Metamath Proof Explorer


Theorem xltmul1

Description: Extended real version of ltmul1 . (Contributed by Mario Carneiro, 20-Aug-2015)

Ref Expression
Assertion xltmul1 ( ( 𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ+ ) → ( 𝐴 < 𝐵 ↔ ( 𝐴 ·e 𝐶 ) < ( 𝐵 ·e 𝐶 ) ) )

Proof

Step Hyp Ref Expression
1 xlemul1 ( ( 𝐵 ∈ ℝ*𝐴 ∈ ℝ*𝐶 ∈ ℝ+ ) → ( 𝐵𝐴 ↔ ( 𝐵 ·e 𝐶 ) ≤ ( 𝐴 ·e 𝐶 ) ) )
2 1 3com12 ( ( 𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ+ ) → ( 𝐵𝐴 ↔ ( 𝐵 ·e 𝐶 ) ≤ ( 𝐴 ·e 𝐶 ) ) )
3 2 notbid ( ( 𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ+ ) → ( ¬ 𝐵𝐴 ↔ ¬ ( 𝐵 ·e 𝐶 ) ≤ ( 𝐴 ·e 𝐶 ) ) )
4 xrltnle ( ( 𝐴 ∈ ℝ*𝐵 ∈ ℝ* ) → ( 𝐴 < 𝐵 ↔ ¬ 𝐵𝐴 ) )
5 4 3adant3 ( ( 𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ+ ) → ( 𝐴 < 𝐵 ↔ ¬ 𝐵𝐴 ) )
6 simp1 ( ( 𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ+ ) → 𝐴 ∈ ℝ* )
7 rpxr ( 𝐶 ∈ ℝ+𝐶 ∈ ℝ* )
8 7 3ad2ant3 ( ( 𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ+ ) → 𝐶 ∈ ℝ* )
9 xmulcl ( ( 𝐴 ∈ ℝ*𝐶 ∈ ℝ* ) → ( 𝐴 ·e 𝐶 ) ∈ ℝ* )
10 6 8 9 syl2anc ( ( 𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ+ ) → ( 𝐴 ·e 𝐶 ) ∈ ℝ* )
11 simp2 ( ( 𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ+ ) → 𝐵 ∈ ℝ* )
12 xmulcl ( ( 𝐵 ∈ ℝ*𝐶 ∈ ℝ* ) → ( 𝐵 ·e 𝐶 ) ∈ ℝ* )
13 11 8 12 syl2anc ( ( 𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ+ ) → ( 𝐵 ·e 𝐶 ) ∈ ℝ* )
14 xrltnle ( ( ( 𝐴 ·e 𝐶 ) ∈ ℝ* ∧ ( 𝐵 ·e 𝐶 ) ∈ ℝ* ) → ( ( 𝐴 ·e 𝐶 ) < ( 𝐵 ·e 𝐶 ) ↔ ¬ ( 𝐵 ·e 𝐶 ) ≤ ( 𝐴 ·e 𝐶 ) ) )
15 10 13 14 syl2anc ( ( 𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ+ ) → ( ( 𝐴 ·e 𝐶 ) < ( 𝐵 ·e 𝐶 ) ↔ ¬ ( 𝐵 ·e 𝐶 ) ≤ ( 𝐴 ·e 𝐶 ) ) )
16 3 5 15 3bitr4d ( ( 𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ+ ) → ( 𝐴 < 𝐵 ↔ ( 𝐴 ·e 𝐶 ) < ( 𝐵 ·e 𝐶 ) ) )