Step |
Hyp |
Ref |
Expression |
1 |
|
elfvdm |
⊢ ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) → 𝑋 ∈ dom ∞Met ) |
2 |
|
isxmet |
⊢ ( 𝑋 ∈ dom ∞Met → ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ↔ ( 𝐷 : ( 𝑋 × 𝑋 ) ⟶ ℝ* ∧ ∀ 𝑥 ∈ 𝑋 ∀ 𝑦 ∈ 𝑋 ( ( ( 𝑥 𝐷 𝑦 ) = 0 ↔ 𝑥 = 𝑦 ) ∧ ∀ 𝑧 ∈ 𝑋 ( 𝑥 𝐷 𝑦 ) ≤ ( ( 𝑧 𝐷 𝑥 ) +𝑒 ( 𝑧 𝐷 𝑦 ) ) ) ) ) ) |
3 |
1 2
|
syl |
⊢ ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) → ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ↔ ( 𝐷 : ( 𝑋 × 𝑋 ) ⟶ ℝ* ∧ ∀ 𝑥 ∈ 𝑋 ∀ 𝑦 ∈ 𝑋 ( ( ( 𝑥 𝐷 𝑦 ) = 0 ↔ 𝑥 = 𝑦 ) ∧ ∀ 𝑧 ∈ 𝑋 ( 𝑥 𝐷 𝑦 ) ≤ ( ( 𝑧 𝐷 𝑥 ) +𝑒 ( 𝑧 𝐷 𝑦 ) ) ) ) ) ) |
4 |
3
|
ibi |
⊢ ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) → ( 𝐷 : ( 𝑋 × 𝑋 ) ⟶ ℝ* ∧ ∀ 𝑥 ∈ 𝑋 ∀ 𝑦 ∈ 𝑋 ( ( ( 𝑥 𝐷 𝑦 ) = 0 ↔ 𝑥 = 𝑦 ) ∧ ∀ 𝑧 ∈ 𝑋 ( 𝑥 𝐷 𝑦 ) ≤ ( ( 𝑧 𝐷 𝑥 ) +𝑒 ( 𝑧 𝐷 𝑦 ) ) ) ) ) |
5 |
|
simpl |
⊢ ( ( ( ( 𝑥 𝐷 𝑦 ) = 0 ↔ 𝑥 = 𝑦 ) ∧ ∀ 𝑧 ∈ 𝑋 ( 𝑥 𝐷 𝑦 ) ≤ ( ( 𝑧 𝐷 𝑥 ) +𝑒 ( 𝑧 𝐷 𝑦 ) ) ) → ( ( 𝑥 𝐷 𝑦 ) = 0 ↔ 𝑥 = 𝑦 ) ) |
6 |
5
|
2ralimi |
⊢ ( ∀ 𝑥 ∈ 𝑋 ∀ 𝑦 ∈ 𝑋 ( ( ( 𝑥 𝐷 𝑦 ) = 0 ↔ 𝑥 = 𝑦 ) ∧ ∀ 𝑧 ∈ 𝑋 ( 𝑥 𝐷 𝑦 ) ≤ ( ( 𝑧 𝐷 𝑥 ) +𝑒 ( 𝑧 𝐷 𝑦 ) ) ) → ∀ 𝑥 ∈ 𝑋 ∀ 𝑦 ∈ 𝑋 ( ( 𝑥 𝐷 𝑦 ) = 0 ↔ 𝑥 = 𝑦 ) ) |
7 |
4 6
|
simpl2im |
⊢ ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) → ∀ 𝑥 ∈ 𝑋 ∀ 𝑦 ∈ 𝑋 ( ( 𝑥 𝐷 𝑦 ) = 0 ↔ 𝑥 = 𝑦 ) ) |
8 |
|
oveq1 |
⊢ ( 𝑥 = 𝐴 → ( 𝑥 𝐷 𝑦 ) = ( 𝐴 𝐷 𝑦 ) ) |
9 |
8
|
eqeq1d |
⊢ ( 𝑥 = 𝐴 → ( ( 𝑥 𝐷 𝑦 ) = 0 ↔ ( 𝐴 𝐷 𝑦 ) = 0 ) ) |
10 |
|
eqeq1 |
⊢ ( 𝑥 = 𝐴 → ( 𝑥 = 𝑦 ↔ 𝐴 = 𝑦 ) ) |
11 |
9 10
|
bibi12d |
⊢ ( 𝑥 = 𝐴 → ( ( ( 𝑥 𝐷 𝑦 ) = 0 ↔ 𝑥 = 𝑦 ) ↔ ( ( 𝐴 𝐷 𝑦 ) = 0 ↔ 𝐴 = 𝑦 ) ) ) |
12 |
|
oveq2 |
⊢ ( 𝑦 = 𝐵 → ( 𝐴 𝐷 𝑦 ) = ( 𝐴 𝐷 𝐵 ) ) |
13 |
12
|
eqeq1d |
⊢ ( 𝑦 = 𝐵 → ( ( 𝐴 𝐷 𝑦 ) = 0 ↔ ( 𝐴 𝐷 𝐵 ) = 0 ) ) |
14 |
|
eqeq2 |
⊢ ( 𝑦 = 𝐵 → ( 𝐴 = 𝑦 ↔ 𝐴 = 𝐵 ) ) |
15 |
13 14
|
bibi12d |
⊢ ( 𝑦 = 𝐵 → ( ( ( 𝐴 𝐷 𝑦 ) = 0 ↔ 𝐴 = 𝑦 ) ↔ ( ( 𝐴 𝐷 𝐵 ) = 0 ↔ 𝐴 = 𝐵 ) ) ) |
16 |
11 15
|
rspc2v |
⊢ ( ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) → ( ∀ 𝑥 ∈ 𝑋 ∀ 𝑦 ∈ 𝑋 ( ( 𝑥 𝐷 𝑦 ) = 0 ↔ 𝑥 = 𝑦 ) → ( ( 𝐴 𝐷 𝐵 ) = 0 ↔ 𝐴 = 𝐵 ) ) ) |
17 |
7 16
|
syl5com |
⊢ ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) → ( ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) → ( ( 𝐴 𝐷 𝐵 ) = 0 ↔ 𝐴 = 𝐵 ) ) ) |
18 |
17
|
3impib |
⊢ ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) → ( ( 𝐴 𝐷 𝐵 ) = 0 ↔ 𝐴 = 𝐵 ) ) |