Metamath Proof Explorer


Theorem xmet0

Description: The distance function of a metric space is zero if its arguments are equal. Definition 14-1.1(a) of Gleason p. 223. (Contributed by Mario Carneiro, 20-Aug-2015)

Ref Expression
Assertion xmet0 ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝐴𝑋 ) → ( 𝐴 𝐷 𝐴 ) = 0 )

Proof

Step Hyp Ref Expression
1 eqid 𝐴 = 𝐴
2 xmeteq0 ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝐴𝑋𝐴𝑋 ) → ( ( 𝐴 𝐷 𝐴 ) = 0 ↔ 𝐴 = 𝐴 ) )
3 2 3anidm23 ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝐴𝑋 ) → ( ( 𝐴 𝐷 𝐴 ) = 0 ↔ 𝐴 = 𝐴 ) )
4 1 3 mpbiri ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝐴𝑋 ) → ( 𝐴 𝐷 𝐴 ) = 0 )