Metamath Proof Explorer


Theorem xlemnf

Description: An extended real which is less than minus infinity is minus infinity. (Contributed by Thierry Arnoux, 18-Feb-2018)

Ref Expression
Assertion xlemnf ( 𝐴 ∈ ℝ* → ( 𝐴 ≤ -∞ ↔ 𝐴 = -∞ ) )

Proof

Step Hyp Ref Expression
1 mnfxr -∞ ∈ ℝ*
2 xrlenlt ( ( 𝐴 ∈ ℝ* ∧ -∞ ∈ ℝ* ) → ( 𝐴 ≤ -∞ ↔ ¬ -∞ < 𝐴 ) )
3 1 2 mpan2 ( 𝐴 ∈ ℝ* → ( 𝐴 ≤ -∞ ↔ ¬ -∞ < 𝐴 ) )
4 ngtmnft ( 𝐴 ∈ ℝ* → ( 𝐴 = -∞ ↔ ¬ -∞ < 𝐴 ) )
5 3 4 bitr4d ( 𝐴 ∈ ℝ* → ( 𝐴 ≤ -∞ ↔ 𝐴 = -∞ ) )