Description: Extended real version of lt0neg1 . (Contributed by Mario Carneiro, 20-Aug-2015)
Ref | Expression | ||
---|---|---|---|
Assertion | xlt0neg1 | ⊢ ( 𝐴 ∈ ℝ* → ( 𝐴 < 0 ↔ 0 < -𝑒 𝐴 ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 0xr | ⊢ 0 ∈ ℝ* | |
2 | xltneg | ⊢ ( ( 𝐴 ∈ ℝ* ∧ 0 ∈ ℝ* ) → ( 𝐴 < 0 ↔ -𝑒 0 < -𝑒 𝐴 ) ) | |
3 | 1 2 | mpan2 | ⊢ ( 𝐴 ∈ ℝ* → ( 𝐴 < 0 ↔ -𝑒 0 < -𝑒 𝐴 ) ) |
4 | xneg0 | ⊢ -𝑒 0 = 0 | |
5 | 4 | breq1i | ⊢ ( -𝑒 0 < -𝑒 𝐴 ↔ 0 < -𝑒 𝐴 ) |
6 | 3 5 | bitrdi | ⊢ ( 𝐴 ∈ ℝ* → ( 𝐴 < 0 ↔ 0 < -𝑒 𝐴 ) ) |