Description: An extended real which is less than minus infinity is minus infinity. (Contributed by Thierry Arnoux, 18-Feb-2018)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | xlemnf | ⊢ ( 𝐴 ∈ ℝ* → ( 𝐴 ≤ -∞ ↔ 𝐴 = -∞ ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mnfxr | ⊢ -∞ ∈ ℝ* | |
| 2 | xrlenlt | ⊢ ( ( 𝐴 ∈ ℝ* ∧ -∞ ∈ ℝ* ) → ( 𝐴 ≤ -∞ ↔ ¬ -∞ < 𝐴 ) ) | |
| 3 | 1 2 | mpan2 | ⊢ ( 𝐴 ∈ ℝ* → ( 𝐴 ≤ -∞ ↔ ¬ -∞ < 𝐴 ) ) |
| 4 | ngtmnft | ⊢ ( 𝐴 ∈ ℝ* → ( 𝐴 = -∞ ↔ ¬ -∞ < 𝐴 ) ) | |
| 5 | 3 4 | bitr4d | ⊢ ( 𝐴 ∈ ℝ* → ( 𝐴 ≤ -∞ ↔ 𝐴 = -∞ ) ) |