| Step | Hyp | Ref | Expression | 
						
							| 1 |  | rpxr | ⊢ ( 𝐶  ∈  ℝ+  →  𝐶  ∈  ℝ* ) | 
						
							| 2 |  | rpge0 | ⊢ ( 𝐶  ∈  ℝ+  →  0  ≤  𝐶 ) | 
						
							| 3 | 1 2 | jca | ⊢ ( 𝐶  ∈  ℝ+  →  ( 𝐶  ∈  ℝ*  ∧  0  ≤  𝐶 ) ) | 
						
							| 4 |  | xlemul1a | ⊢ ( ( ( 𝐴  ∈  ℝ*  ∧  𝐵  ∈  ℝ*  ∧  ( 𝐶  ∈  ℝ*  ∧  0  ≤  𝐶 ) )  ∧  𝐴  ≤  𝐵 )  →  ( 𝐴  ·e  𝐶 )  ≤  ( 𝐵  ·e  𝐶 ) ) | 
						
							| 5 | 4 | ex | ⊢ ( ( 𝐴  ∈  ℝ*  ∧  𝐵  ∈  ℝ*  ∧  ( 𝐶  ∈  ℝ*  ∧  0  ≤  𝐶 ) )  →  ( 𝐴  ≤  𝐵  →  ( 𝐴  ·e  𝐶 )  ≤  ( 𝐵  ·e  𝐶 ) ) ) | 
						
							| 6 | 3 5 | syl3an3 | ⊢ ( ( 𝐴  ∈  ℝ*  ∧  𝐵  ∈  ℝ*  ∧  𝐶  ∈  ℝ+ )  →  ( 𝐴  ≤  𝐵  →  ( 𝐴  ·e  𝐶 )  ≤  ( 𝐵  ·e  𝐶 ) ) ) | 
						
							| 7 |  | simp1 | ⊢ ( ( 𝐴  ∈  ℝ*  ∧  𝐵  ∈  ℝ*  ∧  𝐶  ∈  ℝ+ )  →  𝐴  ∈  ℝ* ) | 
						
							| 8 | 1 | 3ad2ant3 | ⊢ ( ( 𝐴  ∈  ℝ*  ∧  𝐵  ∈  ℝ*  ∧  𝐶  ∈  ℝ+ )  →  𝐶  ∈  ℝ* ) | 
						
							| 9 |  | xmulcl | ⊢ ( ( 𝐴  ∈  ℝ*  ∧  𝐶  ∈  ℝ* )  →  ( 𝐴  ·e  𝐶 )  ∈  ℝ* ) | 
						
							| 10 | 7 8 9 | syl2anc | ⊢ ( ( 𝐴  ∈  ℝ*  ∧  𝐵  ∈  ℝ*  ∧  𝐶  ∈  ℝ+ )  →  ( 𝐴  ·e  𝐶 )  ∈  ℝ* ) | 
						
							| 11 |  | simp2 | ⊢ ( ( 𝐴  ∈  ℝ*  ∧  𝐵  ∈  ℝ*  ∧  𝐶  ∈  ℝ+ )  →  𝐵  ∈  ℝ* ) | 
						
							| 12 |  | xmulcl | ⊢ ( ( 𝐵  ∈  ℝ*  ∧  𝐶  ∈  ℝ* )  →  ( 𝐵  ·e  𝐶 )  ∈  ℝ* ) | 
						
							| 13 | 11 8 12 | syl2anc | ⊢ ( ( 𝐴  ∈  ℝ*  ∧  𝐵  ∈  ℝ*  ∧  𝐶  ∈  ℝ+ )  →  ( 𝐵  ·e  𝐶 )  ∈  ℝ* ) | 
						
							| 14 |  | rpreccl | ⊢ ( 𝐶  ∈  ℝ+  →  ( 1  /  𝐶 )  ∈  ℝ+ ) | 
						
							| 15 | 14 | 3ad2ant3 | ⊢ ( ( 𝐴  ∈  ℝ*  ∧  𝐵  ∈  ℝ*  ∧  𝐶  ∈  ℝ+ )  →  ( 1  /  𝐶 )  ∈  ℝ+ ) | 
						
							| 16 |  | rpxr | ⊢ ( ( 1  /  𝐶 )  ∈  ℝ+  →  ( 1  /  𝐶 )  ∈  ℝ* ) | 
						
							| 17 | 15 16 | syl | ⊢ ( ( 𝐴  ∈  ℝ*  ∧  𝐵  ∈  ℝ*  ∧  𝐶  ∈  ℝ+ )  →  ( 1  /  𝐶 )  ∈  ℝ* ) | 
						
							| 18 |  | rpge0 | ⊢ ( ( 1  /  𝐶 )  ∈  ℝ+  →  0  ≤  ( 1  /  𝐶 ) ) | 
						
							| 19 | 15 18 | syl | ⊢ ( ( 𝐴  ∈  ℝ*  ∧  𝐵  ∈  ℝ*  ∧  𝐶  ∈  ℝ+ )  →  0  ≤  ( 1  /  𝐶 ) ) | 
						
							| 20 |  | xlemul1a | ⊢ ( ( ( ( 𝐴  ·e  𝐶 )  ∈  ℝ*  ∧  ( 𝐵  ·e  𝐶 )  ∈  ℝ*  ∧  ( ( 1  /  𝐶 )  ∈  ℝ*  ∧  0  ≤  ( 1  /  𝐶 ) ) )  ∧  ( 𝐴  ·e  𝐶 )  ≤  ( 𝐵  ·e  𝐶 ) )  →  ( ( 𝐴  ·e  𝐶 )  ·e  ( 1  /  𝐶 ) )  ≤  ( ( 𝐵  ·e  𝐶 )  ·e  ( 1  /  𝐶 ) ) ) | 
						
							| 21 | 20 | ex | ⊢ ( ( ( 𝐴  ·e  𝐶 )  ∈  ℝ*  ∧  ( 𝐵  ·e  𝐶 )  ∈  ℝ*  ∧  ( ( 1  /  𝐶 )  ∈  ℝ*  ∧  0  ≤  ( 1  /  𝐶 ) ) )  →  ( ( 𝐴  ·e  𝐶 )  ≤  ( 𝐵  ·e  𝐶 )  →  ( ( 𝐴  ·e  𝐶 )  ·e  ( 1  /  𝐶 ) )  ≤  ( ( 𝐵  ·e  𝐶 )  ·e  ( 1  /  𝐶 ) ) ) ) | 
						
							| 22 | 10 13 17 19 21 | syl112anc | ⊢ ( ( 𝐴  ∈  ℝ*  ∧  𝐵  ∈  ℝ*  ∧  𝐶  ∈  ℝ+ )  →  ( ( 𝐴  ·e  𝐶 )  ≤  ( 𝐵  ·e  𝐶 )  →  ( ( 𝐴  ·e  𝐶 )  ·e  ( 1  /  𝐶 ) )  ≤  ( ( 𝐵  ·e  𝐶 )  ·e  ( 1  /  𝐶 ) ) ) ) | 
						
							| 23 |  | xmulass | ⊢ ( ( 𝐴  ∈  ℝ*  ∧  𝐶  ∈  ℝ*  ∧  ( 1  /  𝐶 )  ∈  ℝ* )  →  ( ( 𝐴  ·e  𝐶 )  ·e  ( 1  /  𝐶 ) )  =  ( 𝐴  ·e  ( 𝐶  ·e  ( 1  /  𝐶 ) ) ) ) | 
						
							| 24 | 7 8 17 23 | syl3anc | ⊢ ( ( 𝐴  ∈  ℝ*  ∧  𝐵  ∈  ℝ*  ∧  𝐶  ∈  ℝ+ )  →  ( ( 𝐴  ·e  𝐶 )  ·e  ( 1  /  𝐶 ) )  =  ( 𝐴  ·e  ( 𝐶  ·e  ( 1  /  𝐶 ) ) ) ) | 
						
							| 25 |  | rpre | ⊢ ( 𝐶  ∈  ℝ+  →  𝐶  ∈  ℝ ) | 
						
							| 26 | 25 | 3ad2ant3 | ⊢ ( ( 𝐴  ∈  ℝ*  ∧  𝐵  ∈  ℝ*  ∧  𝐶  ∈  ℝ+ )  →  𝐶  ∈  ℝ ) | 
						
							| 27 | 15 | rpred | ⊢ ( ( 𝐴  ∈  ℝ*  ∧  𝐵  ∈  ℝ*  ∧  𝐶  ∈  ℝ+ )  →  ( 1  /  𝐶 )  ∈  ℝ ) | 
						
							| 28 |  | rexmul | ⊢ ( ( 𝐶  ∈  ℝ  ∧  ( 1  /  𝐶 )  ∈  ℝ )  →  ( 𝐶  ·e  ( 1  /  𝐶 ) )  =  ( 𝐶  ·  ( 1  /  𝐶 ) ) ) | 
						
							| 29 | 26 27 28 | syl2anc | ⊢ ( ( 𝐴  ∈  ℝ*  ∧  𝐵  ∈  ℝ*  ∧  𝐶  ∈  ℝ+ )  →  ( 𝐶  ·e  ( 1  /  𝐶 ) )  =  ( 𝐶  ·  ( 1  /  𝐶 ) ) ) | 
						
							| 30 | 26 | recnd | ⊢ ( ( 𝐴  ∈  ℝ*  ∧  𝐵  ∈  ℝ*  ∧  𝐶  ∈  ℝ+ )  →  𝐶  ∈  ℂ ) | 
						
							| 31 |  | rpne0 | ⊢ ( 𝐶  ∈  ℝ+  →  𝐶  ≠  0 ) | 
						
							| 32 | 31 | 3ad2ant3 | ⊢ ( ( 𝐴  ∈  ℝ*  ∧  𝐵  ∈  ℝ*  ∧  𝐶  ∈  ℝ+ )  →  𝐶  ≠  0 ) | 
						
							| 33 | 30 32 | recidd | ⊢ ( ( 𝐴  ∈  ℝ*  ∧  𝐵  ∈  ℝ*  ∧  𝐶  ∈  ℝ+ )  →  ( 𝐶  ·  ( 1  /  𝐶 ) )  =  1 ) | 
						
							| 34 | 29 33 | eqtrd | ⊢ ( ( 𝐴  ∈  ℝ*  ∧  𝐵  ∈  ℝ*  ∧  𝐶  ∈  ℝ+ )  →  ( 𝐶  ·e  ( 1  /  𝐶 ) )  =  1 ) | 
						
							| 35 | 34 | oveq2d | ⊢ ( ( 𝐴  ∈  ℝ*  ∧  𝐵  ∈  ℝ*  ∧  𝐶  ∈  ℝ+ )  →  ( 𝐴  ·e  ( 𝐶  ·e  ( 1  /  𝐶 ) ) )  =  ( 𝐴  ·e  1 ) ) | 
						
							| 36 |  | xmulrid | ⊢ ( 𝐴  ∈  ℝ*  →  ( 𝐴  ·e  1 )  =  𝐴 ) | 
						
							| 37 | 7 36 | syl | ⊢ ( ( 𝐴  ∈  ℝ*  ∧  𝐵  ∈  ℝ*  ∧  𝐶  ∈  ℝ+ )  →  ( 𝐴  ·e  1 )  =  𝐴 ) | 
						
							| 38 | 24 35 37 | 3eqtrd | ⊢ ( ( 𝐴  ∈  ℝ*  ∧  𝐵  ∈  ℝ*  ∧  𝐶  ∈  ℝ+ )  →  ( ( 𝐴  ·e  𝐶 )  ·e  ( 1  /  𝐶 ) )  =  𝐴 ) | 
						
							| 39 |  | xmulass | ⊢ ( ( 𝐵  ∈  ℝ*  ∧  𝐶  ∈  ℝ*  ∧  ( 1  /  𝐶 )  ∈  ℝ* )  →  ( ( 𝐵  ·e  𝐶 )  ·e  ( 1  /  𝐶 ) )  =  ( 𝐵  ·e  ( 𝐶  ·e  ( 1  /  𝐶 ) ) ) ) | 
						
							| 40 | 11 8 17 39 | syl3anc | ⊢ ( ( 𝐴  ∈  ℝ*  ∧  𝐵  ∈  ℝ*  ∧  𝐶  ∈  ℝ+ )  →  ( ( 𝐵  ·e  𝐶 )  ·e  ( 1  /  𝐶 ) )  =  ( 𝐵  ·e  ( 𝐶  ·e  ( 1  /  𝐶 ) ) ) ) | 
						
							| 41 | 34 | oveq2d | ⊢ ( ( 𝐴  ∈  ℝ*  ∧  𝐵  ∈  ℝ*  ∧  𝐶  ∈  ℝ+ )  →  ( 𝐵  ·e  ( 𝐶  ·e  ( 1  /  𝐶 ) ) )  =  ( 𝐵  ·e  1 ) ) | 
						
							| 42 |  | xmulrid | ⊢ ( 𝐵  ∈  ℝ*  →  ( 𝐵  ·e  1 )  =  𝐵 ) | 
						
							| 43 | 11 42 | syl | ⊢ ( ( 𝐴  ∈  ℝ*  ∧  𝐵  ∈  ℝ*  ∧  𝐶  ∈  ℝ+ )  →  ( 𝐵  ·e  1 )  =  𝐵 ) | 
						
							| 44 | 40 41 43 | 3eqtrd | ⊢ ( ( 𝐴  ∈  ℝ*  ∧  𝐵  ∈  ℝ*  ∧  𝐶  ∈  ℝ+ )  →  ( ( 𝐵  ·e  𝐶 )  ·e  ( 1  /  𝐶 ) )  =  𝐵 ) | 
						
							| 45 | 38 44 | breq12d | ⊢ ( ( 𝐴  ∈  ℝ*  ∧  𝐵  ∈  ℝ*  ∧  𝐶  ∈  ℝ+ )  →  ( ( ( 𝐴  ·e  𝐶 )  ·e  ( 1  /  𝐶 ) )  ≤  ( ( 𝐵  ·e  𝐶 )  ·e  ( 1  /  𝐶 ) )  ↔  𝐴  ≤  𝐵 ) ) | 
						
							| 46 | 22 45 | sylibd | ⊢ ( ( 𝐴  ∈  ℝ*  ∧  𝐵  ∈  ℝ*  ∧  𝐶  ∈  ℝ+ )  →  ( ( 𝐴  ·e  𝐶 )  ≤  ( 𝐵  ·e  𝐶 )  →  𝐴  ≤  𝐵 ) ) | 
						
							| 47 | 6 46 | impbid | ⊢ ( ( 𝐴  ∈  ℝ*  ∧  𝐵  ∈  ℝ*  ∧  𝐶  ∈  ℝ+ )  →  ( 𝐴  ≤  𝐵  ↔  ( 𝐴  ·e  𝐶 )  ≤  ( 𝐵  ·e  𝐶 ) ) ) |