Description: Closure of the distance function of a metric space. Part of Property M1 of Kreyszig p. 3. (Contributed by NM, 30-Aug-2006)
Ref | Expression | ||
---|---|---|---|
Assertion | xmetcl | ⊢ ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) → ( 𝐴 𝐷 𝐵 ) ∈ ℝ* ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | xmetf | ⊢ ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) → 𝐷 : ( 𝑋 × 𝑋 ) ⟶ ℝ* ) | |
2 | fovrn | ⊢ ( ( 𝐷 : ( 𝑋 × 𝑋 ) ⟶ ℝ* ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) → ( 𝐴 𝐷 𝐵 ) ∈ ℝ* ) | |
3 | 1 2 | syl3an1 | ⊢ ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) → ( 𝐴 𝐷 𝐵 ) ∈ ℝ* ) |