Step |
Hyp |
Ref |
Expression |
1 |
|
rpxr |
⊢ ( 𝐶 ∈ ℝ+ → 𝐶 ∈ ℝ* ) |
2 |
|
rpge0 |
⊢ ( 𝐶 ∈ ℝ+ → 0 ≤ 𝐶 ) |
3 |
1 2
|
jca |
⊢ ( 𝐶 ∈ ℝ+ → ( 𝐶 ∈ ℝ* ∧ 0 ≤ 𝐶 ) ) |
4 |
|
xlemul1a |
⊢ ( ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ ( 𝐶 ∈ ℝ* ∧ 0 ≤ 𝐶 ) ) ∧ 𝐴 ≤ 𝐵 ) → ( 𝐴 ·e 𝐶 ) ≤ ( 𝐵 ·e 𝐶 ) ) |
5 |
4
|
ex |
⊢ ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ ( 𝐶 ∈ ℝ* ∧ 0 ≤ 𝐶 ) ) → ( 𝐴 ≤ 𝐵 → ( 𝐴 ·e 𝐶 ) ≤ ( 𝐵 ·e 𝐶 ) ) ) |
6 |
3 5
|
syl3an3 |
⊢ ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐶 ∈ ℝ+ ) → ( 𝐴 ≤ 𝐵 → ( 𝐴 ·e 𝐶 ) ≤ ( 𝐵 ·e 𝐶 ) ) ) |
7 |
|
simp1 |
⊢ ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐶 ∈ ℝ+ ) → 𝐴 ∈ ℝ* ) |
8 |
1
|
3ad2ant3 |
⊢ ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐶 ∈ ℝ+ ) → 𝐶 ∈ ℝ* ) |
9 |
|
xmulcl |
⊢ ( ( 𝐴 ∈ ℝ* ∧ 𝐶 ∈ ℝ* ) → ( 𝐴 ·e 𝐶 ) ∈ ℝ* ) |
10 |
7 8 9
|
syl2anc |
⊢ ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐶 ∈ ℝ+ ) → ( 𝐴 ·e 𝐶 ) ∈ ℝ* ) |
11 |
|
simp2 |
⊢ ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐶 ∈ ℝ+ ) → 𝐵 ∈ ℝ* ) |
12 |
|
xmulcl |
⊢ ( ( 𝐵 ∈ ℝ* ∧ 𝐶 ∈ ℝ* ) → ( 𝐵 ·e 𝐶 ) ∈ ℝ* ) |
13 |
11 8 12
|
syl2anc |
⊢ ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐶 ∈ ℝ+ ) → ( 𝐵 ·e 𝐶 ) ∈ ℝ* ) |
14 |
|
rpreccl |
⊢ ( 𝐶 ∈ ℝ+ → ( 1 / 𝐶 ) ∈ ℝ+ ) |
15 |
14
|
3ad2ant3 |
⊢ ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐶 ∈ ℝ+ ) → ( 1 / 𝐶 ) ∈ ℝ+ ) |
16 |
|
rpxr |
⊢ ( ( 1 / 𝐶 ) ∈ ℝ+ → ( 1 / 𝐶 ) ∈ ℝ* ) |
17 |
15 16
|
syl |
⊢ ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐶 ∈ ℝ+ ) → ( 1 / 𝐶 ) ∈ ℝ* ) |
18 |
|
rpge0 |
⊢ ( ( 1 / 𝐶 ) ∈ ℝ+ → 0 ≤ ( 1 / 𝐶 ) ) |
19 |
15 18
|
syl |
⊢ ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐶 ∈ ℝ+ ) → 0 ≤ ( 1 / 𝐶 ) ) |
20 |
|
xlemul1a |
⊢ ( ( ( ( 𝐴 ·e 𝐶 ) ∈ ℝ* ∧ ( 𝐵 ·e 𝐶 ) ∈ ℝ* ∧ ( ( 1 / 𝐶 ) ∈ ℝ* ∧ 0 ≤ ( 1 / 𝐶 ) ) ) ∧ ( 𝐴 ·e 𝐶 ) ≤ ( 𝐵 ·e 𝐶 ) ) → ( ( 𝐴 ·e 𝐶 ) ·e ( 1 / 𝐶 ) ) ≤ ( ( 𝐵 ·e 𝐶 ) ·e ( 1 / 𝐶 ) ) ) |
21 |
20
|
ex |
⊢ ( ( ( 𝐴 ·e 𝐶 ) ∈ ℝ* ∧ ( 𝐵 ·e 𝐶 ) ∈ ℝ* ∧ ( ( 1 / 𝐶 ) ∈ ℝ* ∧ 0 ≤ ( 1 / 𝐶 ) ) ) → ( ( 𝐴 ·e 𝐶 ) ≤ ( 𝐵 ·e 𝐶 ) → ( ( 𝐴 ·e 𝐶 ) ·e ( 1 / 𝐶 ) ) ≤ ( ( 𝐵 ·e 𝐶 ) ·e ( 1 / 𝐶 ) ) ) ) |
22 |
10 13 17 19 21
|
syl112anc |
⊢ ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐶 ∈ ℝ+ ) → ( ( 𝐴 ·e 𝐶 ) ≤ ( 𝐵 ·e 𝐶 ) → ( ( 𝐴 ·e 𝐶 ) ·e ( 1 / 𝐶 ) ) ≤ ( ( 𝐵 ·e 𝐶 ) ·e ( 1 / 𝐶 ) ) ) ) |
23 |
|
xmulass |
⊢ ( ( 𝐴 ∈ ℝ* ∧ 𝐶 ∈ ℝ* ∧ ( 1 / 𝐶 ) ∈ ℝ* ) → ( ( 𝐴 ·e 𝐶 ) ·e ( 1 / 𝐶 ) ) = ( 𝐴 ·e ( 𝐶 ·e ( 1 / 𝐶 ) ) ) ) |
24 |
7 8 17 23
|
syl3anc |
⊢ ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐶 ∈ ℝ+ ) → ( ( 𝐴 ·e 𝐶 ) ·e ( 1 / 𝐶 ) ) = ( 𝐴 ·e ( 𝐶 ·e ( 1 / 𝐶 ) ) ) ) |
25 |
|
rpre |
⊢ ( 𝐶 ∈ ℝ+ → 𝐶 ∈ ℝ ) |
26 |
25
|
3ad2ant3 |
⊢ ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐶 ∈ ℝ+ ) → 𝐶 ∈ ℝ ) |
27 |
15
|
rpred |
⊢ ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐶 ∈ ℝ+ ) → ( 1 / 𝐶 ) ∈ ℝ ) |
28 |
|
rexmul |
⊢ ( ( 𝐶 ∈ ℝ ∧ ( 1 / 𝐶 ) ∈ ℝ ) → ( 𝐶 ·e ( 1 / 𝐶 ) ) = ( 𝐶 · ( 1 / 𝐶 ) ) ) |
29 |
26 27 28
|
syl2anc |
⊢ ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐶 ∈ ℝ+ ) → ( 𝐶 ·e ( 1 / 𝐶 ) ) = ( 𝐶 · ( 1 / 𝐶 ) ) ) |
30 |
26
|
recnd |
⊢ ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐶 ∈ ℝ+ ) → 𝐶 ∈ ℂ ) |
31 |
|
rpne0 |
⊢ ( 𝐶 ∈ ℝ+ → 𝐶 ≠ 0 ) |
32 |
31
|
3ad2ant3 |
⊢ ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐶 ∈ ℝ+ ) → 𝐶 ≠ 0 ) |
33 |
30 32
|
recidd |
⊢ ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐶 ∈ ℝ+ ) → ( 𝐶 · ( 1 / 𝐶 ) ) = 1 ) |
34 |
29 33
|
eqtrd |
⊢ ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐶 ∈ ℝ+ ) → ( 𝐶 ·e ( 1 / 𝐶 ) ) = 1 ) |
35 |
34
|
oveq2d |
⊢ ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐶 ∈ ℝ+ ) → ( 𝐴 ·e ( 𝐶 ·e ( 1 / 𝐶 ) ) ) = ( 𝐴 ·e 1 ) ) |
36 |
|
xmulid1 |
⊢ ( 𝐴 ∈ ℝ* → ( 𝐴 ·e 1 ) = 𝐴 ) |
37 |
7 36
|
syl |
⊢ ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐶 ∈ ℝ+ ) → ( 𝐴 ·e 1 ) = 𝐴 ) |
38 |
24 35 37
|
3eqtrd |
⊢ ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐶 ∈ ℝ+ ) → ( ( 𝐴 ·e 𝐶 ) ·e ( 1 / 𝐶 ) ) = 𝐴 ) |
39 |
|
xmulass |
⊢ ( ( 𝐵 ∈ ℝ* ∧ 𝐶 ∈ ℝ* ∧ ( 1 / 𝐶 ) ∈ ℝ* ) → ( ( 𝐵 ·e 𝐶 ) ·e ( 1 / 𝐶 ) ) = ( 𝐵 ·e ( 𝐶 ·e ( 1 / 𝐶 ) ) ) ) |
40 |
11 8 17 39
|
syl3anc |
⊢ ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐶 ∈ ℝ+ ) → ( ( 𝐵 ·e 𝐶 ) ·e ( 1 / 𝐶 ) ) = ( 𝐵 ·e ( 𝐶 ·e ( 1 / 𝐶 ) ) ) ) |
41 |
34
|
oveq2d |
⊢ ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐶 ∈ ℝ+ ) → ( 𝐵 ·e ( 𝐶 ·e ( 1 / 𝐶 ) ) ) = ( 𝐵 ·e 1 ) ) |
42 |
|
xmulid1 |
⊢ ( 𝐵 ∈ ℝ* → ( 𝐵 ·e 1 ) = 𝐵 ) |
43 |
11 42
|
syl |
⊢ ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐶 ∈ ℝ+ ) → ( 𝐵 ·e 1 ) = 𝐵 ) |
44 |
40 41 43
|
3eqtrd |
⊢ ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐶 ∈ ℝ+ ) → ( ( 𝐵 ·e 𝐶 ) ·e ( 1 / 𝐶 ) ) = 𝐵 ) |
45 |
38 44
|
breq12d |
⊢ ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐶 ∈ ℝ+ ) → ( ( ( 𝐴 ·e 𝐶 ) ·e ( 1 / 𝐶 ) ) ≤ ( ( 𝐵 ·e 𝐶 ) ·e ( 1 / 𝐶 ) ) ↔ 𝐴 ≤ 𝐵 ) ) |
46 |
22 45
|
sylibd |
⊢ ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐶 ∈ ℝ+ ) → ( ( 𝐴 ·e 𝐶 ) ≤ ( 𝐵 ·e 𝐶 ) → 𝐴 ≤ 𝐵 ) ) |
47 |
6 46
|
impbid |
⊢ ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐶 ∈ ℝ+ ) → ( 𝐴 ≤ 𝐵 ↔ ( 𝐴 ·e 𝐶 ) ≤ ( 𝐵 ·e 𝐶 ) ) ) |