| Step | Hyp | Ref | Expression | 
						
							| 1 |  | xlemul1 | ⊢ ( ( 𝐵  ∈  ℝ*  ∧  𝐴  ∈  ℝ*  ∧  𝐶  ∈  ℝ+ )  →  ( 𝐵  ≤  𝐴  ↔  ( 𝐵  ·e  𝐶 )  ≤  ( 𝐴  ·e  𝐶 ) ) ) | 
						
							| 2 | 1 | 3com12 | ⊢ ( ( 𝐴  ∈  ℝ*  ∧  𝐵  ∈  ℝ*  ∧  𝐶  ∈  ℝ+ )  →  ( 𝐵  ≤  𝐴  ↔  ( 𝐵  ·e  𝐶 )  ≤  ( 𝐴  ·e  𝐶 ) ) ) | 
						
							| 3 | 2 | notbid | ⊢ ( ( 𝐴  ∈  ℝ*  ∧  𝐵  ∈  ℝ*  ∧  𝐶  ∈  ℝ+ )  →  ( ¬  𝐵  ≤  𝐴  ↔  ¬  ( 𝐵  ·e  𝐶 )  ≤  ( 𝐴  ·e  𝐶 ) ) ) | 
						
							| 4 |  | xrltnle | ⊢ ( ( 𝐴  ∈  ℝ*  ∧  𝐵  ∈  ℝ* )  →  ( 𝐴  <  𝐵  ↔  ¬  𝐵  ≤  𝐴 ) ) | 
						
							| 5 | 4 | 3adant3 | ⊢ ( ( 𝐴  ∈  ℝ*  ∧  𝐵  ∈  ℝ*  ∧  𝐶  ∈  ℝ+ )  →  ( 𝐴  <  𝐵  ↔  ¬  𝐵  ≤  𝐴 ) ) | 
						
							| 6 |  | simp1 | ⊢ ( ( 𝐴  ∈  ℝ*  ∧  𝐵  ∈  ℝ*  ∧  𝐶  ∈  ℝ+ )  →  𝐴  ∈  ℝ* ) | 
						
							| 7 |  | rpxr | ⊢ ( 𝐶  ∈  ℝ+  →  𝐶  ∈  ℝ* ) | 
						
							| 8 | 7 | 3ad2ant3 | ⊢ ( ( 𝐴  ∈  ℝ*  ∧  𝐵  ∈  ℝ*  ∧  𝐶  ∈  ℝ+ )  →  𝐶  ∈  ℝ* ) | 
						
							| 9 |  | xmulcl | ⊢ ( ( 𝐴  ∈  ℝ*  ∧  𝐶  ∈  ℝ* )  →  ( 𝐴  ·e  𝐶 )  ∈  ℝ* ) | 
						
							| 10 | 6 8 9 | syl2anc | ⊢ ( ( 𝐴  ∈  ℝ*  ∧  𝐵  ∈  ℝ*  ∧  𝐶  ∈  ℝ+ )  →  ( 𝐴  ·e  𝐶 )  ∈  ℝ* ) | 
						
							| 11 |  | simp2 | ⊢ ( ( 𝐴  ∈  ℝ*  ∧  𝐵  ∈  ℝ*  ∧  𝐶  ∈  ℝ+ )  →  𝐵  ∈  ℝ* ) | 
						
							| 12 |  | xmulcl | ⊢ ( ( 𝐵  ∈  ℝ*  ∧  𝐶  ∈  ℝ* )  →  ( 𝐵  ·e  𝐶 )  ∈  ℝ* ) | 
						
							| 13 | 11 8 12 | syl2anc | ⊢ ( ( 𝐴  ∈  ℝ*  ∧  𝐵  ∈  ℝ*  ∧  𝐶  ∈  ℝ+ )  →  ( 𝐵  ·e  𝐶 )  ∈  ℝ* ) | 
						
							| 14 |  | xrltnle | ⊢ ( ( ( 𝐴  ·e  𝐶 )  ∈  ℝ*  ∧  ( 𝐵  ·e  𝐶 )  ∈  ℝ* )  →  ( ( 𝐴  ·e  𝐶 )  <  ( 𝐵  ·e  𝐶 )  ↔  ¬  ( 𝐵  ·e  𝐶 )  ≤  ( 𝐴  ·e  𝐶 ) ) ) | 
						
							| 15 | 10 13 14 | syl2anc | ⊢ ( ( 𝐴  ∈  ℝ*  ∧  𝐵  ∈  ℝ*  ∧  𝐶  ∈  ℝ+ )  →  ( ( 𝐴  ·e  𝐶 )  <  ( 𝐵  ·e  𝐶 )  ↔  ¬  ( 𝐵  ·e  𝐶 )  ≤  ( 𝐴  ·e  𝐶 ) ) ) | 
						
							| 16 | 3 5 15 | 3bitr4d | ⊢ ( ( 𝐴  ∈  ℝ*  ∧  𝐵  ∈  ℝ*  ∧  𝐶  ∈  ℝ+ )  →  ( 𝐴  <  𝐵  ↔  ( 𝐴  ·e  𝐶 )  <  ( 𝐵  ·e  𝐶 ) ) ) |