Step |
Hyp |
Ref |
Expression |
1 |
|
xltmul1 |
⊢ ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐶 ∈ ℝ+ ) → ( 𝐴 < 𝐵 ↔ ( 𝐴 ·e 𝐶 ) < ( 𝐵 ·e 𝐶 ) ) ) |
2 |
|
rpxr |
⊢ ( 𝐶 ∈ ℝ+ → 𝐶 ∈ ℝ* ) |
3 |
|
xmulcom |
⊢ ( ( 𝐴 ∈ ℝ* ∧ 𝐶 ∈ ℝ* ) → ( 𝐴 ·e 𝐶 ) = ( 𝐶 ·e 𝐴 ) ) |
4 |
3
|
3adant2 |
⊢ ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐶 ∈ ℝ* ) → ( 𝐴 ·e 𝐶 ) = ( 𝐶 ·e 𝐴 ) ) |
5 |
|
xmulcom |
⊢ ( ( 𝐵 ∈ ℝ* ∧ 𝐶 ∈ ℝ* ) → ( 𝐵 ·e 𝐶 ) = ( 𝐶 ·e 𝐵 ) ) |
6 |
5
|
3adant1 |
⊢ ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐶 ∈ ℝ* ) → ( 𝐵 ·e 𝐶 ) = ( 𝐶 ·e 𝐵 ) ) |
7 |
4 6
|
breq12d |
⊢ ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐶 ∈ ℝ* ) → ( ( 𝐴 ·e 𝐶 ) < ( 𝐵 ·e 𝐶 ) ↔ ( 𝐶 ·e 𝐴 ) < ( 𝐶 ·e 𝐵 ) ) ) |
8 |
2 7
|
syl3an3 |
⊢ ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐶 ∈ ℝ+ ) → ( ( 𝐴 ·e 𝐶 ) < ( 𝐵 ·e 𝐶 ) ↔ ( 𝐶 ·e 𝐴 ) < ( 𝐶 ·e 𝐵 ) ) ) |
9 |
1 8
|
bitrd |
⊢ ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐶 ∈ ℝ+ ) → ( 𝐴 < 𝐵 ↔ ( 𝐶 ·e 𝐴 ) < ( 𝐶 ·e 𝐵 ) ) ) |