Description: Recover the base set from an extended metric. (Contributed by Mario Carneiro, 23-Aug-2015)
Ref | Expression | ||
---|---|---|---|
Assertion | xmetdmdm | ⊢ ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) → 𝑋 = dom dom 𝐷 ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | xmetf | ⊢ ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) → 𝐷 : ( 𝑋 × 𝑋 ) ⟶ ℝ* ) | |
2 | 1 | fdmd | ⊢ ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) → dom 𝐷 = ( 𝑋 × 𝑋 ) ) |
3 | 2 | dmeqd | ⊢ ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) → dom dom 𝐷 = dom ( 𝑋 × 𝑋 ) ) |
4 | dmxpid | ⊢ dom ( 𝑋 × 𝑋 ) = 𝑋 | |
5 | 3 4 | eqtr2di | ⊢ ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) → 𝑋 = dom dom 𝐷 ) |