Metamath Proof Explorer


Theorem xlenegcon2

Description: Extended real version of lenegcon2 . (Contributed by Glauco Siliprandi, 23-Apr-2023)

Ref Expression
Assertion xlenegcon2 ( ( 𝐴 ∈ ℝ*𝐵 ∈ ℝ* ) → ( 𝐴 ≤ -𝑒 𝐵𝐵 ≤ -𝑒 𝐴 ) )

Proof

Step Hyp Ref Expression
1 xnegcl ( 𝐵 ∈ ℝ* → -𝑒 𝐵 ∈ ℝ* )
2 xleneg ( ( 𝐴 ∈ ℝ* ∧ -𝑒 𝐵 ∈ ℝ* ) → ( 𝐴 ≤ -𝑒 𝐵 ↔ -𝑒 -𝑒 𝐵 ≤ -𝑒 𝐴 ) )
3 1 2 sylan2 ( ( 𝐴 ∈ ℝ*𝐵 ∈ ℝ* ) → ( 𝐴 ≤ -𝑒 𝐵 ↔ -𝑒 -𝑒 𝐵 ≤ -𝑒 𝐴 ) )
4 xnegneg ( 𝐵 ∈ ℝ* → -𝑒 -𝑒 𝐵 = 𝐵 )
5 4 breq1d ( 𝐵 ∈ ℝ* → ( -𝑒 -𝑒 𝐵 ≤ -𝑒 𝐴𝐵 ≤ -𝑒 𝐴 ) )
6 5 adantl ( ( 𝐴 ∈ ℝ*𝐵 ∈ ℝ* ) → ( -𝑒 -𝑒 𝐵 ≤ -𝑒 𝐴𝐵 ≤ -𝑒 𝐴 ) )
7 3 6 bitrd ( ( 𝐴 ∈ ℝ*𝐵 ∈ ℝ* ) → ( 𝐴 ≤ -𝑒 𝐵𝐵 ≤ -𝑒 𝐴 ) )