Step |
Hyp |
Ref |
Expression |
1 |
|
xmetdcn2.1 |
⊢ 𝐽 = ( MetOpen ‘ 𝐷 ) |
2 |
|
xmetdcn.2 |
⊢ 𝐾 = ( ordTop ‘ ≤ ) |
3 |
|
letopon |
⊢ ( ordTop ‘ ≤ ) ∈ ( TopOn ‘ ℝ* ) |
4 |
2 3
|
eqeltri |
⊢ 𝐾 ∈ ( TopOn ‘ ℝ* ) |
5 |
|
eqid |
⊢ ( dist ‘ ℝ*𝑠 ) = ( dist ‘ ℝ*𝑠 ) |
6 |
|
eqid |
⊢ ( MetOpen ‘ ( dist ‘ ℝ*𝑠 ) ) = ( MetOpen ‘ ( dist ‘ ℝ*𝑠 ) ) |
7 |
5 6
|
xrsmopn |
⊢ ( ordTop ‘ ≤ ) ⊆ ( MetOpen ‘ ( dist ‘ ℝ*𝑠 ) ) |
8 |
2 7
|
eqsstri |
⊢ 𝐾 ⊆ ( MetOpen ‘ ( dist ‘ ℝ*𝑠 ) ) |
9 |
5
|
xrsxmet |
⊢ ( dist ‘ ℝ*𝑠 ) ∈ ( ∞Met ‘ ℝ* ) |
10 |
6
|
mopnuni |
⊢ ( ( dist ‘ ℝ*𝑠 ) ∈ ( ∞Met ‘ ℝ* ) → ℝ* = ∪ ( MetOpen ‘ ( dist ‘ ℝ*𝑠 ) ) ) |
11 |
9 10
|
ax-mp |
⊢ ℝ* = ∪ ( MetOpen ‘ ( dist ‘ ℝ*𝑠 ) ) |
12 |
11
|
cnss2 |
⊢ ( ( 𝐾 ∈ ( TopOn ‘ ℝ* ) ∧ 𝐾 ⊆ ( MetOpen ‘ ( dist ‘ ℝ*𝑠 ) ) ) → ( ( 𝐽 ×t 𝐽 ) Cn ( MetOpen ‘ ( dist ‘ ℝ*𝑠 ) ) ) ⊆ ( ( 𝐽 ×t 𝐽 ) Cn 𝐾 ) ) |
13 |
4 8 12
|
mp2an |
⊢ ( ( 𝐽 ×t 𝐽 ) Cn ( MetOpen ‘ ( dist ‘ ℝ*𝑠 ) ) ) ⊆ ( ( 𝐽 ×t 𝐽 ) Cn 𝐾 ) |
14 |
1 5 6
|
xmetdcn2 |
⊢ ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) → 𝐷 ∈ ( ( 𝐽 ×t 𝐽 ) Cn ( MetOpen ‘ ( dist ‘ ℝ*𝑠 ) ) ) ) |
15 |
13 14
|
sselid |
⊢ ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) → 𝐷 ∈ ( ( 𝐽 ×t 𝐽 ) Cn 𝐾 ) ) |