜑  →  ∃ 𝑑  ∈  ℝ+ ∀ 𝑥  ∈  𝑋 ∃ 𝑢  ∈  𝑈 ( 𝑥 ( ball ‘ 𝐷 ) 𝑑 )  ⊆  𝑢 ) |