Metamath Proof Explorer


Theorem xlenegcon1

Description: Extended real version of lenegcon1 . (Contributed by Glauco Siliprandi, 23-Apr-2023)

Ref Expression
Assertion xlenegcon1 ( ( 𝐴 ∈ ℝ*𝐵 ∈ ℝ* ) → ( -𝑒 𝐴𝐵 ↔ -𝑒 𝐵𝐴 ) )

Proof

Step Hyp Ref Expression
1 xnegcl ( 𝐴 ∈ ℝ* → -𝑒 𝐴 ∈ ℝ* )
2 xleneg ( ( -𝑒 𝐴 ∈ ℝ*𝐵 ∈ ℝ* ) → ( -𝑒 𝐴𝐵 ↔ -𝑒 𝐵 ≤ -𝑒 -𝑒 𝐴 ) )
3 1 2 sylan ( ( 𝐴 ∈ ℝ*𝐵 ∈ ℝ* ) → ( -𝑒 𝐴𝐵 ↔ -𝑒 𝐵 ≤ -𝑒 -𝑒 𝐴 ) )
4 xnegneg ( 𝐴 ∈ ℝ* → -𝑒 -𝑒 𝐴 = 𝐴 )
5 4 breq2d ( 𝐴 ∈ ℝ* → ( -𝑒 𝐵 ≤ -𝑒 -𝑒 𝐴 ↔ -𝑒 𝐵𝐴 ) )
6 5 adantr ( ( 𝐴 ∈ ℝ*𝐵 ∈ ℝ* ) → ( -𝑒 𝐵 ≤ -𝑒 -𝑒 𝐴 ↔ -𝑒 𝐵𝐴 ) )
7 3 6 bitrd ( ( 𝐴 ∈ ℝ*𝐵 ∈ ℝ* ) → ( -𝑒 𝐴𝐵 ↔ -𝑒 𝐵𝐴 ) )