Step |
Hyp |
Ref |
Expression |
1 |
|
xmeter.1 |
⊢ ∼ = ( ◡ 𝐷 “ ℝ ) |
2 |
1
|
xmeterval |
⊢ ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) → ( 𝑃 ∼ 𝑥 ↔ ( 𝑃 ∈ 𝑋 ∧ 𝑥 ∈ 𝑋 ∧ ( 𝑃 𝐷 𝑥 ) ∈ ℝ ) ) ) |
3 |
|
3anass |
⊢ ( ( 𝑃 ∈ 𝑋 ∧ 𝑥 ∈ 𝑋 ∧ ( 𝑃 𝐷 𝑥 ) ∈ ℝ ) ↔ ( 𝑃 ∈ 𝑋 ∧ ( 𝑥 ∈ 𝑋 ∧ ( 𝑃 𝐷 𝑥 ) ∈ ℝ ) ) ) |
4 |
3
|
baib |
⊢ ( 𝑃 ∈ 𝑋 → ( ( 𝑃 ∈ 𝑋 ∧ 𝑥 ∈ 𝑋 ∧ ( 𝑃 𝐷 𝑥 ) ∈ ℝ ) ↔ ( 𝑥 ∈ 𝑋 ∧ ( 𝑃 𝐷 𝑥 ) ∈ ℝ ) ) ) |
5 |
2 4
|
sylan9bb |
⊢ ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑃 ∈ 𝑋 ) → ( 𝑃 ∼ 𝑥 ↔ ( 𝑥 ∈ 𝑋 ∧ ( 𝑃 𝐷 𝑥 ) ∈ ℝ ) ) ) |
6 |
|
vex |
⊢ 𝑥 ∈ V |
7 |
6
|
a1i |
⊢ ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) → 𝑥 ∈ V ) |
8 |
|
elecg |
⊢ ( ( 𝑥 ∈ V ∧ 𝑃 ∈ 𝑋 ) → ( 𝑥 ∈ [ 𝑃 ] ∼ ↔ 𝑃 ∼ 𝑥 ) ) |
9 |
7 8
|
sylan |
⊢ ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑃 ∈ 𝑋 ) → ( 𝑥 ∈ [ 𝑃 ] ∼ ↔ 𝑃 ∼ 𝑥 ) ) |
10 |
|
xblpnf |
⊢ ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑃 ∈ 𝑋 ) → ( 𝑥 ∈ ( 𝑃 ( ball ‘ 𝐷 ) +∞ ) ↔ ( 𝑥 ∈ 𝑋 ∧ ( 𝑃 𝐷 𝑥 ) ∈ ℝ ) ) ) |
11 |
5 9 10
|
3bitr4d |
⊢ ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑃 ∈ 𝑋 ) → ( 𝑥 ∈ [ 𝑃 ] ∼ ↔ 𝑥 ∈ ( 𝑃 ( ball ‘ 𝐷 ) +∞ ) ) ) |
12 |
11
|
eqrdv |
⊢ ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑃 ∈ 𝑋 ) → [ 𝑃 ] ∼ = ( 𝑃 ( ball ‘ 𝐷 ) +∞ ) ) |