| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							xmetdcn2.1 | 
							⊢ 𝐽  =  ( MetOpen ‘ 𝐷 )  | 
						
						
							| 2 | 
							
								
							 | 
							xmetdcn.2 | 
							⊢ 𝐾  =  ( ordTop ‘  ≤  )  | 
						
						
							| 3 | 
							
								
							 | 
							letopon | 
							⊢ ( ordTop ‘  ≤  )  ∈  ( TopOn ‘ ℝ* )  | 
						
						
							| 4 | 
							
								2 3
							 | 
							eqeltri | 
							⊢ 𝐾  ∈  ( TopOn ‘ ℝ* )  | 
						
						
							| 5 | 
							
								
							 | 
							eqid | 
							⊢ ( dist ‘ ℝ*𝑠 )  =  ( dist ‘ ℝ*𝑠 )  | 
						
						
							| 6 | 
							
								
							 | 
							eqid | 
							⊢ ( MetOpen ‘ ( dist ‘ ℝ*𝑠 ) )  =  ( MetOpen ‘ ( dist ‘ ℝ*𝑠 ) )  | 
						
						
							| 7 | 
							
								5 6
							 | 
							xrsmopn | 
							⊢ ( ordTop ‘  ≤  )  ⊆  ( MetOpen ‘ ( dist ‘ ℝ*𝑠 ) )  | 
						
						
							| 8 | 
							
								2 7
							 | 
							eqsstri | 
							⊢ 𝐾  ⊆  ( MetOpen ‘ ( dist ‘ ℝ*𝑠 ) )  | 
						
						
							| 9 | 
							
								5
							 | 
							xrsxmet | 
							⊢ ( dist ‘ ℝ*𝑠 )  ∈  ( ∞Met ‘ ℝ* )  | 
						
						
							| 10 | 
							
								6
							 | 
							mopnuni | 
							⊢ ( ( dist ‘ ℝ*𝑠 )  ∈  ( ∞Met ‘ ℝ* )  →  ℝ*  =  ∪  ( MetOpen ‘ ( dist ‘ ℝ*𝑠 ) ) )  | 
						
						
							| 11 | 
							
								9 10
							 | 
							ax-mp | 
							⊢ ℝ*  =  ∪  ( MetOpen ‘ ( dist ‘ ℝ*𝑠 ) )  | 
						
						
							| 12 | 
							
								11
							 | 
							cnss2 | 
							⊢ ( ( 𝐾  ∈  ( TopOn ‘ ℝ* )  ∧  𝐾  ⊆  ( MetOpen ‘ ( dist ‘ ℝ*𝑠 ) ) )  →  ( ( 𝐽  ×t  𝐽 )  Cn  ( MetOpen ‘ ( dist ‘ ℝ*𝑠 ) ) )  ⊆  ( ( 𝐽  ×t  𝐽 )  Cn  𝐾 ) )  | 
						
						
							| 13 | 
							
								4 8 12
							 | 
							mp2an | 
							⊢ ( ( 𝐽  ×t  𝐽 )  Cn  ( MetOpen ‘ ( dist ‘ ℝ*𝑠 ) ) )  ⊆  ( ( 𝐽  ×t  𝐽 )  Cn  𝐾 )  | 
						
						
							| 14 | 
							
								1 5 6
							 | 
							xmetdcn2 | 
							⊢ ( 𝐷  ∈  ( ∞Met ‘ 𝑋 )  →  𝐷  ∈  ( ( 𝐽  ×t  𝐽 )  Cn  ( MetOpen ‘ ( dist ‘ ℝ*𝑠 ) ) ) )  | 
						
						
							| 15 | 
							
								13 14
							 | 
							sselid | 
							⊢ ( 𝐷  ∈  ( ∞Met ‘ 𝑋 )  →  𝐷  ∈  ( ( 𝐽  ×t  𝐽 )  Cn  𝐾 ) )  |