Metamath Proof Explorer


Theorem xmetdcn

Description: The metric function of an extended metric space is always continuous in the topology generated by it. (Contributed by Mario Carneiro, 4-Sep-2015)

Ref Expression
Hypotheses xmetdcn2.1 𝐽 = ( MetOpen ‘ 𝐷 )
xmetdcn.2 𝐾 = ( ordTop ‘ ≤ )
Assertion xmetdcn ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) → 𝐷 ∈ ( ( 𝐽 ×t 𝐽 ) Cn 𝐾 ) )

Proof

Step Hyp Ref Expression
1 xmetdcn2.1 𝐽 = ( MetOpen ‘ 𝐷 )
2 xmetdcn.2 𝐾 = ( ordTop ‘ ≤ )
3 letopon ( ordTop ‘ ≤ ) ∈ ( TopOn ‘ ℝ* )
4 2 3 eqeltri 𝐾 ∈ ( TopOn ‘ ℝ* )
5 eqid ( dist ‘ ℝ*𝑠 ) = ( dist ‘ ℝ*𝑠 )
6 eqid ( MetOpen ‘ ( dist ‘ ℝ*𝑠 ) ) = ( MetOpen ‘ ( dist ‘ ℝ*𝑠 ) )
7 5 6 xrsmopn ( ordTop ‘ ≤ ) ⊆ ( MetOpen ‘ ( dist ‘ ℝ*𝑠 ) )
8 2 7 eqsstri 𝐾 ⊆ ( MetOpen ‘ ( dist ‘ ℝ*𝑠 ) )
9 5 xrsxmet ( dist ‘ ℝ*𝑠 ) ∈ ( ∞Met ‘ ℝ* )
10 6 mopnuni ( ( dist ‘ ℝ*𝑠 ) ∈ ( ∞Met ‘ ℝ* ) → ℝ* = ( MetOpen ‘ ( dist ‘ ℝ*𝑠 ) ) )
11 9 10 ax-mp * = ( MetOpen ‘ ( dist ‘ ℝ*𝑠 ) )
12 11 cnss2 ( ( 𝐾 ∈ ( TopOn ‘ ℝ* ) ∧ 𝐾 ⊆ ( MetOpen ‘ ( dist ‘ ℝ*𝑠 ) ) ) → ( ( 𝐽 ×t 𝐽 ) Cn ( MetOpen ‘ ( dist ‘ ℝ*𝑠 ) ) ) ⊆ ( ( 𝐽 ×t 𝐽 ) Cn 𝐾 ) )
13 4 8 12 mp2an ( ( 𝐽 ×t 𝐽 ) Cn ( MetOpen ‘ ( dist ‘ ℝ*𝑠 ) ) ) ⊆ ( ( 𝐽 ×t 𝐽 ) Cn 𝐾 )
14 1 5 6 xmetdcn2 ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) → 𝐷 ∈ ( ( 𝐽 ×t 𝐽 ) Cn ( MetOpen ‘ ( dist ‘ ℝ*𝑠 ) ) ) )
15 13 14 sselid ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) → 𝐷 ∈ ( ( 𝐽 ×t 𝐽 ) Cn 𝐾 ) )