Step |
Hyp |
Ref |
Expression |
1 |
|
elxr |
⊢ ( 𝐴 ∈ ℝ* ↔ ( 𝐴 ∈ ℝ ∨ 𝐴 = +∞ ∨ 𝐴 = -∞ ) ) |
2 |
|
elxr |
⊢ ( 𝐵 ∈ ℝ* ↔ ( 𝐵 ∈ ℝ ∨ 𝐵 = +∞ ∨ 𝐵 = -∞ ) ) |
3 |
|
ltneg |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → ( 𝐴 < 𝐵 ↔ - 𝐵 < - 𝐴 ) ) |
4 |
|
rexneg |
⊢ ( 𝐵 ∈ ℝ → -𝑒 𝐵 = - 𝐵 ) |
5 |
|
rexneg |
⊢ ( 𝐴 ∈ ℝ → -𝑒 𝐴 = - 𝐴 ) |
6 |
4 5
|
breqan12rd |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → ( -𝑒 𝐵 < -𝑒 𝐴 ↔ - 𝐵 < - 𝐴 ) ) |
7 |
3 6
|
bitr4d |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → ( 𝐴 < 𝐵 ↔ -𝑒 𝐵 < -𝑒 𝐴 ) ) |
8 |
7
|
biimpd |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → ( 𝐴 < 𝐵 → -𝑒 𝐵 < -𝑒 𝐴 ) ) |
9 |
|
xnegeq |
⊢ ( 𝐵 = +∞ → -𝑒 𝐵 = -𝑒 +∞ ) |
10 |
|
xnegpnf |
⊢ -𝑒 +∞ = -∞ |
11 |
9 10
|
eqtrdi |
⊢ ( 𝐵 = +∞ → -𝑒 𝐵 = -∞ ) |
12 |
11
|
adantl |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 = +∞ ) → -𝑒 𝐵 = -∞ ) |
13 |
|
renegcl |
⊢ ( 𝐴 ∈ ℝ → - 𝐴 ∈ ℝ ) |
14 |
5 13
|
eqeltrd |
⊢ ( 𝐴 ∈ ℝ → -𝑒 𝐴 ∈ ℝ ) |
15 |
14
|
mnfltd |
⊢ ( 𝐴 ∈ ℝ → -∞ < -𝑒 𝐴 ) |
16 |
15
|
adantr |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 = +∞ ) → -∞ < -𝑒 𝐴 ) |
17 |
12 16
|
eqbrtrd |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 = +∞ ) → -𝑒 𝐵 < -𝑒 𝐴 ) |
18 |
17
|
a1d |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 = +∞ ) → ( 𝐴 < 𝐵 → -𝑒 𝐵 < -𝑒 𝐴 ) ) |
19 |
|
simpr |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 = -∞ ) → 𝐵 = -∞ ) |
20 |
19
|
breq2d |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 = -∞ ) → ( 𝐴 < 𝐵 ↔ 𝐴 < -∞ ) ) |
21 |
|
rexr |
⊢ ( 𝐴 ∈ ℝ → 𝐴 ∈ ℝ* ) |
22 |
|
nltmnf |
⊢ ( 𝐴 ∈ ℝ* → ¬ 𝐴 < -∞ ) |
23 |
21 22
|
syl |
⊢ ( 𝐴 ∈ ℝ → ¬ 𝐴 < -∞ ) |
24 |
23
|
adantr |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 = -∞ ) → ¬ 𝐴 < -∞ ) |
25 |
24
|
pm2.21d |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 = -∞ ) → ( 𝐴 < -∞ → -𝑒 𝐵 < -𝑒 𝐴 ) ) |
26 |
20 25
|
sylbid |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 = -∞ ) → ( 𝐴 < 𝐵 → -𝑒 𝐵 < -𝑒 𝐴 ) ) |
27 |
8 18 26
|
3jaodan |
⊢ ( ( 𝐴 ∈ ℝ ∧ ( 𝐵 ∈ ℝ ∨ 𝐵 = +∞ ∨ 𝐵 = -∞ ) ) → ( 𝐴 < 𝐵 → -𝑒 𝐵 < -𝑒 𝐴 ) ) |
28 |
2 27
|
sylan2b |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ* ) → ( 𝐴 < 𝐵 → -𝑒 𝐵 < -𝑒 𝐴 ) ) |
29 |
28
|
expimpd |
⊢ ( 𝐴 ∈ ℝ → ( ( 𝐵 ∈ ℝ* ∧ 𝐴 < 𝐵 ) → -𝑒 𝐵 < -𝑒 𝐴 ) ) |
30 |
|
simpl |
⊢ ( ( 𝐴 = +∞ ∧ 𝐵 ∈ ℝ* ) → 𝐴 = +∞ ) |
31 |
30
|
breq1d |
⊢ ( ( 𝐴 = +∞ ∧ 𝐵 ∈ ℝ* ) → ( 𝐴 < 𝐵 ↔ +∞ < 𝐵 ) ) |
32 |
|
pnfnlt |
⊢ ( 𝐵 ∈ ℝ* → ¬ +∞ < 𝐵 ) |
33 |
32
|
adantl |
⊢ ( ( 𝐴 = +∞ ∧ 𝐵 ∈ ℝ* ) → ¬ +∞ < 𝐵 ) |
34 |
33
|
pm2.21d |
⊢ ( ( 𝐴 = +∞ ∧ 𝐵 ∈ ℝ* ) → ( +∞ < 𝐵 → -𝑒 𝐵 < -𝑒 𝐴 ) ) |
35 |
31 34
|
sylbid |
⊢ ( ( 𝐴 = +∞ ∧ 𝐵 ∈ ℝ* ) → ( 𝐴 < 𝐵 → -𝑒 𝐵 < -𝑒 𝐴 ) ) |
36 |
35
|
expimpd |
⊢ ( 𝐴 = +∞ → ( ( 𝐵 ∈ ℝ* ∧ 𝐴 < 𝐵 ) → -𝑒 𝐵 < -𝑒 𝐴 ) ) |
37 |
|
breq1 |
⊢ ( 𝐴 = -∞ → ( 𝐴 < 𝐵 ↔ -∞ < 𝐵 ) ) |
38 |
37
|
anbi2d |
⊢ ( 𝐴 = -∞ → ( ( 𝐵 ∈ ℝ* ∧ 𝐴 < 𝐵 ) ↔ ( 𝐵 ∈ ℝ* ∧ -∞ < 𝐵 ) ) ) |
39 |
|
renegcl |
⊢ ( 𝐵 ∈ ℝ → - 𝐵 ∈ ℝ ) |
40 |
4 39
|
eqeltrd |
⊢ ( 𝐵 ∈ ℝ → -𝑒 𝐵 ∈ ℝ ) |
41 |
40
|
adantr |
⊢ ( ( 𝐵 ∈ ℝ ∧ -∞ < 𝐵 ) → -𝑒 𝐵 ∈ ℝ ) |
42 |
41
|
ltpnfd |
⊢ ( ( 𝐵 ∈ ℝ ∧ -∞ < 𝐵 ) → -𝑒 𝐵 < +∞ ) |
43 |
11
|
adantr |
⊢ ( ( 𝐵 = +∞ ∧ -∞ < 𝐵 ) → -𝑒 𝐵 = -∞ ) |
44 |
|
mnfltpnf |
⊢ -∞ < +∞ |
45 |
43 44
|
eqbrtrdi |
⊢ ( ( 𝐵 = +∞ ∧ -∞ < 𝐵 ) → -𝑒 𝐵 < +∞ ) |
46 |
|
breq2 |
⊢ ( 𝐵 = -∞ → ( -∞ < 𝐵 ↔ -∞ < -∞ ) ) |
47 |
|
mnfxr |
⊢ -∞ ∈ ℝ* |
48 |
|
nltmnf |
⊢ ( -∞ ∈ ℝ* → ¬ -∞ < -∞ ) |
49 |
47 48
|
ax-mp |
⊢ ¬ -∞ < -∞ |
50 |
49
|
pm2.21i |
⊢ ( -∞ < -∞ → -𝑒 𝐵 < +∞ ) |
51 |
46 50
|
syl6bi |
⊢ ( 𝐵 = -∞ → ( -∞ < 𝐵 → -𝑒 𝐵 < +∞ ) ) |
52 |
51
|
imp |
⊢ ( ( 𝐵 = -∞ ∧ -∞ < 𝐵 ) → -𝑒 𝐵 < +∞ ) |
53 |
42 45 52
|
3jaoian |
⊢ ( ( ( 𝐵 ∈ ℝ ∨ 𝐵 = +∞ ∨ 𝐵 = -∞ ) ∧ -∞ < 𝐵 ) → -𝑒 𝐵 < +∞ ) |
54 |
2 53
|
sylanb |
⊢ ( ( 𝐵 ∈ ℝ* ∧ -∞ < 𝐵 ) → -𝑒 𝐵 < +∞ ) |
55 |
|
xnegeq |
⊢ ( 𝐴 = -∞ → -𝑒 𝐴 = -𝑒 -∞ ) |
56 |
|
xnegmnf |
⊢ -𝑒 -∞ = +∞ |
57 |
55 56
|
eqtrdi |
⊢ ( 𝐴 = -∞ → -𝑒 𝐴 = +∞ ) |
58 |
57
|
breq2d |
⊢ ( 𝐴 = -∞ → ( -𝑒 𝐵 < -𝑒 𝐴 ↔ -𝑒 𝐵 < +∞ ) ) |
59 |
54 58
|
syl5ibr |
⊢ ( 𝐴 = -∞ → ( ( 𝐵 ∈ ℝ* ∧ -∞ < 𝐵 ) → -𝑒 𝐵 < -𝑒 𝐴 ) ) |
60 |
38 59
|
sylbid |
⊢ ( 𝐴 = -∞ → ( ( 𝐵 ∈ ℝ* ∧ 𝐴 < 𝐵 ) → -𝑒 𝐵 < -𝑒 𝐴 ) ) |
61 |
29 36 60
|
3jaoi |
⊢ ( ( 𝐴 ∈ ℝ ∨ 𝐴 = +∞ ∨ 𝐴 = -∞ ) → ( ( 𝐵 ∈ ℝ* ∧ 𝐴 < 𝐵 ) → -𝑒 𝐵 < -𝑒 𝐴 ) ) |
62 |
1 61
|
sylbi |
⊢ ( 𝐴 ∈ ℝ* → ( ( 𝐵 ∈ ℝ* ∧ 𝐴 < 𝐵 ) → -𝑒 𝐵 < -𝑒 𝐴 ) ) |
63 |
62
|
3impib |
⊢ ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐴 < 𝐵 ) → -𝑒 𝐵 < -𝑒 𝐴 ) |