| Step | Hyp | Ref | Expression | 
						
							| 1 |  | xmeter.1 | ⊢  ∼   =  ( ◡ 𝐷  “  ℝ ) | 
						
							| 2 | 1 | xmeterval | ⊢ ( 𝐷  ∈  ( ∞Met ‘ 𝑋 )  →  ( 𝑃  ∼  𝑥  ↔  ( 𝑃  ∈  𝑋  ∧  𝑥  ∈  𝑋  ∧  ( 𝑃 𝐷 𝑥 )  ∈  ℝ ) ) ) | 
						
							| 3 |  | 3anass | ⊢ ( ( 𝑃  ∈  𝑋  ∧  𝑥  ∈  𝑋  ∧  ( 𝑃 𝐷 𝑥 )  ∈  ℝ )  ↔  ( 𝑃  ∈  𝑋  ∧  ( 𝑥  ∈  𝑋  ∧  ( 𝑃 𝐷 𝑥 )  ∈  ℝ ) ) ) | 
						
							| 4 | 3 | baib | ⊢ ( 𝑃  ∈  𝑋  →  ( ( 𝑃  ∈  𝑋  ∧  𝑥  ∈  𝑋  ∧  ( 𝑃 𝐷 𝑥 )  ∈  ℝ )  ↔  ( 𝑥  ∈  𝑋  ∧  ( 𝑃 𝐷 𝑥 )  ∈  ℝ ) ) ) | 
						
							| 5 | 2 4 | sylan9bb | ⊢ ( ( 𝐷  ∈  ( ∞Met ‘ 𝑋 )  ∧  𝑃  ∈  𝑋 )  →  ( 𝑃  ∼  𝑥  ↔  ( 𝑥  ∈  𝑋  ∧  ( 𝑃 𝐷 𝑥 )  ∈  ℝ ) ) ) | 
						
							| 6 |  | vex | ⊢ 𝑥  ∈  V | 
						
							| 7 | 6 | a1i | ⊢ ( 𝐷  ∈  ( ∞Met ‘ 𝑋 )  →  𝑥  ∈  V ) | 
						
							| 8 |  | elecg | ⊢ ( ( 𝑥  ∈  V  ∧  𝑃  ∈  𝑋 )  →  ( 𝑥  ∈  [ 𝑃 ]  ∼   ↔  𝑃  ∼  𝑥 ) ) | 
						
							| 9 | 7 8 | sylan | ⊢ ( ( 𝐷  ∈  ( ∞Met ‘ 𝑋 )  ∧  𝑃  ∈  𝑋 )  →  ( 𝑥  ∈  [ 𝑃 ]  ∼   ↔  𝑃  ∼  𝑥 ) ) | 
						
							| 10 |  | xblpnf | ⊢ ( ( 𝐷  ∈  ( ∞Met ‘ 𝑋 )  ∧  𝑃  ∈  𝑋 )  →  ( 𝑥  ∈  ( 𝑃 ( ball ‘ 𝐷 ) +∞ )  ↔  ( 𝑥  ∈  𝑋  ∧  ( 𝑃 𝐷 𝑥 )  ∈  ℝ ) ) ) | 
						
							| 11 | 5 9 10 | 3bitr4d | ⊢ ( ( 𝐷  ∈  ( ∞Met ‘ 𝑋 )  ∧  𝑃  ∈  𝑋 )  →  ( 𝑥  ∈  [ 𝑃 ]  ∼   ↔  𝑥  ∈  ( 𝑃 ( ball ‘ 𝐷 ) +∞ ) ) ) | 
						
							| 12 | 11 | eqrdv | ⊢ ( ( 𝐷  ∈  ( ∞Met ‘ 𝑋 )  ∧  𝑃  ∈  𝑋 )  →  [ 𝑃 ]  ∼   =  ( 𝑃 ( ball ‘ 𝐷 ) +∞ ) ) |