Step |
Hyp |
Ref |
Expression |
1 |
|
xlemul1 |
⊢ ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐶 ∈ ℝ+ ) → ( 𝐴 ≤ 𝐵 ↔ ( 𝐴 ·e 𝐶 ) ≤ ( 𝐵 ·e 𝐶 ) ) ) |
2 |
|
simp1 |
⊢ ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐶 ∈ ℝ+ ) → 𝐴 ∈ ℝ* ) |
3 |
|
rpxr |
⊢ ( 𝐶 ∈ ℝ+ → 𝐶 ∈ ℝ* ) |
4 |
3
|
3ad2ant3 |
⊢ ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐶 ∈ ℝ+ ) → 𝐶 ∈ ℝ* ) |
5 |
|
xmulcom |
⊢ ( ( 𝐴 ∈ ℝ* ∧ 𝐶 ∈ ℝ* ) → ( 𝐴 ·e 𝐶 ) = ( 𝐶 ·e 𝐴 ) ) |
6 |
2 4 5
|
syl2anc |
⊢ ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐶 ∈ ℝ+ ) → ( 𝐴 ·e 𝐶 ) = ( 𝐶 ·e 𝐴 ) ) |
7 |
|
simp2 |
⊢ ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐶 ∈ ℝ+ ) → 𝐵 ∈ ℝ* ) |
8 |
|
xmulcom |
⊢ ( ( 𝐵 ∈ ℝ* ∧ 𝐶 ∈ ℝ* ) → ( 𝐵 ·e 𝐶 ) = ( 𝐶 ·e 𝐵 ) ) |
9 |
7 4 8
|
syl2anc |
⊢ ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐶 ∈ ℝ+ ) → ( 𝐵 ·e 𝐶 ) = ( 𝐶 ·e 𝐵 ) ) |
10 |
6 9
|
breq12d |
⊢ ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐶 ∈ ℝ+ ) → ( ( 𝐴 ·e 𝐶 ) ≤ ( 𝐵 ·e 𝐶 ) ↔ ( 𝐶 ·e 𝐴 ) ≤ ( 𝐶 ·e 𝐵 ) ) ) |
11 |
1 10
|
bitrd |
⊢ ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐶 ∈ ℝ+ ) → ( 𝐴 ≤ 𝐵 ↔ ( 𝐶 ·e 𝐴 ) ≤ ( 𝐶 ·e 𝐵 ) ) ) |