Step |
Hyp |
Ref |
Expression |
1 |
|
xmetdcn2.1 |
β’ π½ = ( MetOpen β π· ) |
2 |
|
xmetdcn.2 |
β’ πΎ = ( ordTop β β€ ) |
3 |
|
letopon |
β’ ( ordTop β β€ ) β ( TopOn β β* ) |
4 |
2 3
|
eqeltri |
β’ πΎ β ( TopOn β β* ) |
5 |
|
eqid |
β’ ( dist β β*π ) = ( dist β β*π ) |
6 |
|
eqid |
β’ ( MetOpen β ( dist β β*π ) ) = ( MetOpen β ( dist β β*π ) ) |
7 |
5 6
|
xrsmopn |
β’ ( ordTop β β€ ) β ( MetOpen β ( dist β β*π ) ) |
8 |
2 7
|
eqsstri |
β’ πΎ β ( MetOpen β ( dist β β*π ) ) |
9 |
5
|
xrsxmet |
β’ ( dist β β*π ) β ( βMet β β* ) |
10 |
6
|
mopnuni |
β’ ( ( dist β β*π ) β ( βMet β β* ) β β* = βͺ ( MetOpen β ( dist β β*π ) ) ) |
11 |
9 10
|
ax-mp |
β’ β* = βͺ ( MetOpen β ( dist β β*π ) ) |
12 |
11
|
cnss2 |
β’ ( ( πΎ β ( TopOn β β* ) β§ πΎ β ( MetOpen β ( dist β β*π ) ) ) β ( ( π½ Γt π½ ) Cn ( MetOpen β ( dist β β*π ) ) ) β ( ( π½ Γt π½ ) Cn πΎ ) ) |
13 |
4 8 12
|
mp2an |
β’ ( ( π½ Γt π½ ) Cn ( MetOpen β ( dist β β*π ) ) ) β ( ( π½ Γt π½ ) Cn πΎ ) |
14 |
1 5 6
|
xmetdcn2 |
β’ ( π· β ( βMet β π ) β π· β ( ( π½ Γt π½ ) Cn ( MetOpen β ( dist β β*π ) ) ) ) |
15 |
13 14
|
sselid |
β’ ( π· β ( βMet β π ) β π· β ( ( π½ Γt π½ ) Cn πΎ ) ) |