Description: Extended real version of lenegcon2 . (Contributed by Glauco Siliprandi, 23-Apr-2023)
Ref | Expression | ||
---|---|---|---|
Assertion | xlenegcon2 | ⊢ ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ) → ( 𝐴 ≤ -𝑒 𝐵 ↔ 𝐵 ≤ -𝑒 𝐴 ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | xnegcl | ⊢ ( 𝐵 ∈ ℝ* → -𝑒 𝐵 ∈ ℝ* ) | |
2 | xleneg | ⊢ ( ( 𝐴 ∈ ℝ* ∧ -𝑒 𝐵 ∈ ℝ* ) → ( 𝐴 ≤ -𝑒 𝐵 ↔ -𝑒 -𝑒 𝐵 ≤ -𝑒 𝐴 ) ) | |
3 | 1 2 | sylan2 | ⊢ ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ) → ( 𝐴 ≤ -𝑒 𝐵 ↔ -𝑒 -𝑒 𝐵 ≤ -𝑒 𝐴 ) ) |
4 | xnegneg | ⊢ ( 𝐵 ∈ ℝ* → -𝑒 -𝑒 𝐵 = 𝐵 ) | |
5 | 4 | breq1d | ⊢ ( 𝐵 ∈ ℝ* → ( -𝑒 -𝑒 𝐵 ≤ -𝑒 𝐴 ↔ 𝐵 ≤ -𝑒 𝐴 ) ) |
6 | 5 | adantl | ⊢ ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ) → ( -𝑒 -𝑒 𝐵 ≤ -𝑒 𝐴 ↔ 𝐵 ≤ -𝑒 𝐴 ) ) |
7 | 3 6 | bitrd | ⊢ ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ) → ( 𝐴 ≤ -𝑒 𝐵 ↔ 𝐵 ≤ -𝑒 𝐴 ) ) |