| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							xlimpnfxnegmnf.1 | 
							⊢ Ⅎ 𝑗 𝐹  | 
						
						
							| 2 | 
							
								
							 | 
							xlimpnfxnegmnf.2 | 
							⊢ 𝑍  =  ( ℤ≥ ‘ 𝑀 )  | 
						
						
							| 3 | 
							
								
							 | 
							xlimpnfxnegmnf.3 | 
							⊢ ( 𝜑  →  𝐹 : 𝑍 ⟶ ℝ* )  | 
						
						
							| 4 | 
							
								
							 | 
							breq1 | 
							⊢ ( 𝑥  =  𝑦  →  ( 𝑥  ≤  ( 𝐹 ‘ 𝑗 )  ↔  𝑦  ≤  ( 𝐹 ‘ 𝑗 ) ) )  | 
						
						
							| 5 | 
							
								4
							 | 
							rexralbidv | 
							⊢ ( 𝑥  =  𝑦  →  ( ∃ 𝑘  ∈  𝑍 ∀ 𝑗  ∈  ( ℤ≥ ‘ 𝑘 ) 𝑥  ≤  ( 𝐹 ‘ 𝑗 )  ↔  ∃ 𝑘  ∈  𝑍 ∀ 𝑗  ∈  ( ℤ≥ ‘ 𝑘 ) 𝑦  ≤  ( 𝐹 ‘ 𝑗 ) ) )  | 
						
						
							| 6 | 
							
								
							 | 
							fveq2 | 
							⊢ ( 𝑘  =  𝑖  →  ( ℤ≥ ‘ 𝑘 )  =  ( ℤ≥ ‘ 𝑖 ) )  | 
						
						
							| 7 | 
							
								6
							 | 
							raleqdv | 
							⊢ ( 𝑘  =  𝑖  →  ( ∀ 𝑗  ∈  ( ℤ≥ ‘ 𝑘 ) 𝑦  ≤  ( 𝐹 ‘ 𝑗 )  ↔  ∀ 𝑗  ∈  ( ℤ≥ ‘ 𝑖 ) 𝑦  ≤  ( 𝐹 ‘ 𝑗 ) ) )  | 
						
						
							| 8 | 
							
								
							 | 
							nfv | 
							⊢ Ⅎ 𝑙 𝑦  ≤  ( 𝐹 ‘ 𝑗 )  | 
						
						
							| 9 | 
							
								
							 | 
							nfcv | 
							⊢ Ⅎ 𝑗 𝑦  | 
						
						
							| 10 | 
							
								
							 | 
							nfcv | 
							⊢ Ⅎ 𝑗  ≤   | 
						
						
							| 11 | 
							
								
							 | 
							nfcv | 
							⊢ Ⅎ 𝑗 𝑙  | 
						
						
							| 12 | 
							
								1 11
							 | 
							nffv | 
							⊢ Ⅎ 𝑗 ( 𝐹 ‘ 𝑙 )  | 
						
						
							| 13 | 
							
								9 10 12
							 | 
							nfbr | 
							⊢ Ⅎ 𝑗 𝑦  ≤  ( 𝐹 ‘ 𝑙 )  | 
						
						
							| 14 | 
							
								
							 | 
							fveq2 | 
							⊢ ( 𝑗  =  𝑙  →  ( 𝐹 ‘ 𝑗 )  =  ( 𝐹 ‘ 𝑙 ) )  | 
						
						
							| 15 | 
							
								14
							 | 
							breq2d | 
							⊢ ( 𝑗  =  𝑙  →  ( 𝑦  ≤  ( 𝐹 ‘ 𝑗 )  ↔  𝑦  ≤  ( 𝐹 ‘ 𝑙 ) ) )  | 
						
						
							| 16 | 
							
								8 13 15
							 | 
							cbvralw | 
							⊢ ( ∀ 𝑗  ∈  ( ℤ≥ ‘ 𝑖 ) 𝑦  ≤  ( 𝐹 ‘ 𝑗 )  ↔  ∀ 𝑙  ∈  ( ℤ≥ ‘ 𝑖 ) 𝑦  ≤  ( 𝐹 ‘ 𝑙 ) )  | 
						
						
							| 17 | 
							
								7 16
							 | 
							bitrdi | 
							⊢ ( 𝑘  =  𝑖  →  ( ∀ 𝑗  ∈  ( ℤ≥ ‘ 𝑘 ) 𝑦  ≤  ( 𝐹 ‘ 𝑗 )  ↔  ∀ 𝑙  ∈  ( ℤ≥ ‘ 𝑖 ) 𝑦  ≤  ( 𝐹 ‘ 𝑙 ) ) )  | 
						
						
							| 18 | 
							
								17
							 | 
							cbvrexvw | 
							⊢ ( ∃ 𝑘  ∈  𝑍 ∀ 𝑗  ∈  ( ℤ≥ ‘ 𝑘 ) 𝑦  ≤  ( 𝐹 ‘ 𝑗 )  ↔  ∃ 𝑖  ∈  𝑍 ∀ 𝑙  ∈  ( ℤ≥ ‘ 𝑖 ) 𝑦  ≤  ( 𝐹 ‘ 𝑙 ) )  | 
						
						
							| 19 | 
							
								5 18
							 | 
							bitrdi | 
							⊢ ( 𝑥  =  𝑦  →  ( ∃ 𝑘  ∈  𝑍 ∀ 𝑗  ∈  ( ℤ≥ ‘ 𝑘 ) 𝑥  ≤  ( 𝐹 ‘ 𝑗 )  ↔  ∃ 𝑖  ∈  𝑍 ∀ 𝑙  ∈  ( ℤ≥ ‘ 𝑖 ) 𝑦  ≤  ( 𝐹 ‘ 𝑙 ) ) )  | 
						
						
							| 20 | 
							
								19
							 | 
							cbvralvw | 
							⊢ ( ∀ 𝑥  ∈  ℝ ∃ 𝑘  ∈  𝑍 ∀ 𝑗  ∈  ( ℤ≥ ‘ 𝑘 ) 𝑥  ≤  ( 𝐹 ‘ 𝑗 )  ↔  ∀ 𝑦  ∈  ℝ ∃ 𝑖  ∈  𝑍 ∀ 𝑙  ∈  ( ℤ≥ ‘ 𝑖 ) 𝑦  ≤  ( 𝐹 ‘ 𝑙 ) )  | 
						
						
							| 21 | 
							
								20
							 | 
							a1i | 
							⊢ ( 𝜑  →  ( ∀ 𝑥  ∈  ℝ ∃ 𝑘  ∈  𝑍 ∀ 𝑗  ∈  ( ℤ≥ ‘ 𝑘 ) 𝑥  ≤  ( 𝐹 ‘ 𝑗 )  ↔  ∀ 𝑦  ∈  ℝ ∃ 𝑖  ∈  𝑍 ∀ 𝑙  ∈  ( ℤ≥ ‘ 𝑖 ) 𝑦  ≤  ( 𝐹 ‘ 𝑙 ) ) )  | 
						
						
							| 22 | 
							
								
							 | 
							simpll | 
							⊢ ( ( ( 𝜑  ∧  ∀ 𝑦  ∈  ℝ ∃ 𝑖  ∈  𝑍 ∀ 𝑙  ∈  ( ℤ≥ ‘ 𝑖 ) 𝑦  ≤  ( 𝐹 ‘ 𝑙 ) )  ∧  𝑤  ∈  ℝ )  →  𝜑 )  | 
						
						
							| 23 | 
							
								
							 | 
							simpr | 
							⊢ ( ( ( 𝜑  ∧  ∀ 𝑦  ∈  ℝ ∃ 𝑖  ∈  𝑍 ∀ 𝑙  ∈  ( ℤ≥ ‘ 𝑖 ) 𝑦  ≤  ( 𝐹 ‘ 𝑙 ) )  ∧  𝑤  ∈  ℝ )  →  𝑤  ∈  ℝ )  | 
						
						
							| 24 | 
							
								
							 | 
							xnegrecl | 
							⊢ ( 𝑤  ∈  ℝ  →  -𝑒 𝑤  ∈  ℝ )  | 
						
						
							| 25 | 
							
								
							 | 
							simpl | 
							⊢ ( ( ∀ 𝑦  ∈  ℝ ∃ 𝑖  ∈  𝑍 ∀ 𝑙  ∈  ( ℤ≥ ‘ 𝑖 ) 𝑦  ≤  ( 𝐹 ‘ 𝑙 )  ∧  𝑤  ∈  ℝ )  →  ∀ 𝑦  ∈  ℝ ∃ 𝑖  ∈  𝑍 ∀ 𝑙  ∈  ( ℤ≥ ‘ 𝑖 ) 𝑦  ≤  ( 𝐹 ‘ 𝑙 ) )  | 
						
						
							| 26 | 
							
								
							 | 
							breq1 | 
							⊢ ( 𝑦  =  -𝑒 𝑤  →  ( 𝑦  ≤  ( 𝐹 ‘ 𝑙 )  ↔  -𝑒 𝑤  ≤  ( 𝐹 ‘ 𝑙 ) ) )  | 
						
						
							| 27 | 
							
								26
							 | 
							rexralbidv | 
							⊢ ( 𝑦  =  -𝑒 𝑤  →  ( ∃ 𝑖  ∈  𝑍 ∀ 𝑙  ∈  ( ℤ≥ ‘ 𝑖 ) 𝑦  ≤  ( 𝐹 ‘ 𝑙 )  ↔  ∃ 𝑖  ∈  𝑍 ∀ 𝑙  ∈  ( ℤ≥ ‘ 𝑖 ) -𝑒 𝑤  ≤  ( 𝐹 ‘ 𝑙 ) ) )  | 
						
						
							| 28 | 
							
								27
							 | 
							rspcva | 
							⊢ ( ( -𝑒 𝑤  ∈  ℝ  ∧  ∀ 𝑦  ∈  ℝ ∃ 𝑖  ∈  𝑍 ∀ 𝑙  ∈  ( ℤ≥ ‘ 𝑖 ) 𝑦  ≤  ( 𝐹 ‘ 𝑙 ) )  →  ∃ 𝑖  ∈  𝑍 ∀ 𝑙  ∈  ( ℤ≥ ‘ 𝑖 ) -𝑒 𝑤  ≤  ( 𝐹 ‘ 𝑙 ) )  | 
						
						
							| 29 | 
							
								24 25 28
							 | 
							syl2an2 | 
							⊢ ( ( ∀ 𝑦  ∈  ℝ ∃ 𝑖  ∈  𝑍 ∀ 𝑙  ∈  ( ℤ≥ ‘ 𝑖 ) 𝑦  ≤  ( 𝐹 ‘ 𝑙 )  ∧  𝑤  ∈  ℝ )  →  ∃ 𝑖  ∈  𝑍 ∀ 𝑙  ∈  ( ℤ≥ ‘ 𝑖 ) -𝑒 𝑤  ≤  ( 𝐹 ‘ 𝑙 ) )  | 
						
						
							| 30 | 
							
								29
							 | 
							adantll | 
							⊢ ( ( ( 𝜑  ∧  ∀ 𝑦  ∈  ℝ ∃ 𝑖  ∈  𝑍 ∀ 𝑙  ∈  ( ℤ≥ ‘ 𝑖 ) 𝑦  ≤  ( 𝐹 ‘ 𝑙 ) )  ∧  𝑤  ∈  ℝ )  →  ∃ 𝑖  ∈  𝑍 ∀ 𝑙  ∈  ( ℤ≥ ‘ 𝑖 ) -𝑒 𝑤  ≤  ( 𝐹 ‘ 𝑙 ) )  | 
						
						
							| 31 | 
							
								
							 | 
							simpll | 
							⊢ ( ( ( ( 𝜑  ∧  𝑤  ∈  ℝ )  ∧  𝑖  ∈  𝑍 )  ∧  𝑙  ∈  ( ℤ≥ ‘ 𝑖 ) )  →  ( 𝜑  ∧  𝑤  ∈  ℝ ) )  | 
						
						
							| 32 | 
							
								2
							 | 
							uztrn2 | 
							⊢ ( ( 𝑖  ∈  𝑍  ∧  𝑙  ∈  ( ℤ≥ ‘ 𝑖 ) )  →  𝑙  ∈  𝑍 )  | 
						
						
							| 33 | 
							
								32
							 | 
							adantll | 
							⊢ ( ( ( ( 𝜑  ∧  𝑤  ∈  ℝ )  ∧  𝑖  ∈  𝑍 )  ∧  𝑙  ∈  ( ℤ≥ ‘ 𝑖 ) )  →  𝑙  ∈  𝑍 )  | 
						
						
							| 34 | 
							
								
							 | 
							rexr | 
							⊢ ( 𝑤  ∈  ℝ  →  𝑤  ∈  ℝ* )  | 
						
						
							| 35 | 
							
								34
							 | 
							ad2antlr | 
							⊢ ( ( ( 𝜑  ∧  𝑤  ∈  ℝ )  ∧  𝑙  ∈  𝑍 )  →  𝑤  ∈  ℝ* )  | 
						
						
							| 36 | 
							
								3
							 | 
							ffvelcdmda | 
							⊢ ( ( 𝜑  ∧  𝑙  ∈  𝑍 )  →  ( 𝐹 ‘ 𝑙 )  ∈  ℝ* )  | 
						
						
							| 37 | 
							
								36
							 | 
							adantlr | 
							⊢ ( ( ( 𝜑  ∧  𝑤  ∈  ℝ )  ∧  𝑙  ∈  𝑍 )  →  ( 𝐹 ‘ 𝑙 )  ∈  ℝ* )  | 
						
						
							| 38 | 
							
								
							 | 
							xlenegcon1 | 
							⊢ ( ( 𝑤  ∈  ℝ*  ∧  ( 𝐹 ‘ 𝑙 )  ∈  ℝ* )  →  ( -𝑒 𝑤  ≤  ( 𝐹 ‘ 𝑙 )  ↔  -𝑒 ( 𝐹 ‘ 𝑙 )  ≤  𝑤 ) )  | 
						
						
							| 39 | 
							
								35 37 38
							 | 
							syl2anc | 
							⊢ ( ( ( 𝜑  ∧  𝑤  ∈  ℝ )  ∧  𝑙  ∈  𝑍 )  →  ( -𝑒 𝑤  ≤  ( 𝐹 ‘ 𝑙 )  ↔  -𝑒 ( 𝐹 ‘ 𝑙 )  ≤  𝑤 ) )  | 
						
						
							| 40 | 
							
								39
							 | 
							biimpd | 
							⊢ ( ( ( 𝜑  ∧  𝑤  ∈  ℝ )  ∧  𝑙  ∈  𝑍 )  →  ( -𝑒 𝑤  ≤  ( 𝐹 ‘ 𝑙 )  →  -𝑒 ( 𝐹 ‘ 𝑙 )  ≤  𝑤 ) )  | 
						
						
							| 41 | 
							
								31 33 40
							 | 
							syl2anc | 
							⊢ ( ( ( ( 𝜑  ∧  𝑤  ∈  ℝ )  ∧  𝑖  ∈  𝑍 )  ∧  𝑙  ∈  ( ℤ≥ ‘ 𝑖 ) )  →  ( -𝑒 𝑤  ≤  ( 𝐹 ‘ 𝑙 )  →  -𝑒 ( 𝐹 ‘ 𝑙 )  ≤  𝑤 ) )  | 
						
						
							| 42 | 
							
								41
							 | 
							ralimdva | 
							⊢ ( ( ( 𝜑  ∧  𝑤  ∈  ℝ )  ∧  𝑖  ∈  𝑍 )  →  ( ∀ 𝑙  ∈  ( ℤ≥ ‘ 𝑖 ) -𝑒 𝑤  ≤  ( 𝐹 ‘ 𝑙 )  →  ∀ 𝑙  ∈  ( ℤ≥ ‘ 𝑖 ) -𝑒 ( 𝐹 ‘ 𝑙 )  ≤  𝑤 ) )  | 
						
						
							| 43 | 
							
								42
							 | 
							reximdva | 
							⊢ ( ( 𝜑  ∧  𝑤  ∈  ℝ )  →  ( ∃ 𝑖  ∈  𝑍 ∀ 𝑙  ∈  ( ℤ≥ ‘ 𝑖 ) -𝑒 𝑤  ≤  ( 𝐹 ‘ 𝑙 )  →  ∃ 𝑖  ∈  𝑍 ∀ 𝑙  ∈  ( ℤ≥ ‘ 𝑖 ) -𝑒 ( 𝐹 ‘ 𝑙 )  ≤  𝑤 ) )  | 
						
						
							| 44 | 
							
								43
							 | 
							imp | 
							⊢ ( ( ( 𝜑  ∧  𝑤  ∈  ℝ )  ∧  ∃ 𝑖  ∈  𝑍 ∀ 𝑙  ∈  ( ℤ≥ ‘ 𝑖 ) -𝑒 𝑤  ≤  ( 𝐹 ‘ 𝑙 ) )  →  ∃ 𝑖  ∈  𝑍 ∀ 𝑙  ∈  ( ℤ≥ ‘ 𝑖 ) -𝑒 ( 𝐹 ‘ 𝑙 )  ≤  𝑤 )  | 
						
						
							| 45 | 
							
								22 23 30 44
							 | 
							syl21anc | 
							⊢ ( ( ( 𝜑  ∧  ∀ 𝑦  ∈  ℝ ∃ 𝑖  ∈  𝑍 ∀ 𝑙  ∈  ( ℤ≥ ‘ 𝑖 ) 𝑦  ≤  ( 𝐹 ‘ 𝑙 ) )  ∧  𝑤  ∈  ℝ )  →  ∃ 𝑖  ∈  𝑍 ∀ 𝑙  ∈  ( ℤ≥ ‘ 𝑖 ) -𝑒 ( 𝐹 ‘ 𝑙 )  ≤  𝑤 )  | 
						
						
							| 46 | 
							
								45
							 | 
							ralrimiva | 
							⊢ ( ( 𝜑  ∧  ∀ 𝑦  ∈  ℝ ∃ 𝑖  ∈  𝑍 ∀ 𝑙  ∈  ( ℤ≥ ‘ 𝑖 ) 𝑦  ≤  ( 𝐹 ‘ 𝑙 ) )  →  ∀ 𝑤  ∈  ℝ ∃ 𝑖  ∈  𝑍 ∀ 𝑙  ∈  ( ℤ≥ ‘ 𝑖 ) -𝑒 ( 𝐹 ‘ 𝑙 )  ≤  𝑤 )  | 
						
						
							| 47 | 
							
								
							 | 
							simpll | 
							⊢ ( ( ( 𝜑  ∧  ∀ 𝑤  ∈  ℝ ∃ 𝑖  ∈  𝑍 ∀ 𝑙  ∈  ( ℤ≥ ‘ 𝑖 ) -𝑒 ( 𝐹 ‘ 𝑙 )  ≤  𝑤 )  ∧  𝑦  ∈  ℝ )  →  𝜑 )  | 
						
						
							| 48 | 
							
								
							 | 
							simpr | 
							⊢ ( ( ( 𝜑  ∧  ∀ 𝑤  ∈  ℝ ∃ 𝑖  ∈  𝑍 ∀ 𝑙  ∈  ( ℤ≥ ‘ 𝑖 ) -𝑒 ( 𝐹 ‘ 𝑙 )  ≤  𝑤 )  ∧  𝑦  ∈  ℝ )  →  𝑦  ∈  ℝ )  | 
						
						
							| 49 | 
							
								
							 | 
							xnegrecl | 
							⊢ ( 𝑦  ∈  ℝ  →  -𝑒 𝑦  ∈  ℝ )  | 
						
						
							| 50 | 
							
								
							 | 
							simpl | 
							⊢ ( ( ∀ 𝑤  ∈  ℝ ∃ 𝑖  ∈  𝑍 ∀ 𝑙  ∈  ( ℤ≥ ‘ 𝑖 ) -𝑒 ( 𝐹 ‘ 𝑙 )  ≤  𝑤  ∧  𝑦  ∈  ℝ )  →  ∀ 𝑤  ∈  ℝ ∃ 𝑖  ∈  𝑍 ∀ 𝑙  ∈  ( ℤ≥ ‘ 𝑖 ) -𝑒 ( 𝐹 ‘ 𝑙 )  ≤  𝑤 )  | 
						
						
							| 51 | 
							
								
							 | 
							breq2 | 
							⊢ ( 𝑤  =  -𝑒 𝑦  →  ( -𝑒 ( 𝐹 ‘ 𝑙 )  ≤  𝑤  ↔  -𝑒 ( 𝐹 ‘ 𝑙 )  ≤  -𝑒 𝑦 ) )  | 
						
						
							| 52 | 
							
								51
							 | 
							rexralbidv | 
							⊢ ( 𝑤  =  -𝑒 𝑦  →  ( ∃ 𝑖  ∈  𝑍 ∀ 𝑙  ∈  ( ℤ≥ ‘ 𝑖 ) -𝑒 ( 𝐹 ‘ 𝑙 )  ≤  𝑤  ↔  ∃ 𝑖  ∈  𝑍 ∀ 𝑙  ∈  ( ℤ≥ ‘ 𝑖 ) -𝑒 ( 𝐹 ‘ 𝑙 )  ≤  -𝑒 𝑦 ) )  | 
						
						
							| 53 | 
							
								52
							 | 
							rspcva | 
							⊢ ( ( -𝑒 𝑦  ∈  ℝ  ∧  ∀ 𝑤  ∈  ℝ ∃ 𝑖  ∈  𝑍 ∀ 𝑙  ∈  ( ℤ≥ ‘ 𝑖 ) -𝑒 ( 𝐹 ‘ 𝑙 )  ≤  𝑤 )  →  ∃ 𝑖  ∈  𝑍 ∀ 𝑙  ∈  ( ℤ≥ ‘ 𝑖 ) -𝑒 ( 𝐹 ‘ 𝑙 )  ≤  -𝑒 𝑦 )  | 
						
						
							| 54 | 
							
								49 50 53
							 | 
							syl2an2 | 
							⊢ ( ( ∀ 𝑤  ∈  ℝ ∃ 𝑖  ∈  𝑍 ∀ 𝑙  ∈  ( ℤ≥ ‘ 𝑖 ) -𝑒 ( 𝐹 ‘ 𝑙 )  ≤  𝑤  ∧  𝑦  ∈  ℝ )  →  ∃ 𝑖  ∈  𝑍 ∀ 𝑙  ∈  ( ℤ≥ ‘ 𝑖 ) -𝑒 ( 𝐹 ‘ 𝑙 )  ≤  -𝑒 𝑦 )  | 
						
						
							| 55 | 
							
								54
							 | 
							adantll | 
							⊢ ( ( ( 𝜑  ∧  ∀ 𝑤  ∈  ℝ ∃ 𝑖  ∈  𝑍 ∀ 𝑙  ∈  ( ℤ≥ ‘ 𝑖 ) -𝑒 ( 𝐹 ‘ 𝑙 )  ≤  𝑤 )  ∧  𝑦  ∈  ℝ )  →  ∃ 𝑖  ∈  𝑍 ∀ 𝑙  ∈  ( ℤ≥ ‘ 𝑖 ) -𝑒 ( 𝐹 ‘ 𝑙 )  ≤  -𝑒 𝑦 )  | 
						
						
							| 56 | 
							
								
							 | 
							simpll | 
							⊢ ( ( ( ( 𝜑  ∧  𝑦  ∈  ℝ )  ∧  𝑖  ∈  𝑍 )  ∧  𝑙  ∈  ( ℤ≥ ‘ 𝑖 ) )  →  ( 𝜑  ∧  𝑦  ∈  ℝ ) )  | 
						
						
							| 57 | 
							
								32
							 | 
							adantll | 
							⊢ ( ( ( ( 𝜑  ∧  𝑦  ∈  ℝ )  ∧  𝑖  ∈  𝑍 )  ∧  𝑙  ∈  ( ℤ≥ ‘ 𝑖 ) )  →  𝑙  ∈  𝑍 )  | 
						
						
							| 58 | 
							
								
							 | 
							rexr | 
							⊢ ( 𝑦  ∈  ℝ  →  𝑦  ∈  ℝ* )  | 
						
						
							| 59 | 
							
								58
							 | 
							ad2antlr | 
							⊢ ( ( ( 𝜑  ∧  𝑦  ∈  ℝ )  ∧  𝑙  ∈  𝑍 )  →  𝑦  ∈  ℝ* )  | 
						
						
							| 60 | 
							
								36
							 | 
							adantlr | 
							⊢ ( ( ( 𝜑  ∧  𝑦  ∈  ℝ )  ∧  𝑙  ∈  𝑍 )  →  ( 𝐹 ‘ 𝑙 )  ∈  ℝ* )  | 
						
						
							| 61 | 
							
								
							 | 
							xleneg | 
							⊢ ( ( 𝑦  ∈  ℝ*  ∧  ( 𝐹 ‘ 𝑙 )  ∈  ℝ* )  →  ( 𝑦  ≤  ( 𝐹 ‘ 𝑙 )  ↔  -𝑒 ( 𝐹 ‘ 𝑙 )  ≤  -𝑒 𝑦 ) )  | 
						
						
							| 62 | 
							
								59 60 61
							 | 
							syl2anc | 
							⊢ ( ( ( 𝜑  ∧  𝑦  ∈  ℝ )  ∧  𝑙  ∈  𝑍 )  →  ( 𝑦  ≤  ( 𝐹 ‘ 𝑙 )  ↔  -𝑒 ( 𝐹 ‘ 𝑙 )  ≤  -𝑒 𝑦 ) )  | 
						
						
							| 63 | 
							
								62
							 | 
							biimprd | 
							⊢ ( ( ( 𝜑  ∧  𝑦  ∈  ℝ )  ∧  𝑙  ∈  𝑍 )  →  ( -𝑒 ( 𝐹 ‘ 𝑙 )  ≤  -𝑒 𝑦  →  𝑦  ≤  ( 𝐹 ‘ 𝑙 ) ) )  | 
						
						
							| 64 | 
							
								56 57 63
							 | 
							syl2anc | 
							⊢ ( ( ( ( 𝜑  ∧  𝑦  ∈  ℝ )  ∧  𝑖  ∈  𝑍 )  ∧  𝑙  ∈  ( ℤ≥ ‘ 𝑖 ) )  →  ( -𝑒 ( 𝐹 ‘ 𝑙 )  ≤  -𝑒 𝑦  →  𝑦  ≤  ( 𝐹 ‘ 𝑙 ) ) )  | 
						
						
							| 65 | 
							
								64
							 | 
							ralimdva | 
							⊢ ( ( ( 𝜑  ∧  𝑦  ∈  ℝ )  ∧  𝑖  ∈  𝑍 )  →  ( ∀ 𝑙  ∈  ( ℤ≥ ‘ 𝑖 ) -𝑒 ( 𝐹 ‘ 𝑙 )  ≤  -𝑒 𝑦  →  ∀ 𝑙  ∈  ( ℤ≥ ‘ 𝑖 ) 𝑦  ≤  ( 𝐹 ‘ 𝑙 ) ) )  | 
						
						
							| 66 | 
							
								65
							 | 
							reximdva | 
							⊢ ( ( 𝜑  ∧  𝑦  ∈  ℝ )  →  ( ∃ 𝑖  ∈  𝑍 ∀ 𝑙  ∈  ( ℤ≥ ‘ 𝑖 ) -𝑒 ( 𝐹 ‘ 𝑙 )  ≤  -𝑒 𝑦  →  ∃ 𝑖  ∈  𝑍 ∀ 𝑙  ∈  ( ℤ≥ ‘ 𝑖 ) 𝑦  ≤  ( 𝐹 ‘ 𝑙 ) ) )  | 
						
						
							| 67 | 
							
								66
							 | 
							imp | 
							⊢ ( ( ( 𝜑  ∧  𝑦  ∈  ℝ )  ∧  ∃ 𝑖  ∈  𝑍 ∀ 𝑙  ∈  ( ℤ≥ ‘ 𝑖 ) -𝑒 ( 𝐹 ‘ 𝑙 )  ≤  -𝑒 𝑦 )  →  ∃ 𝑖  ∈  𝑍 ∀ 𝑙  ∈  ( ℤ≥ ‘ 𝑖 ) 𝑦  ≤  ( 𝐹 ‘ 𝑙 ) )  | 
						
						
							| 68 | 
							
								47 48 55 67
							 | 
							syl21anc | 
							⊢ ( ( ( 𝜑  ∧  ∀ 𝑤  ∈  ℝ ∃ 𝑖  ∈  𝑍 ∀ 𝑙  ∈  ( ℤ≥ ‘ 𝑖 ) -𝑒 ( 𝐹 ‘ 𝑙 )  ≤  𝑤 )  ∧  𝑦  ∈  ℝ )  →  ∃ 𝑖  ∈  𝑍 ∀ 𝑙  ∈  ( ℤ≥ ‘ 𝑖 ) 𝑦  ≤  ( 𝐹 ‘ 𝑙 ) )  | 
						
						
							| 69 | 
							
								68
							 | 
							ralrimiva | 
							⊢ ( ( 𝜑  ∧  ∀ 𝑤  ∈  ℝ ∃ 𝑖  ∈  𝑍 ∀ 𝑙  ∈  ( ℤ≥ ‘ 𝑖 ) -𝑒 ( 𝐹 ‘ 𝑙 )  ≤  𝑤 )  →  ∀ 𝑦  ∈  ℝ ∃ 𝑖  ∈  𝑍 ∀ 𝑙  ∈  ( ℤ≥ ‘ 𝑖 ) 𝑦  ≤  ( 𝐹 ‘ 𝑙 ) )  | 
						
						
							| 70 | 
							
								46 69
							 | 
							impbida | 
							⊢ ( 𝜑  →  ( ∀ 𝑦  ∈  ℝ ∃ 𝑖  ∈  𝑍 ∀ 𝑙  ∈  ( ℤ≥ ‘ 𝑖 ) 𝑦  ≤  ( 𝐹 ‘ 𝑙 )  ↔  ∀ 𝑤  ∈  ℝ ∃ 𝑖  ∈  𝑍 ∀ 𝑙  ∈  ( ℤ≥ ‘ 𝑖 ) -𝑒 ( 𝐹 ‘ 𝑙 )  ≤  𝑤 ) )  | 
						
						
							| 71 | 
							
								
							 | 
							breq2 | 
							⊢ ( 𝑤  =  𝑥  →  ( -𝑒 ( 𝐹 ‘ 𝑙 )  ≤  𝑤  ↔  -𝑒 ( 𝐹 ‘ 𝑙 )  ≤  𝑥 ) )  | 
						
						
							| 72 | 
							
								71
							 | 
							rexralbidv | 
							⊢ ( 𝑤  =  𝑥  →  ( ∃ 𝑖  ∈  𝑍 ∀ 𝑙  ∈  ( ℤ≥ ‘ 𝑖 ) -𝑒 ( 𝐹 ‘ 𝑙 )  ≤  𝑤  ↔  ∃ 𝑖  ∈  𝑍 ∀ 𝑙  ∈  ( ℤ≥ ‘ 𝑖 ) -𝑒 ( 𝐹 ‘ 𝑙 )  ≤  𝑥 ) )  | 
						
						
							| 73 | 
							
								
							 | 
							fveq2 | 
							⊢ ( 𝑖  =  𝑘  →  ( ℤ≥ ‘ 𝑖 )  =  ( ℤ≥ ‘ 𝑘 ) )  | 
						
						
							| 74 | 
							
								73
							 | 
							raleqdv | 
							⊢ ( 𝑖  =  𝑘  →  ( ∀ 𝑙  ∈  ( ℤ≥ ‘ 𝑖 ) -𝑒 ( 𝐹 ‘ 𝑙 )  ≤  𝑥  ↔  ∀ 𝑙  ∈  ( ℤ≥ ‘ 𝑘 ) -𝑒 ( 𝐹 ‘ 𝑙 )  ≤  𝑥 ) )  | 
						
						
							| 75 | 
							
								12
							 | 
							nfxneg | 
							⊢ Ⅎ 𝑗 -𝑒 ( 𝐹 ‘ 𝑙 )  | 
						
						
							| 76 | 
							
								
							 | 
							nfcv | 
							⊢ Ⅎ 𝑗 𝑥  | 
						
						
							| 77 | 
							
								75 10 76
							 | 
							nfbr | 
							⊢ Ⅎ 𝑗 -𝑒 ( 𝐹 ‘ 𝑙 )  ≤  𝑥  | 
						
						
							| 78 | 
							
								
							 | 
							nfv | 
							⊢ Ⅎ 𝑙 -𝑒 ( 𝐹 ‘ 𝑗 )  ≤  𝑥  | 
						
						
							| 79 | 
							
								
							 | 
							fveq2 | 
							⊢ ( 𝑙  =  𝑗  →  ( 𝐹 ‘ 𝑙 )  =  ( 𝐹 ‘ 𝑗 ) )  | 
						
						
							| 80 | 
							
								79
							 | 
							xnegeqd | 
							⊢ ( 𝑙  =  𝑗  →  -𝑒 ( 𝐹 ‘ 𝑙 )  =  -𝑒 ( 𝐹 ‘ 𝑗 ) )  | 
						
						
							| 81 | 
							
								80
							 | 
							breq1d | 
							⊢ ( 𝑙  =  𝑗  →  ( -𝑒 ( 𝐹 ‘ 𝑙 )  ≤  𝑥  ↔  -𝑒 ( 𝐹 ‘ 𝑗 )  ≤  𝑥 ) )  | 
						
						
							| 82 | 
							
								77 78 81
							 | 
							cbvralw | 
							⊢ ( ∀ 𝑙  ∈  ( ℤ≥ ‘ 𝑘 ) -𝑒 ( 𝐹 ‘ 𝑙 )  ≤  𝑥  ↔  ∀ 𝑗  ∈  ( ℤ≥ ‘ 𝑘 ) -𝑒 ( 𝐹 ‘ 𝑗 )  ≤  𝑥 )  | 
						
						
							| 83 | 
							
								74 82
							 | 
							bitrdi | 
							⊢ ( 𝑖  =  𝑘  →  ( ∀ 𝑙  ∈  ( ℤ≥ ‘ 𝑖 ) -𝑒 ( 𝐹 ‘ 𝑙 )  ≤  𝑥  ↔  ∀ 𝑗  ∈  ( ℤ≥ ‘ 𝑘 ) -𝑒 ( 𝐹 ‘ 𝑗 )  ≤  𝑥 ) )  | 
						
						
							| 84 | 
							
								83
							 | 
							cbvrexvw | 
							⊢ ( ∃ 𝑖  ∈  𝑍 ∀ 𝑙  ∈  ( ℤ≥ ‘ 𝑖 ) -𝑒 ( 𝐹 ‘ 𝑙 )  ≤  𝑥  ↔  ∃ 𝑘  ∈  𝑍 ∀ 𝑗  ∈  ( ℤ≥ ‘ 𝑘 ) -𝑒 ( 𝐹 ‘ 𝑗 )  ≤  𝑥 )  | 
						
						
							| 85 | 
							
								72 84
							 | 
							bitrdi | 
							⊢ ( 𝑤  =  𝑥  →  ( ∃ 𝑖  ∈  𝑍 ∀ 𝑙  ∈  ( ℤ≥ ‘ 𝑖 ) -𝑒 ( 𝐹 ‘ 𝑙 )  ≤  𝑤  ↔  ∃ 𝑘  ∈  𝑍 ∀ 𝑗  ∈  ( ℤ≥ ‘ 𝑘 ) -𝑒 ( 𝐹 ‘ 𝑗 )  ≤  𝑥 ) )  | 
						
						
							| 86 | 
							
								85
							 | 
							cbvralvw | 
							⊢ ( ∀ 𝑤  ∈  ℝ ∃ 𝑖  ∈  𝑍 ∀ 𝑙  ∈  ( ℤ≥ ‘ 𝑖 ) -𝑒 ( 𝐹 ‘ 𝑙 )  ≤  𝑤  ↔  ∀ 𝑥  ∈  ℝ ∃ 𝑘  ∈  𝑍 ∀ 𝑗  ∈  ( ℤ≥ ‘ 𝑘 ) -𝑒 ( 𝐹 ‘ 𝑗 )  ≤  𝑥 )  | 
						
						
							| 87 | 
							
								86
							 | 
							a1i | 
							⊢ ( 𝜑  →  ( ∀ 𝑤  ∈  ℝ ∃ 𝑖  ∈  𝑍 ∀ 𝑙  ∈  ( ℤ≥ ‘ 𝑖 ) -𝑒 ( 𝐹 ‘ 𝑙 )  ≤  𝑤  ↔  ∀ 𝑥  ∈  ℝ ∃ 𝑘  ∈  𝑍 ∀ 𝑗  ∈  ( ℤ≥ ‘ 𝑘 ) -𝑒 ( 𝐹 ‘ 𝑗 )  ≤  𝑥 ) )  | 
						
						
							| 88 | 
							
								21 70 87
							 | 
							3bitrd | 
							⊢ ( 𝜑  →  ( ∀ 𝑥  ∈  ℝ ∃ 𝑘  ∈  𝑍 ∀ 𝑗  ∈  ( ℤ≥ ‘ 𝑘 ) 𝑥  ≤  ( 𝐹 ‘ 𝑗 )  ↔  ∀ 𝑥  ∈  ℝ ∃ 𝑘  ∈  𝑍 ∀ 𝑗  ∈  ( ℤ≥ ‘ 𝑘 ) -𝑒 ( 𝐹 ‘ 𝑗 )  ≤  𝑥 ) )  |