Step |
Hyp |
Ref |
Expression |
1 |
|
0xr |
⊢ 0 ∈ ℝ* |
2 |
|
simpr |
⊢ ( ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ) ∧ 𝐶 ∈ ℝ* ) → 𝐶 ∈ ℝ* ) |
3 |
|
xrleloe |
⊢ ( ( 0 ∈ ℝ* ∧ 𝐶 ∈ ℝ* ) → ( 0 ≤ 𝐶 ↔ ( 0 < 𝐶 ∨ 0 = 𝐶 ) ) ) |
4 |
1 2 3
|
sylancr |
⊢ ( ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ) ∧ 𝐶 ∈ ℝ* ) → ( 0 ≤ 𝐶 ↔ ( 0 < 𝐶 ∨ 0 = 𝐶 ) ) ) |
5 |
|
simpllr |
⊢ ( ( ( ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ) ∧ 𝐶 ∈ ℝ* ) ∧ ( 0 < 𝐶 ∧ 𝐴 ≤ 𝐵 ) ) ∧ ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ) → 𝐶 ∈ ℝ* ) |
6 |
|
elxr |
⊢ ( 𝐶 ∈ ℝ* ↔ ( 𝐶 ∈ ℝ ∨ 𝐶 = +∞ ∨ 𝐶 = -∞ ) ) |
7 |
5 6
|
sylib |
⊢ ( ( ( ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ) ∧ 𝐶 ∈ ℝ* ) ∧ ( 0 < 𝐶 ∧ 𝐴 ≤ 𝐵 ) ) ∧ ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ) → ( 𝐶 ∈ ℝ ∨ 𝐶 = +∞ ∨ 𝐶 = -∞ ) ) |
8 |
|
simplrr |
⊢ ( ( ( ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ) ∧ 𝐶 ∈ ℝ* ) ∧ ( 0 < 𝐶 ∧ 𝐴 ≤ 𝐵 ) ) ∧ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ∧ 𝐶 ∈ ℝ ) ) → 𝐴 ≤ 𝐵 ) |
9 |
|
simprll |
⊢ ( ( ( ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ) ∧ 𝐶 ∈ ℝ* ) ∧ ( 0 < 𝐶 ∧ 𝐴 ≤ 𝐵 ) ) ∧ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ∧ 𝐶 ∈ ℝ ) ) → 𝐴 ∈ ℝ ) |
10 |
|
simprlr |
⊢ ( ( ( ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ) ∧ 𝐶 ∈ ℝ* ) ∧ ( 0 < 𝐶 ∧ 𝐴 ≤ 𝐵 ) ) ∧ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ∧ 𝐶 ∈ ℝ ) ) → 𝐵 ∈ ℝ ) |
11 |
|
simprr |
⊢ ( ( ( ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ) ∧ 𝐶 ∈ ℝ* ) ∧ ( 0 < 𝐶 ∧ 𝐴 ≤ 𝐵 ) ) ∧ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ∧ 𝐶 ∈ ℝ ) ) → 𝐶 ∈ ℝ ) |
12 |
|
simplrl |
⊢ ( ( ( ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ) ∧ 𝐶 ∈ ℝ* ) ∧ ( 0 < 𝐶 ∧ 𝐴 ≤ 𝐵 ) ) ∧ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ∧ 𝐶 ∈ ℝ ) ) → 0 < 𝐶 ) |
13 |
|
lemul1 |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ ( 𝐶 ∈ ℝ ∧ 0 < 𝐶 ) ) → ( 𝐴 ≤ 𝐵 ↔ ( 𝐴 · 𝐶 ) ≤ ( 𝐵 · 𝐶 ) ) ) |
14 |
9 10 11 12 13
|
syl112anc |
⊢ ( ( ( ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ) ∧ 𝐶 ∈ ℝ* ) ∧ ( 0 < 𝐶 ∧ 𝐴 ≤ 𝐵 ) ) ∧ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ∧ 𝐶 ∈ ℝ ) ) → ( 𝐴 ≤ 𝐵 ↔ ( 𝐴 · 𝐶 ) ≤ ( 𝐵 · 𝐶 ) ) ) |
15 |
8 14
|
mpbid |
⊢ ( ( ( ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ) ∧ 𝐶 ∈ ℝ* ) ∧ ( 0 < 𝐶 ∧ 𝐴 ≤ 𝐵 ) ) ∧ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ∧ 𝐶 ∈ ℝ ) ) → ( 𝐴 · 𝐶 ) ≤ ( 𝐵 · 𝐶 ) ) |
16 |
|
rexmul |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐶 ∈ ℝ ) → ( 𝐴 ·e 𝐶 ) = ( 𝐴 · 𝐶 ) ) |
17 |
9 11 16
|
syl2anc |
⊢ ( ( ( ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ) ∧ 𝐶 ∈ ℝ* ) ∧ ( 0 < 𝐶 ∧ 𝐴 ≤ 𝐵 ) ) ∧ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ∧ 𝐶 ∈ ℝ ) ) → ( 𝐴 ·e 𝐶 ) = ( 𝐴 · 𝐶 ) ) |
18 |
|
rexmul |
⊢ ( ( 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ ) → ( 𝐵 ·e 𝐶 ) = ( 𝐵 · 𝐶 ) ) |
19 |
10 11 18
|
syl2anc |
⊢ ( ( ( ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ) ∧ 𝐶 ∈ ℝ* ) ∧ ( 0 < 𝐶 ∧ 𝐴 ≤ 𝐵 ) ) ∧ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ∧ 𝐶 ∈ ℝ ) ) → ( 𝐵 ·e 𝐶 ) = ( 𝐵 · 𝐶 ) ) |
20 |
15 17 19
|
3brtr4d |
⊢ ( ( ( ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ) ∧ 𝐶 ∈ ℝ* ) ∧ ( 0 < 𝐶 ∧ 𝐴 ≤ 𝐵 ) ) ∧ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ∧ 𝐶 ∈ ℝ ) ) → ( 𝐴 ·e 𝐶 ) ≤ ( 𝐵 ·e 𝐶 ) ) |
21 |
20
|
expr |
⊢ ( ( ( ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ) ∧ 𝐶 ∈ ℝ* ) ∧ ( 0 < 𝐶 ∧ 𝐴 ≤ 𝐵 ) ) ∧ ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ) → ( 𝐶 ∈ ℝ → ( 𝐴 ·e 𝐶 ) ≤ ( 𝐵 ·e 𝐶 ) ) ) |
22 |
|
simprl |
⊢ ( ( ( ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ) ∧ 𝐶 ∈ ℝ* ) ∧ ( 0 < 𝐶 ∧ 𝐴 ≤ 𝐵 ) ) ∧ ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ) → 𝐴 ∈ ℝ ) |
23 |
|
0re |
⊢ 0 ∈ ℝ |
24 |
|
lttri4 |
⊢ ( ( 𝐴 ∈ ℝ ∧ 0 ∈ ℝ ) → ( 𝐴 < 0 ∨ 𝐴 = 0 ∨ 0 < 𝐴 ) ) |
25 |
22 23 24
|
sylancl |
⊢ ( ( ( ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ) ∧ 𝐶 ∈ ℝ* ) ∧ ( 0 < 𝐶 ∧ 𝐴 ≤ 𝐵 ) ) ∧ ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ) → ( 𝐴 < 0 ∨ 𝐴 = 0 ∨ 0 < 𝐴 ) ) |
26 |
|
simplll |
⊢ ( ( ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ) ∧ 𝐶 ∈ ℝ* ) ∧ ( 0 < 𝐶 ∧ 𝐴 ≤ 𝐵 ) ) → 𝐴 ∈ ℝ* ) |
27 |
26
|
adantr |
⊢ ( ( ( ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ) ∧ 𝐶 ∈ ℝ* ) ∧ ( 0 < 𝐶 ∧ 𝐴 ≤ 𝐵 ) ) ∧ ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ) → 𝐴 ∈ ℝ* ) |
28 |
|
xmulpnf1n |
⊢ ( ( 𝐴 ∈ ℝ* ∧ 𝐴 < 0 ) → ( 𝐴 ·e +∞ ) = -∞ ) |
29 |
27 28
|
sylan |
⊢ ( ( ( ( ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ) ∧ 𝐶 ∈ ℝ* ) ∧ ( 0 < 𝐶 ∧ 𝐴 ≤ 𝐵 ) ) ∧ ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ) ∧ 𝐴 < 0 ) → ( 𝐴 ·e +∞ ) = -∞ ) |
30 |
|
simpllr |
⊢ ( ( ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ) ∧ 𝐶 ∈ ℝ* ) ∧ ( 0 < 𝐶 ∧ 𝐴 ≤ 𝐵 ) ) → 𝐵 ∈ ℝ* ) |
31 |
30
|
adantr |
⊢ ( ( ( ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ) ∧ 𝐶 ∈ ℝ* ) ∧ ( 0 < 𝐶 ∧ 𝐴 ≤ 𝐵 ) ) ∧ ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ) → 𝐵 ∈ ℝ* ) |
32 |
31
|
adantr |
⊢ ( ( ( ( ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ) ∧ 𝐶 ∈ ℝ* ) ∧ ( 0 < 𝐶 ∧ 𝐴 ≤ 𝐵 ) ) ∧ ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ) ∧ 𝐴 < 0 ) → 𝐵 ∈ ℝ* ) |
33 |
|
pnfxr |
⊢ +∞ ∈ ℝ* |
34 |
|
xmulcl |
⊢ ( ( 𝐵 ∈ ℝ* ∧ +∞ ∈ ℝ* ) → ( 𝐵 ·e +∞ ) ∈ ℝ* ) |
35 |
32 33 34
|
sylancl |
⊢ ( ( ( ( ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ) ∧ 𝐶 ∈ ℝ* ) ∧ ( 0 < 𝐶 ∧ 𝐴 ≤ 𝐵 ) ) ∧ ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ) ∧ 𝐴 < 0 ) → ( 𝐵 ·e +∞ ) ∈ ℝ* ) |
36 |
|
mnfle |
⊢ ( ( 𝐵 ·e +∞ ) ∈ ℝ* → -∞ ≤ ( 𝐵 ·e +∞ ) ) |
37 |
35 36
|
syl |
⊢ ( ( ( ( ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ) ∧ 𝐶 ∈ ℝ* ) ∧ ( 0 < 𝐶 ∧ 𝐴 ≤ 𝐵 ) ) ∧ ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ) ∧ 𝐴 < 0 ) → -∞ ≤ ( 𝐵 ·e +∞ ) ) |
38 |
29 37
|
eqbrtrd |
⊢ ( ( ( ( ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ) ∧ 𝐶 ∈ ℝ* ) ∧ ( 0 < 𝐶 ∧ 𝐴 ≤ 𝐵 ) ) ∧ ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ) ∧ 𝐴 < 0 ) → ( 𝐴 ·e +∞ ) ≤ ( 𝐵 ·e +∞ ) ) |
39 |
38
|
ex |
⊢ ( ( ( ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ) ∧ 𝐶 ∈ ℝ* ) ∧ ( 0 < 𝐶 ∧ 𝐴 ≤ 𝐵 ) ) ∧ ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ) → ( 𝐴 < 0 → ( 𝐴 ·e +∞ ) ≤ ( 𝐵 ·e +∞ ) ) ) |
40 |
|
oveq1 |
⊢ ( 𝐴 = 0 → ( 𝐴 ·e +∞ ) = ( 0 ·e +∞ ) ) |
41 |
|
xmul02 |
⊢ ( +∞ ∈ ℝ* → ( 0 ·e +∞ ) = 0 ) |
42 |
33 41
|
ax-mp |
⊢ ( 0 ·e +∞ ) = 0 |
43 |
40 42
|
eqtrdi |
⊢ ( 𝐴 = 0 → ( 𝐴 ·e +∞ ) = 0 ) |
44 |
43
|
adantl |
⊢ ( ( ( ( ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ) ∧ 𝐶 ∈ ℝ* ) ∧ ( 0 < 𝐶 ∧ 𝐴 ≤ 𝐵 ) ) ∧ ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ) ∧ 𝐴 = 0 ) → ( 𝐴 ·e +∞ ) = 0 ) |
45 |
|
simplrr |
⊢ ( ( ( ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ) ∧ 𝐶 ∈ ℝ* ) ∧ ( 0 < 𝐶 ∧ 𝐴 ≤ 𝐵 ) ) ∧ ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ) → 𝐴 ≤ 𝐵 ) |
46 |
|
breq1 |
⊢ ( 𝐴 = 0 → ( 𝐴 ≤ 𝐵 ↔ 0 ≤ 𝐵 ) ) |
47 |
45 46
|
syl5ibcom |
⊢ ( ( ( ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ) ∧ 𝐶 ∈ ℝ* ) ∧ ( 0 < 𝐶 ∧ 𝐴 ≤ 𝐵 ) ) ∧ ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ) → ( 𝐴 = 0 → 0 ≤ 𝐵 ) ) |
48 |
|
simprr |
⊢ ( ( ( ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ) ∧ 𝐶 ∈ ℝ* ) ∧ ( 0 < 𝐶 ∧ 𝐴 ≤ 𝐵 ) ) ∧ ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ) → 𝐵 ∈ ℝ ) |
49 |
|
leloe |
⊢ ( ( 0 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → ( 0 ≤ 𝐵 ↔ ( 0 < 𝐵 ∨ 0 = 𝐵 ) ) ) |
50 |
23 48 49
|
sylancr |
⊢ ( ( ( ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ) ∧ 𝐶 ∈ ℝ* ) ∧ ( 0 < 𝐶 ∧ 𝐴 ≤ 𝐵 ) ) ∧ ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ) → ( 0 ≤ 𝐵 ↔ ( 0 < 𝐵 ∨ 0 = 𝐵 ) ) ) |
51 |
47 50
|
sylibd |
⊢ ( ( ( ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ) ∧ 𝐶 ∈ ℝ* ) ∧ ( 0 < 𝐶 ∧ 𝐴 ≤ 𝐵 ) ) ∧ ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ) → ( 𝐴 = 0 → ( 0 < 𝐵 ∨ 0 = 𝐵 ) ) ) |
52 |
51
|
imp |
⊢ ( ( ( ( ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ) ∧ 𝐶 ∈ ℝ* ) ∧ ( 0 < 𝐶 ∧ 𝐴 ≤ 𝐵 ) ) ∧ ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ) ∧ 𝐴 = 0 ) → ( 0 < 𝐵 ∨ 0 = 𝐵 ) ) |
53 |
|
pnfge |
⊢ ( 0 ∈ ℝ* → 0 ≤ +∞ ) |
54 |
1 53
|
ax-mp |
⊢ 0 ≤ +∞ |
55 |
|
xmulpnf1 |
⊢ ( ( 𝐵 ∈ ℝ* ∧ 0 < 𝐵 ) → ( 𝐵 ·e +∞ ) = +∞ ) |
56 |
31 55
|
sylan |
⊢ ( ( ( ( ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ) ∧ 𝐶 ∈ ℝ* ) ∧ ( 0 < 𝐶 ∧ 𝐴 ≤ 𝐵 ) ) ∧ ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ) ∧ 0 < 𝐵 ) → ( 𝐵 ·e +∞ ) = +∞ ) |
57 |
54 56
|
breqtrrid |
⊢ ( ( ( ( ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ) ∧ 𝐶 ∈ ℝ* ) ∧ ( 0 < 𝐶 ∧ 𝐴 ≤ 𝐵 ) ) ∧ ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ) ∧ 0 < 𝐵 ) → 0 ≤ ( 𝐵 ·e +∞ ) ) |
58 |
|
xrleid |
⊢ ( 0 ∈ ℝ* → 0 ≤ 0 ) |
59 |
1 58
|
ax-mp |
⊢ 0 ≤ 0 |
60 |
59 42
|
breqtrri |
⊢ 0 ≤ ( 0 ·e +∞ ) |
61 |
|
simpr |
⊢ ( ( ( ( ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ) ∧ 𝐶 ∈ ℝ* ) ∧ ( 0 < 𝐶 ∧ 𝐴 ≤ 𝐵 ) ) ∧ ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ) ∧ 0 = 𝐵 ) → 0 = 𝐵 ) |
62 |
61
|
oveq1d |
⊢ ( ( ( ( ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ) ∧ 𝐶 ∈ ℝ* ) ∧ ( 0 < 𝐶 ∧ 𝐴 ≤ 𝐵 ) ) ∧ ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ) ∧ 0 = 𝐵 ) → ( 0 ·e +∞ ) = ( 𝐵 ·e +∞ ) ) |
63 |
60 62
|
breqtrid |
⊢ ( ( ( ( ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ) ∧ 𝐶 ∈ ℝ* ) ∧ ( 0 < 𝐶 ∧ 𝐴 ≤ 𝐵 ) ) ∧ ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ) ∧ 0 = 𝐵 ) → 0 ≤ ( 𝐵 ·e +∞ ) ) |
64 |
57 63
|
jaodan |
⊢ ( ( ( ( ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ) ∧ 𝐶 ∈ ℝ* ) ∧ ( 0 < 𝐶 ∧ 𝐴 ≤ 𝐵 ) ) ∧ ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ) ∧ ( 0 < 𝐵 ∨ 0 = 𝐵 ) ) → 0 ≤ ( 𝐵 ·e +∞ ) ) |
65 |
52 64
|
syldan |
⊢ ( ( ( ( ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ) ∧ 𝐶 ∈ ℝ* ) ∧ ( 0 < 𝐶 ∧ 𝐴 ≤ 𝐵 ) ) ∧ ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ) ∧ 𝐴 = 0 ) → 0 ≤ ( 𝐵 ·e +∞ ) ) |
66 |
44 65
|
eqbrtrd |
⊢ ( ( ( ( ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ) ∧ 𝐶 ∈ ℝ* ) ∧ ( 0 < 𝐶 ∧ 𝐴 ≤ 𝐵 ) ) ∧ ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ) ∧ 𝐴 = 0 ) → ( 𝐴 ·e +∞ ) ≤ ( 𝐵 ·e +∞ ) ) |
67 |
66
|
ex |
⊢ ( ( ( ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ) ∧ 𝐶 ∈ ℝ* ) ∧ ( 0 < 𝐶 ∧ 𝐴 ≤ 𝐵 ) ) ∧ ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ) → ( 𝐴 = 0 → ( 𝐴 ·e +∞ ) ≤ ( 𝐵 ·e +∞ ) ) ) |
68 |
|
pnfge |
⊢ ( +∞ ∈ ℝ* → +∞ ≤ +∞ ) |
69 |
33 68
|
ax-mp |
⊢ +∞ ≤ +∞ |
70 |
26
|
adantr |
⊢ ( ( ( ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ) ∧ 𝐶 ∈ ℝ* ) ∧ ( 0 < 𝐶 ∧ 𝐴 ≤ 𝐵 ) ) ∧ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ∧ 0 < 𝐴 ) ) → 𝐴 ∈ ℝ* ) |
71 |
|
simprr |
⊢ ( ( ( ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ) ∧ 𝐶 ∈ ℝ* ) ∧ ( 0 < 𝐶 ∧ 𝐴 ≤ 𝐵 ) ) ∧ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ∧ 0 < 𝐴 ) ) → 0 < 𝐴 ) |
72 |
|
xmulpnf1 |
⊢ ( ( 𝐴 ∈ ℝ* ∧ 0 < 𝐴 ) → ( 𝐴 ·e +∞ ) = +∞ ) |
73 |
70 71 72
|
syl2anc |
⊢ ( ( ( ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ) ∧ 𝐶 ∈ ℝ* ) ∧ ( 0 < 𝐶 ∧ 𝐴 ≤ 𝐵 ) ) ∧ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ∧ 0 < 𝐴 ) ) → ( 𝐴 ·e +∞ ) = +∞ ) |
74 |
30
|
adantr |
⊢ ( ( ( ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ) ∧ 𝐶 ∈ ℝ* ) ∧ ( 0 < 𝐶 ∧ 𝐴 ≤ 𝐵 ) ) ∧ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ∧ 0 < 𝐴 ) ) → 𝐵 ∈ ℝ* ) |
75 |
|
ltletr |
⊢ ( ( 0 ∈ ℝ ∧ 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → ( ( 0 < 𝐴 ∧ 𝐴 ≤ 𝐵 ) → 0 < 𝐵 ) ) |
76 |
23 75
|
mp3an1 |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → ( ( 0 < 𝐴 ∧ 𝐴 ≤ 𝐵 ) → 0 < 𝐵 ) ) |
77 |
76
|
adantl |
⊢ ( ( ( ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ) ∧ 𝐶 ∈ ℝ* ) ∧ ( 0 < 𝐶 ∧ 𝐴 ≤ 𝐵 ) ) ∧ ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ) → ( ( 0 < 𝐴 ∧ 𝐴 ≤ 𝐵 ) → 0 < 𝐵 ) ) |
78 |
45 77
|
mpan2d |
⊢ ( ( ( ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ) ∧ 𝐶 ∈ ℝ* ) ∧ ( 0 < 𝐶 ∧ 𝐴 ≤ 𝐵 ) ) ∧ ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ) → ( 0 < 𝐴 → 0 < 𝐵 ) ) |
79 |
78
|
impr |
⊢ ( ( ( ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ) ∧ 𝐶 ∈ ℝ* ) ∧ ( 0 < 𝐶 ∧ 𝐴 ≤ 𝐵 ) ) ∧ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ∧ 0 < 𝐴 ) ) → 0 < 𝐵 ) |
80 |
74 79 55
|
syl2anc |
⊢ ( ( ( ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ) ∧ 𝐶 ∈ ℝ* ) ∧ ( 0 < 𝐶 ∧ 𝐴 ≤ 𝐵 ) ) ∧ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ∧ 0 < 𝐴 ) ) → ( 𝐵 ·e +∞ ) = +∞ ) |
81 |
73 80
|
breq12d |
⊢ ( ( ( ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ) ∧ 𝐶 ∈ ℝ* ) ∧ ( 0 < 𝐶 ∧ 𝐴 ≤ 𝐵 ) ) ∧ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ∧ 0 < 𝐴 ) ) → ( ( 𝐴 ·e +∞ ) ≤ ( 𝐵 ·e +∞ ) ↔ +∞ ≤ +∞ ) ) |
82 |
69 81
|
mpbiri |
⊢ ( ( ( ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ) ∧ 𝐶 ∈ ℝ* ) ∧ ( 0 < 𝐶 ∧ 𝐴 ≤ 𝐵 ) ) ∧ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ∧ 0 < 𝐴 ) ) → ( 𝐴 ·e +∞ ) ≤ ( 𝐵 ·e +∞ ) ) |
83 |
82
|
expr |
⊢ ( ( ( ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ) ∧ 𝐶 ∈ ℝ* ) ∧ ( 0 < 𝐶 ∧ 𝐴 ≤ 𝐵 ) ) ∧ ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ) → ( 0 < 𝐴 → ( 𝐴 ·e +∞ ) ≤ ( 𝐵 ·e +∞ ) ) ) |
84 |
39 67 83
|
3jaod |
⊢ ( ( ( ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ) ∧ 𝐶 ∈ ℝ* ) ∧ ( 0 < 𝐶 ∧ 𝐴 ≤ 𝐵 ) ) ∧ ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ) → ( ( 𝐴 < 0 ∨ 𝐴 = 0 ∨ 0 < 𝐴 ) → ( 𝐴 ·e +∞ ) ≤ ( 𝐵 ·e +∞ ) ) ) |
85 |
25 84
|
mpd |
⊢ ( ( ( ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ) ∧ 𝐶 ∈ ℝ* ) ∧ ( 0 < 𝐶 ∧ 𝐴 ≤ 𝐵 ) ) ∧ ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ) → ( 𝐴 ·e +∞ ) ≤ ( 𝐵 ·e +∞ ) ) |
86 |
|
oveq2 |
⊢ ( 𝐶 = +∞ → ( 𝐴 ·e 𝐶 ) = ( 𝐴 ·e +∞ ) ) |
87 |
|
oveq2 |
⊢ ( 𝐶 = +∞ → ( 𝐵 ·e 𝐶 ) = ( 𝐵 ·e +∞ ) ) |
88 |
86 87
|
breq12d |
⊢ ( 𝐶 = +∞ → ( ( 𝐴 ·e 𝐶 ) ≤ ( 𝐵 ·e 𝐶 ) ↔ ( 𝐴 ·e +∞ ) ≤ ( 𝐵 ·e +∞ ) ) ) |
89 |
85 88
|
syl5ibrcom |
⊢ ( ( ( ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ) ∧ 𝐶 ∈ ℝ* ) ∧ ( 0 < 𝐶 ∧ 𝐴 ≤ 𝐵 ) ) ∧ ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ) → ( 𝐶 = +∞ → ( 𝐴 ·e 𝐶 ) ≤ ( 𝐵 ·e 𝐶 ) ) ) |
90 |
|
nltmnf |
⊢ ( 0 ∈ ℝ* → ¬ 0 < -∞ ) |
91 |
1 90
|
ax-mp |
⊢ ¬ 0 < -∞ |
92 |
|
breq2 |
⊢ ( 𝐶 = -∞ → ( 0 < 𝐶 ↔ 0 < -∞ ) ) |
93 |
91 92
|
mtbiri |
⊢ ( 𝐶 = -∞ → ¬ 0 < 𝐶 ) |
94 |
93
|
con2i |
⊢ ( 0 < 𝐶 → ¬ 𝐶 = -∞ ) |
95 |
94
|
ad2antrl |
⊢ ( ( ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ) ∧ 𝐶 ∈ ℝ* ) ∧ ( 0 < 𝐶 ∧ 𝐴 ≤ 𝐵 ) ) → ¬ 𝐶 = -∞ ) |
96 |
95
|
adantr |
⊢ ( ( ( ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ) ∧ 𝐶 ∈ ℝ* ) ∧ ( 0 < 𝐶 ∧ 𝐴 ≤ 𝐵 ) ) ∧ ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ) → ¬ 𝐶 = -∞ ) |
97 |
96
|
pm2.21d |
⊢ ( ( ( ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ) ∧ 𝐶 ∈ ℝ* ) ∧ ( 0 < 𝐶 ∧ 𝐴 ≤ 𝐵 ) ) ∧ ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ) → ( 𝐶 = -∞ → ( 𝐴 ·e 𝐶 ) ≤ ( 𝐵 ·e 𝐶 ) ) ) |
98 |
21 89 97
|
3jaod |
⊢ ( ( ( ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ) ∧ 𝐶 ∈ ℝ* ) ∧ ( 0 < 𝐶 ∧ 𝐴 ≤ 𝐵 ) ) ∧ ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ) → ( ( 𝐶 ∈ ℝ ∨ 𝐶 = +∞ ∨ 𝐶 = -∞ ) → ( 𝐴 ·e 𝐶 ) ≤ ( 𝐵 ·e 𝐶 ) ) ) |
99 |
7 98
|
mpd |
⊢ ( ( ( ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ) ∧ 𝐶 ∈ ℝ* ) ∧ ( 0 < 𝐶 ∧ 𝐴 ≤ 𝐵 ) ) ∧ ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ) → ( 𝐴 ·e 𝐶 ) ≤ ( 𝐵 ·e 𝐶 ) ) |
100 |
99
|
anassrs |
⊢ ( ( ( ( ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ) ∧ 𝐶 ∈ ℝ* ) ∧ ( 0 < 𝐶 ∧ 𝐴 ≤ 𝐵 ) ) ∧ 𝐴 ∈ ℝ ) ∧ 𝐵 ∈ ℝ ) → ( 𝐴 ·e 𝐶 ) ≤ ( 𝐵 ·e 𝐶 ) ) |
101 |
|
xmulcl |
⊢ ( ( 𝐴 ∈ ℝ* ∧ 𝐶 ∈ ℝ* ) → ( 𝐴 ·e 𝐶 ) ∈ ℝ* ) |
102 |
101
|
adantlr |
⊢ ( ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ) ∧ 𝐶 ∈ ℝ* ) → ( 𝐴 ·e 𝐶 ) ∈ ℝ* ) |
103 |
102
|
ad2antrr |
⊢ ( ( ( ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ) ∧ 𝐶 ∈ ℝ* ) ∧ ( 0 < 𝐶 ∧ 𝐴 ≤ 𝐵 ) ) ∧ 𝐵 = +∞ ) → ( 𝐴 ·e 𝐶 ) ∈ ℝ* ) |
104 |
|
pnfge |
⊢ ( ( 𝐴 ·e 𝐶 ) ∈ ℝ* → ( 𝐴 ·e 𝐶 ) ≤ +∞ ) |
105 |
103 104
|
syl |
⊢ ( ( ( ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ) ∧ 𝐶 ∈ ℝ* ) ∧ ( 0 < 𝐶 ∧ 𝐴 ≤ 𝐵 ) ) ∧ 𝐵 = +∞ ) → ( 𝐴 ·e 𝐶 ) ≤ +∞ ) |
106 |
|
oveq1 |
⊢ ( 𝐵 = +∞ → ( 𝐵 ·e 𝐶 ) = ( +∞ ·e 𝐶 ) ) |
107 |
|
xmulpnf2 |
⊢ ( ( 𝐶 ∈ ℝ* ∧ 0 < 𝐶 ) → ( +∞ ·e 𝐶 ) = +∞ ) |
108 |
107
|
ad2ant2lr |
⊢ ( ( ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ) ∧ 𝐶 ∈ ℝ* ) ∧ ( 0 < 𝐶 ∧ 𝐴 ≤ 𝐵 ) ) → ( +∞ ·e 𝐶 ) = +∞ ) |
109 |
106 108
|
sylan9eqr |
⊢ ( ( ( ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ) ∧ 𝐶 ∈ ℝ* ) ∧ ( 0 < 𝐶 ∧ 𝐴 ≤ 𝐵 ) ) ∧ 𝐵 = +∞ ) → ( 𝐵 ·e 𝐶 ) = +∞ ) |
110 |
105 109
|
breqtrrd |
⊢ ( ( ( ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ) ∧ 𝐶 ∈ ℝ* ) ∧ ( 0 < 𝐶 ∧ 𝐴 ≤ 𝐵 ) ) ∧ 𝐵 = +∞ ) → ( 𝐴 ·e 𝐶 ) ≤ ( 𝐵 ·e 𝐶 ) ) |
111 |
110
|
adantlr |
⊢ ( ( ( ( ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ) ∧ 𝐶 ∈ ℝ* ) ∧ ( 0 < 𝐶 ∧ 𝐴 ≤ 𝐵 ) ) ∧ 𝐴 ∈ ℝ ) ∧ 𝐵 = +∞ ) → ( 𝐴 ·e 𝐶 ) ≤ ( 𝐵 ·e 𝐶 ) ) |
112 |
|
simplrr |
⊢ ( ( ( ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ) ∧ 𝐶 ∈ ℝ* ) ∧ ( 0 < 𝐶 ∧ 𝐴 ≤ 𝐵 ) ) ∧ 𝐵 = -∞ ) → 𝐴 ≤ 𝐵 ) |
113 |
|
simpr |
⊢ ( ( ( ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ) ∧ 𝐶 ∈ ℝ* ) ∧ ( 0 < 𝐶 ∧ 𝐴 ≤ 𝐵 ) ) ∧ 𝐵 = -∞ ) → 𝐵 = -∞ ) |
114 |
26
|
adantr |
⊢ ( ( ( ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ) ∧ 𝐶 ∈ ℝ* ) ∧ ( 0 < 𝐶 ∧ 𝐴 ≤ 𝐵 ) ) ∧ 𝐵 = -∞ ) → 𝐴 ∈ ℝ* ) |
115 |
|
mnfle |
⊢ ( 𝐴 ∈ ℝ* → -∞ ≤ 𝐴 ) |
116 |
114 115
|
syl |
⊢ ( ( ( ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ) ∧ 𝐶 ∈ ℝ* ) ∧ ( 0 < 𝐶 ∧ 𝐴 ≤ 𝐵 ) ) ∧ 𝐵 = -∞ ) → -∞ ≤ 𝐴 ) |
117 |
113 116
|
eqbrtrd |
⊢ ( ( ( ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ) ∧ 𝐶 ∈ ℝ* ) ∧ ( 0 < 𝐶 ∧ 𝐴 ≤ 𝐵 ) ) ∧ 𝐵 = -∞ ) → 𝐵 ≤ 𝐴 ) |
118 |
|
xrletri3 |
⊢ ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ) → ( 𝐴 = 𝐵 ↔ ( 𝐴 ≤ 𝐵 ∧ 𝐵 ≤ 𝐴 ) ) ) |
119 |
118
|
ad3antrrr |
⊢ ( ( ( ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ) ∧ 𝐶 ∈ ℝ* ) ∧ ( 0 < 𝐶 ∧ 𝐴 ≤ 𝐵 ) ) ∧ 𝐵 = -∞ ) → ( 𝐴 = 𝐵 ↔ ( 𝐴 ≤ 𝐵 ∧ 𝐵 ≤ 𝐴 ) ) ) |
120 |
112 117 119
|
mpbir2and |
⊢ ( ( ( ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ) ∧ 𝐶 ∈ ℝ* ) ∧ ( 0 < 𝐶 ∧ 𝐴 ≤ 𝐵 ) ) ∧ 𝐵 = -∞ ) → 𝐴 = 𝐵 ) |
121 |
120
|
oveq1d |
⊢ ( ( ( ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ) ∧ 𝐶 ∈ ℝ* ) ∧ ( 0 < 𝐶 ∧ 𝐴 ≤ 𝐵 ) ) ∧ 𝐵 = -∞ ) → ( 𝐴 ·e 𝐶 ) = ( 𝐵 ·e 𝐶 ) ) |
122 |
|
xmulcl |
⊢ ( ( 𝐵 ∈ ℝ* ∧ 𝐶 ∈ ℝ* ) → ( 𝐵 ·e 𝐶 ) ∈ ℝ* ) |
123 |
122
|
adantll |
⊢ ( ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ) ∧ 𝐶 ∈ ℝ* ) → ( 𝐵 ·e 𝐶 ) ∈ ℝ* ) |
124 |
123
|
ad2antrr |
⊢ ( ( ( ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ) ∧ 𝐶 ∈ ℝ* ) ∧ ( 0 < 𝐶 ∧ 𝐴 ≤ 𝐵 ) ) ∧ 𝐵 = -∞ ) → ( 𝐵 ·e 𝐶 ) ∈ ℝ* ) |
125 |
|
xrleid |
⊢ ( ( 𝐵 ·e 𝐶 ) ∈ ℝ* → ( 𝐵 ·e 𝐶 ) ≤ ( 𝐵 ·e 𝐶 ) ) |
126 |
124 125
|
syl |
⊢ ( ( ( ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ) ∧ 𝐶 ∈ ℝ* ) ∧ ( 0 < 𝐶 ∧ 𝐴 ≤ 𝐵 ) ) ∧ 𝐵 = -∞ ) → ( 𝐵 ·e 𝐶 ) ≤ ( 𝐵 ·e 𝐶 ) ) |
127 |
121 126
|
eqbrtrd |
⊢ ( ( ( ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ) ∧ 𝐶 ∈ ℝ* ) ∧ ( 0 < 𝐶 ∧ 𝐴 ≤ 𝐵 ) ) ∧ 𝐵 = -∞ ) → ( 𝐴 ·e 𝐶 ) ≤ ( 𝐵 ·e 𝐶 ) ) |
128 |
127
|
adantlr |
⊢ ( ( ( ( ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ) ∧ 𝐶 ∈ ℝ* ) ∧ ( 0 < 𝐶 ∧ 𝐴 ≤ 𝐵 ) ) ∧ 𝐴 ∈ ℝ ) ∧ 𝐵 = -∞ ) → ( 𝐴 ·e 𝐶 ) ≤ ( 𝐵 ·e 𝐶 ) ) |
129 |
|
elxr |
⊢ ( 𝐵 ∈ ℝ* ↔ ( 𝐵 ∈ ℝ ∨ 𝐵 = +∞ ∨ 𝐵 = -∞ ) ) |
130 |
30 129
|
sylib |
⊢ ( ( ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ) ∧ 𝐶 ∈ ℝ* ) ∧ ( 0 < 𝐶 ∧ 𝐴 ≤ 𝐵 ) ) → ( 𝐵 ∈ ℝ ∨ 𝐵 = +∞ ∨ 𝐵 = -∞ ) ) |
131 |
130
|
adantr |
⊢ ( ( ( ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ) ∧ 𝐶 ∈ ℝ* ) ∧ ( 0 < 𝐶 ∧ 𝐴 ≤ 𝐵 ) ) ∧ 𝐴 ∈ ℝ ) → ( 𝐵 ∈ ℝ ∨ 𝐵 = +∞ ∨ 𝐵 = -∞ ) ) |
132 |
100 111 128 131
|
mpjao3dan |
⊢ ( ( ( ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ) ∧ 𝐶 ∈ ℝ* ) ∧ ( 0 < 𝐶 ∧ 𝐴 ≤ 𝐵 ) ) ∧ 𝐴 ∈ ℝ ) → ( 𝐴 ·e 𝐶 ) ≤ ( 𝐵 ·e 𝐶 ) ) |
133 |
|
simplrr |
⊢ ( ( ( ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ) ∧ 𝐶 ∈ ℝ* ) ∧ ( 0 < 𝐶 ∧ 𝐴 ≤ 𝐵 ) ) ∧ 𝐴 = +∞ ) → 𝐴 ≤ 𝐵 ) |
134 |
30
|
adantr |
⊢ ( ( ( ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ) ∧ 𝐶 ∈ ℝ* ) ∧ ( 0 < 𝐶 ∧ 𝐴 ≤ 𝐵 ) ) ∧ 𝐴 = +∞ ) → 𝐵 ∈ ℝ* ) |
135 |
|
pnfge |
⊢ ( 𝐵 ∈ ℝ* → 𝐵 ≤ +∞ ) |
136 |
134 135
|
syl |
⊢ ( ( ( ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ) ∧ 𝐶 ∈ ℝ* ) ∧ ( 0 < 𝐶 ∧ 𝐴 ≤ 𝐵 ) ) ∧ 𝐴 = +∞ ) → 𝐵 ≤ +∞ ) |
137 |
|
simpr |
⊢ ( ( ( ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ) ∧ 𝐶 ∈ ℝ* ) ∧ ( 0 < 𝐶 ∧ 𝐴 ≤ 𝐵 ) ) ∧ 𝐴 = +∞ ) → 𝐴 = +∞ ) |
138 |
136 137
|
breqtrrd |
⊢ ( ( ( ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ) ∧ 𝐶 ∈ ℝ* ) ∧ ( 0 < 𝐶 ∧ 𝐴 ≤ 𝐵 ) ) ∧ 𝐴 = +∞ ) → 𝐵 ≤ 𝐴 ) |
139 |
118
|
ad3antrrr |
⊢ ( ( ( ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ) ∧ 𝐶 ∈ ℝ* ) ∧ ( 0 < 𝐶 ∧ 𝐴 ≤ 𝐵 ) ) ∧ 𝐴 = +∞ ) → ( 𝐴 = 𝐵 ↔ ( 𝐴 ≤ 𝐵 ∧ 𝐵 ≤ 𝐴 ) ) ) |
140 |
133 138 139
|
mpbir2and |
⊢ ( ( ( ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ) ∧ 𝐶 ∈ ℝ* ) ∧ ( 0 < 𝐶 ∧ 𝐴 ≤ 𝐵 ) ) ∧ 𝐴 = +∞ ) → 𝐴 = 𝐵 ) |
141 |
140
|
oveq1d |
⊢ ( ( ( ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ) ∧ 𝐶 ∈ ℝ* ) ∧ ( 0 < 𝐶 ∧ 𝐴 ≤ 𝐵 ) ) ∧ 𝐴 = +∞ ) → ( 𝐴 ·e 𝐶 ) = ( 𝐵 ·e 𝐶 ) ) |
142 |
123 125
|
syl |
⊢ ( ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ) ∧ 𝐶 ∈ ℝ* ) → ( 𝐵 ·e 𝐶 ) ≤ ( 𝐵 ·e 𝐶 ) ) |
143 |
142
|
ad2antrr |
⊢ ( ( ( ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ) ∧ 𝐶 ∈ ℝ* ) ∧ ( 0 < 𝐶 ∧ 𝐴 ≤ 𝐵 ) ) ∧ 𝐴 = +∞ ) → ( 𝐵 ·e 𝐶 ) ≤ ( 𝐵 ·e 𝐶 ) ) |
144 |
141 143
|
eqbrtrd |
⊢ ( ( ( ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ) ∧ 𝐶 ∈ ℝ* ) ∧ ( 0 < 𝐶 ∧ 𝐴 ≤ 𝐵 ) ) ∧ 𝐴 = +∞ ) → ( 𝐴 ·e 𝐶 ) ≤ ( 𝐵 ·e 𝐶 ) ) |
145 |
|
oveq1 |
⊢ ( 𝐴 = -∞ → ( 𝐴 ·e 𝐶 ) = ( -∞ ·e 𝐶 ) ) |
146 |
|
xmulmnf2 |
⊢ ( ( 𝐶 ∈ ℝ* ∧ 0 < 𝐶 ) → ( -∞ ·e 𝐶 ) = -∞ ) |
147 |
146
|
ad2ant2lr |
⊢ ( ( ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ) ∧ 𝐶 ∈ ℝ* ) ∧ ( 0 < 𝐶 ∧ 𝐴 ≤ 𝐵 ) ) → ( -∞ ·e 𝐶 ) = -∞ ) |
148 |
145 147
|
sylan9eqr |
⊢ ( ( ( ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ) ∧ 𝐶 ∈ ℝ* ) ∧ ( 0 < 𝐶 ∧ 𝐴 ≤ 𝐵 ) ) ∧ 𝐴 = -∞ ) → ( 𝐴 ·e 𝐶 ) = -∞ ) |
149 |
123
|
ad2antrr |
⊢ ( ( ( ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ) ∧ 𝐶 ∈ ℝ* ) ∧ ( 0 < 𝐶 ∧ 𝐴 ≤ 𝐵 ) ) ∧ 𝐴 = -∞ ) → ( 𝐵 ·e 𝐶 ) ∈ ℝ* ) |
150 |
|
mnfle |
⊢ ( ( 𝐵 ·e 𝐶 ) ∈ ℝ* → -∞ ≤ ( 𝐵 ·e 𝐶 ) ) |
151 |
149 150
|
syl |
⊢ ( ( ( ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ) ∧ 𝐶 ∈ ℝ* ) ∧ ( 0 < 𝐶 ∧ 𝐴 ≤ 𝐵 ) ) ∧ 𝐴 = -∞ ) → -∞ ≤ ( 𝐵 ·e 𝐶 ) ) |
152 |
148 151
|
eqbrtrd |
⊢ ( ( ( ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ) ∧ 𝐶 ∈ ℝ* ) ∧ ( 0 < 𝐶 ∧ 𝐴 ≤ 𝐵 ) ) ∧ 𝐴 = -∞ ) → ( 𝐴 ·e 𝐶 ) ≤ ( 𝐵 ·e 𝐶 ) ) |
153 |
|
elxr |
⊢ ( 𝐴 ∈ ℝ* ↔ ( 𝐴 ∈ ℝ ∨ 𝐴 = +∞ ∨ 𝐴 = -∞ ) ) |
154 |
26 153
|
sylib |
⊢ ( ( ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ) ∧ 𝐶 ∈ ℝ* ) ∧ ( 0 < 𝐶 ∧ 𝐴 ≤ 𝐵 ) ) → ( 𝐴 ∈ ℝ ∨ 𝐴 = +∞ ∨ 𝐴 = -∞ ) ) |
155 |
132 144 152 154
|
mpjao3dan |
⊢ ( ( ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ) ∧ 𝐶 ∈ ℝ* ) ∧ ( 0 < 𝐶 ∧ 𝐴 ≤ 𝐵 ) ) → ( 𝐴 ·e 𝐶 ) ≤ ( 𝐵 ·e 𝐶 ) ) |
156 |
155
|
exp32 |
⊢ ( ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ) ∧ 𝐶 ∈ ℝ* ) → ( 0 < 𝐶 → ( 𝐴 ≤ 𝐵 → ( 𝐴 ·e 𝐶 ) ≤ ( 𝐵 ·e 𝐶 ) ) ) ) |
157 |
|
xmul01 |
⊢ ( 𝐴 ∈ ℝ* → ( 𝐴 ·e 0 ) = 0 ) |
158 |
157
|
ad2antrr |
⊢ ( ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ) ∧ 𝐶 ∈ ℝ* ) → ( 𝐴 ·e 0 ) = 0 ) |
159 |
|
xmul01 |
⊢ ( 𝐵 ∈ ℝ* → ( 𝐵 ·e 0 ) = 0 ) |
160 |
159
|
ad2antlr |
⊢ ( ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ) ∧ 𝐶 ∈ ℝ* ) → ( 𝐵 ·e 0 ) = 0 ) |
161 |
158 160
|
breq12d |
⊢ ( ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ) ∧ 𝐶 ∈ ℝ* ) → ( ( 𝐴 ·e 0 ) ≤ ( 𝐵 ·e 0 ) ↔ 0 ≤ 0 ) ) |
162 |
59 161
|
mpbiri |
⊢ ( ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ) ∧ 𝐶 ∈ ℝ* ) → ( 𝐴 ·e 0 ) ≤ ( 𝐵 ·e 0 ) ) |
163 |
|
oveq2 |
⊢ ( 0 = 𝐶 → ( 𝐴 ·e 0 ) = ( 𝐴 ·e 𝐶 ) ) |
164 |
|
oveq2 |
⊢ ( 0 = 𝐶 → ( 𝐵 ·e 0 ) = ( 𝐵 ·e 𝐶 ) ) |
165 |
163 164
|
breq12d |
⊢ ( 0 = 𝐶 → ( ( 𝐴 ·e 0 ) ≤ ( 𝐵 ·e 0 ) ↔ ( 𝐴 ·e 𝐶 ) ≤ ( 𝐵 ·e 𝐶 ) ) ) |
166 |
162 165
|
syl5ibcom |
⊢ ( ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ) ∧ 𝐶 ∈ ℝ* ) → ( 0 = 𝐶 → ( 𝐴 ·e 𝐶 ) ≤ ( 𝐵 ·e 𝐶 ) ) ) |
167 |
166
|
a1dd |
⊢ ( ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ) ∧ 𝐶 ∈ ℝ* ) → ( 0 = 𝐶 → ( 𝐴 ≤ 𝐵 → ( 𝐴 ·e 𝐶 ) ≤ ( 𝐵 ·e 𝐶 ) ) ) ) |
168 |
156 167
|
jaod |
⊢ ( ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ) ∧ 𝐶 ∈ ℝ* ) → ( ( 0 < 𝐶 ∨ 0 = 𝐶 ) → ( 𝐴 ≤ 𝐵 → ( 𝐴 ·e 𝐶 ) ≤ ( 𝐵 ·e 𝐶 ) ) ) ) |
169 |
4 168
|
sylbid |
⊢ ( ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ) ∧ 𝐶 ∈ ℝ* ) → ( 0 ≤ 𝐶 → ( 𝐴 ≤ 𝐵 → ( 𝐴 ·e 𝐶 ) ≤ ( 𝐵 ·e 𝐶 ) ) ) ) |
170 |
169
|
expimpd |
⊢ ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ) → ( ( 𝐶 ∈ ℝ* ∧ 0 ≤ 𝐶 ) → ( 𝐴 ≤ 𝐵 → ( 𝐴 ·e 𝐶 ) ≤ ( 𝐵 ·e 𝐶 ) ) ) ) |
171 |
170
|
3impia |
⊢ ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ ( 𝐶 ∈ ℝ* ∧ 0 ≤ 𝐶 ) ) → ( 𝐴 ≤ 𝐵 → ( 𝐴 ·e 𝐶 ) ≤ ( 𝐵 ·e 𝐶 ) ) ) |
172 |
171
|
imp |
⊢ ( ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ ( 𝐶 ∈ ℝ* ∧ 0 ≤ 𝐶 ) ) ∧ 𝐴 ≤ 𝐵 ) → ( 𝐴 ·e 𝐶 ) ≤ ( 𝐵 ·e 𝐶 ) ) |